Supporting Information

Terahertz Photonic Crystals Based on Barium Titanate / Polymer Nanocomposites

By Joseph Lott, Chen Xia, Louis Kosnosky, Christoph Weder, and Jie Shan*

Department of Macromolecular Science and Engineering and Department of Physics, Case Western Reserve University
10900 Euclid Avenue, Cleveland, Ohio 44106, USA

Figure S1. Scanning electron microscopy images of fractured surfaces of PMMA comprising BaTiO₃ nanoparticles: (a) 6% v/v, particle size 100 nm; (b) 3% v/v, particle size 200 nm. The images show occasional zones of aggregated BaTiO₃.
Figure S2. Real (n') and imaginary (n'') parts of the refractive index of PMMA/ BaTiO$_3$ nanocomposite films containing a) 0%, b) 6%, and c) 19% v/v BaTiO$_3$ (particle size: 100 nm). Solid lines represent effective medium theory calculation.
Figure S3. Real (n') part of the refractive index of poly(styrene)/BaTiO$_3$ nanocomposite films at 0.8 THz as a function of BaTiO$_3$ content. The solid line represents an effective medium theory calculation.