Copyright Wiley-VCH Verlag GmbH, 69451, Weinheim, 2002 Chem. Eur. J. 2002

Supporting Information

for

Dramatically Synergetic Effect of Carboxylic Acid Additive on Tridentate Titanium Catalyzed Enantioselective Hetero-Diels-Alder Reaction: Additive Acceleration and Nonlinear Effect

Yu Yuan, Jiang Long, Jie Sun, and Kuiling Ding*

[*] Prof. Dr. K. Ding, Dr. Jiang Long, Mr. Y. Yuan, Mr. Jie Sun State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences, 354 Fenglin Road Shanghai 200032, P. R. China Fax: (+86) 21-6416-6128 E-mail: kding@pub.sioc.ac.cn

General Considerations

¹H NMR spectra were recorded in CDCl₃ on a Bruker AM300 at 25°C. Chemical shifts were expressed in ppm with TMS as an internal standard ($\delta = 0$ ppm) for ¹H NMR. Liquid chromatographic analyses were conducted on a JASCO 1580 system. EI Mass spectra were obtained on a HP5989A spectrometer. HRMS was determined on a Kratos Concept instrument. Elemental analysis was performed with an Elemental VARIO EL apparatus. All the experiments which are sensitive to moisture or air were carried out under argon atmosphere using standard Schlenk techniques. Commercial reagents were used as received without further purification unless otherwise noted. Toluene was freshly distilled from sodium benzophenone ketyl and methanol from magnesium.

General Procedure for Catalytic Enantioselctive Hetero-Diels-Alder Reaction : A mixture of (*S*)-Schiff Base (0.05 mmol), 0.5 M Ti(O*i*Pr)₄ in CH₂Cl₂ (50 μ l, 0.05 mmol) and activated power 4A MS (30 mg) in toluene (1 ml) was stirred for 2 h at 50°C. The red mixture was cooled to room temperature and the carboxylic acid (0.025 mmol), aldehyde (0.25 mmol) and Danishefsky's diene (60 μ l, 0.3 mmol) were added sequentially. After 20 h, the solution was treated with 10 drops TFA. After the mixture was stirred for 5 min, saturated NaHCO₃ (3 ml) was added. The mixture was stirred for further 5 min and fitered through a plug of Celite. The Organic layer was separated and the aqueous layer was extracted with ethyl ester (5×5 ml), the combinated organic layers were dried over anhydrous Na₂SO₄ and concentrated. The crude residue was purified by flash chromatography to give the cycloadduct.

Characterization of Cycloadducts 3a-3k

All the aldehydes were purchased from commercial suppliers. 1-Methoxy-3-(trimethyl-silyloxyl)buta-1,3-diene was prepared according to literature procedure.¹

(*S*)-2-Phenyl-2,3-dihydro-4*H*-pyran-4-one (3a).² IR (liquid film) v_{max} 3064, 1676, 1596, 1402, 1272, 1228, 1210, 1040, 990, 934, 864, 826, 796, 760, 732, 720, 640, 612 cm⁻¹. ¹H NMR (300MHz, CDCl₃) δ 7.49 (d, J = 5.98 Hz, 1H), 7.47-7.39 (m, 5H), 5.54 (dd, J = 5.98, 0.98 Hz, 1H), 5.44 (dd, J = 14.18, 3.46 Hz, 1H), 2.97-2.87 (m, 1H), 2.70-2.63 (m, 1H). EIMS *m*/*z* (relative intensity): 174 (M⁺, 0.95), 156 (11.59), 145 (13.20), 131 (5.34), 115 (2.59), 104 (100.00), 91 (3.89), 77 (22.89), 69(10.24). Enantiomeric excess was determined by HPLC on Chiralcel OD column, hexane :

isopropanol = 90 : 10, flow rate = 1.0 mL/min, t_{R1} = 11.450 min (*S*), t_{R2} = 13.467 min (*R*).

2-(4-Chlorophenyl)-2,3-dihydro-*4H***-pyran-4-one (3b).**³ IR (liquid film) v_{max} 3070, 2970, 2906, 2632, 2076, 1907, 1683, 1597, 1496, 1402, 1272, 1228, 1209, 1091, 1040, 934, 834, 822 cm⁻¹. ¹H NMR (300MHz, CDCl₃) δ 7.58 (d, J = 6.02 Hz, 1H), 7.52-7.44 (m, 4H), 5.65 (dd, J = 6.07, 1.03 Hz, 1H), 5.55 (dd, J = 14.24, 3.57 Hz, 1H), 3.02-2.92 (m, 1H), 2.79-2.72 (m, 1H). EIMS *m*/*z* (relative intensity): 208 (M⁺, 2.52), 190 (14.15), 179 (7.91), 138 (100.00), 103 (60.19), 77 (14.69), 69(10.62).

Enantiomeric excess was determined by HPLC on Chiralcel OD column, hexane : isopropanol = 90 : 10, flow rate = 1.0 mL/min, t_{R1} = 12.525 min (major), t_{R2} = 15.308 min (minor).

