Comproportionation Reaction and Hindered Rotation of Coordinated Pyridine Ring in Acetate Bridged Tetraplatinum(II) Cluster Having Pyridine Derivative Ligands in the Cluster Plane

Tadashi Yamaguchi,* Akira Shibata, and Tasuku Ito*

Figure S1. Time course of 1H NMR peak intensity during the comproportionation reaction between 0 and 4, and between 4 and 8. S1

Figure S2. Temperature dependent 1H NMR spectra of the dmap β proton in 4'a. S2

Table S1. Rate constants for dmap ring rotation in 8a and 6a. S3

Figure S3. Eyring plot for dmap ring rotation in 8a and 6a. S3
\[[A] + [B] \xrightarrow{k_1} 2[C] \quad [A]_0 = [B]_0 = 4 \text{ mmol} \quad K = k_1 / k_{-1} \]

\[
\frac{d[C]}{([C] - M) ([C] - [C]_{\infty})} = \left(\frac{1}{2} \cdot \frac{2}{K} \right) k_1 \cdot dt
\]

\[
M = \frac{(2 + \sqrt{K})^2}{K - 4}
\]

\[
[C] = \frac{1 - MN \exp(-Lk_1t)}{1 - N \exp(-Lk_1t)} \cdot [C]_{\infty}
\]

\[
[A] = \frac{1 + MN \exp(-Lk_1t)}{1 - N \exp(-Lk_1t)} \cdot [A]_{\infty}
\]

\[
L = \frac{4[A]_0}{\sqrt{K}}, N = \text{integration const.}
\]

Fitting Function: \[I = \frac{(2 + \sqrt{K})^2}{K - 4} N \exp\left(-\frac{4[A]_0}{\sqrt{K}} k_1 t\right) \quad \text{or} \quad I = \frac{(2 + \sqrt{K})^2}{K - 4} N \exp\left(-\frac{4[A]_0}{\sqrt{K}} k_1 t\right) \]

variable: \(k_1, N, F \) fixed: \(K \)

Figure S1. Time course of \(^1\text{H} \) NMR peak intensity during the comproportionation reaction between 0 and 4, and between 4 and 8.
Figure S2. Temperature dependent 1H NMR spectra of the dmap β proton in 4'a.
Table S1. Rate constants for dmap ring rotation in 8a and 6a.

<table>
<thead>
<tr>
<th>temp.</th>
<th>8a siteA</th>
<th>6a siteB</th>
<th>siteC</th>
<th>4a</th>
</tr>
</thead>
<tbody>
<tr>
<td>50°C</td>
<td>75</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40°C</td>
<td>37</td>
<td>15</td>
<td>400</td>
<td>> 10^5 a</td>
</tr>
<tr>
<td>30°C</td>
<td>13</td>
<td>6</td>
<td>250</td>
<td>80000a</td>
</tr>
<tr>
<td>20°C</td>
<td>4.5</td>
<td>2</td>
<td>120</td>
<td>50000a</td>
</tr>
<tr>
<td>10°C</td>
<td>1.8</td>
<td></td>
<td>50</td>
<td>30000a</td>
</tr>
<tr>
<td>0°C</td>
<td>0.7</td>
<td></td>
<td>18</td>
<td>15000a</td>
</tr>
<tr>
<td>-10°C</td>
<td></td>
<td></td>
<td>5</td>
<td>> 10^5 a</td>
</tr>
<tr>
<td>-20°C</td>
<td></td>
<td></td>
<td></td>
<td>60000a</td>
</tr>
<tr>
<td>-30°C</td>
<td></td>
<td></td>
<td></td>
<td>30000a</td>
</tr>
</tbody>
</table>

These data were obtained by assuming that chemical shift difference between two environments at slow rotation limit is 1.2 ppm.

![Eyring plot for dmap ring rotation in 8a and 6a.](image)

Figure S3. Eyring plot for dmap ring rotation in 8a and 6a.