2-(4-Bromophenyl)-2,3-dihydro-*4H***-pyran-4-one (3c).** IR (liquid film) v_{max} 3087, 2970, 2893, 1922, 1683, 1668, 1593, 1487, 1401, 1270, 1227, 1209, 1038, 933, 834, 814 cm⁻¹. ¹H NMR (300MHz, CDCl₃) δ 7.58-7.57 (m, 2H), 7.46 (dd, J = 5.87, 0.49 Hz, 1H), 7.31-7.27 (m, 2H), 5.53 (dd, J = 6.11, 1.22 Hz, 1H), 5.43 (dd, J = 14.17, 3.42 Hz, 1H), 2.91-2.81 (m, 1H), 2.68-2.61 (m, 1H). EIMS *m/z* (relative intensity): 254 ([M+2]⁺, 5.13), 252 (M⁺, 5.42), 184 (96.52), 182 (100.00), 103(61.81), 77(64.91), 69(31.27). HRMS (EI) caled for C₁₁H₉BrO₂ (M⁺): 251.9786. Found: 251.9780. Anal. calcd for C₁₁H₉BrO₂: C 52.20, H 3.58%. Found: C 52.47, H 3.82%.

Enantiomeric excess was determined by HPLC on Chiralcel OD column, hexane : isopropanol = 90 : 10, flow rate = 1.0 mL/min, t_{R1} = 13.708 min (major), t_{R2} = 17.725 min (minor).

2-(4-Nitrophenyl)-2,3-dihydro-*4H***-pyran-4-one (3d).**⁴ IR (KBr) v_{max} 3071, 2962, 2629, 2460, 1930, 1679, 1593, 1523, 1409, 1353, 1263, 1228, 1037, 934, 857, 849 cm⁻¹. ¹H NMR (300MHz, CDCl₃) δ 8.31 (d, J = 11.61 Hz, 2H), 7.61 (d, J = 11.00 Hz, 2H), 7.51 (d, J = 6.11 Hz, 1H), 5.59-5.57 (m, 1H), 5.53-5.52 (d, J = 4.28 Hz, 1H), 2.89-2.68 (m, 2H). EIMS *m*/*z* (relative intensity): 219 (M⁺, 9.21), 201 (21.16), 190 (7.75), 173 (2.07), 149 (100.00), 119 (51.05), 103 (47.68) 91 (50.93), 77 (81.13), 69(22.28).

Enantiomeric excess was determined by HPLC on Chiralcel OD column, hexane : isopropanol = 90 : 10, flow rate = 1.0 mL/min, t_{R1} = 25.725 min (major), t_{R2} = 36.783 min (minor).

2-(3-Bromophenyl)-2,3-dihydro-*4H***-pyran-4-one (3e).** IR (liquid film) v_{max} 3065, 2970, 2901, 2629, 2358, 1683, 1592, 1569, 1403, 1270, 1226, 1038, 997, 877, 834 cm⁻¹. ¹H NMR (300MHz, CDCl₃) δ 7.58 (s, 1H), 7.54-7.47 (m, 2H), 7.33-7.27 (m, 2H), 5.55 (dd, J=6.00, 1.23 Hz, 1H), 5.42 (dd, J=14.23, 3.63 Hz, 1H), 2.91-2.80 (m, 1H), 2.69-2.62 (m, 1H). EIMS *m/z* (relative intensity): 254 ([M+2]⁺, 10.30), 252 (M⁺, 10.64), 184 (93.87), 182 (100.00), 144(11.13), 103(70.63), 77(46.24), 69(8.07). HRMS (EI) caled for C₁₁H₉BrO₂ (M⁺): 251.9786. Found: 251.9757. Anal. calcd for C₁₁H₉BrO₂: C 52.20, H 3.58%. Found: C 52.36, H 3.93%.

Enantiomeric excess was determined by HPLC on Chiralcel OD column, hexane : isopropanol = 90 : 10, flow rate = 1.0 mL/min, t_{R1} = 12.817 min (major), t_{R2} = 16.700 min (minor).

2-(3-Methylphenyl)-2,3-dihydro-*4H***-pyran-4-one (3f).**⁵ IR (liquid film) v_{max} 3055, 2968, 2920, 2626, 1683, 1591, 1402, 1271, 1221, 1039, 990, 899, 841 cm⁻¹. ¹H NMR (300MHz, CDCl₃) δ 7.48 (d, J = 5.98 Hz, 1H), 7.29-7.16 (m, 4H), 5.53 (dd, J = 6.00, 0.94 Hz, 1H), 5.42 (dd, J = 14.40, 3.60 Hz, 1H), 2.97-2.86 (m, 1H), 2.68-2.61 (m,

1H), 2.39 (s, 3H). EIMS *m*/*z* (relative intensity): 188 (M⁺, 1.36), 170 (9.30), 159 (16.21), 145 (3.08), 131 (4.28), 117 (100.00), 91 (25.64), 77 (6.84), 69(11.91).

Enantiomeric excess was determined by HPLC on Chiralcel OD column, hexane : isopropanol = 90 : 10, flow rate = 1.0 mL/min, t_{R1} = 10.150 min (major), t_{R2} = 12.150 min (minor).

2-(3-Methoxyphenyl)-2,3-dihydro-*4H***-pyran-4-one (3g).** IR (liquid film) v_{max} 3063, 2964, 2838, 1719, 1677, 1592, 1491, 1270, 1224, 1041, 992, 877, 844 cm⁻¹. ¹H NMR (300MHz, CDCl₃) δ 7.49 (d, J = 5.97 Hz, 1H), 7.34 (t, J = 7.81 Hz, 1H), 6.99-6.90 (m, 3H), 5.54 (dd, J = 6.10, 1.15 Hz, 1H), 5.42 (dd, J = 14.36, 3.46 Hz, 1H), 3.83 (s, 3H), 2.95-2.85 (m, 1H), 2.70-2.62 (m, 1H). EIMS *m*/*z* (relative intensity): 204 (M⁺, 20.33), 186 (11.52), 175 (11.58), 134 (100.00), 104 (16.78), 91 (24.43), 77(10.80), 69(5.26). HRMS (EI) caled for C₁₂H₁₂O₃ (M⁺): 204.0786. Found: 204.0753.

Enantiomeric excess was determined by HPLC on Chiralcel OD column, hexane : isopropanol = 90 : 10, flow rate = 1.0 mL/min, t_{R1} = 18.025 min (major), t_{R2} = 24.408 min (minor).

2-(4-Meyhoxyphenyl)-2,3-dihydro-*4H***-pyran-4-one** (**3h**).⁴ IR (liquid film) v_{max} 3073, 2966, 2627, 1720, 1681, 1589, 1497, 1274, 1111, 1041, 991, 934, 871 cm⁻¹. ¹H NMR (300MHz, CDCl₃) δ 7.53-7.47 (m, 2H), 7.37 (t, J = 7.90Hz, 1H), 7.03 (t, J = 7.55Hz, 1H), 6.91 (d, J = 8.31Hz, 1H), 5.81 (dd, J = 11.44, 6.41Hz, 1H), 5.51 (d, J = 6.00Hz, 1H), 3.84 (s, 3H), 2.77-2.73 (m, 2H). EIMS *m*/*z* (relative intensity): 204 (M⁺, 10.59), 186 (10.58), 175 (15.04), 134 (49.42), 119 (84.43), 105 (13.43), 91 (100.00), 77 (15.78), 69(10.71).

Enantiomeric excess was determined by HPLC on Chiralpak AD column, hexane : isopropanol = 99.5 : 0.5, flow rate = 1.0 mL/min, t_{R1} = 32.200 min (minor), t_{R2} = 39.100 min (major).

2-(2-Furyl)-2,3-dihydro-*4H***-pyran-4-one (3i).**⁶ IR (liquid film) v_{max} 3136, 3057, 2974, 2627, 1662, 1595, 1405, 1286, 1205, 1033, 997, 962, 880, 842 cm⁻¹. ¹H NMR (300MHz, CDCl₃) δ 7.49 (d, J = 1.47 Hz, 1H), 7.39 (d, J = 6.06 Hz, 1H), 6.47-6.41 (m, 2H), 5.52-5.46 (m, 2H), 3.15-3.05 (m, 1H), 2.77-2.70 (m, 1H). EIMS *m/z* (relative intensity): 164 (M⁺, 12.96), 146 (2.63), 136 (1.70), 94 (100.00), 69 (7.60), 66 (31.44). Enantiomeric excess was determined by HPLC on Chiralcel OD column, hexane : isopropanol = 95 : 5, flow rate = 0.7 mL/min, t_{R1} = 18.742 min (minor), t_{R2} = 20.217 min (major).

2-(E-Styryl)-2,3-dihydro-*4H***-pyran-4-one (3j).**⁶ IR (liquid film) v_{max} 3027, 2926, 1719, 1676, 1592, 1449, 1406, 1267, 1217, 1038, 967, 899, 820 cm⁻¹. ¹H NMR (300MHz, CDCl₃) δ 7.43-7.27 (m, 6H), δ 6.72 (d, J = 15.89 Hz, 1H), 6.31 (dd, J = 15.91, 6.56 Hz, 1H), 5.49 (d, J = 5.74 Hz, 1H), 5.11-5.04 (m, 1H), 2.79-2.58 (m, 2H). EIMS *m*/*z* (relative intensity): 200 (M⁺, 24.12), 129 (100.00), 115 (53.23), 102 (10.22), 91 (13.62), 77 (18.77), 69(22.68).

Enantiomeric excess was determined by HPLC on Chiralcel OD column, hexane : isopropanol = 90 : 10, flow rate = 1.0 mL/min, t_{R1} = 19.992 min (major), t_{R2} = 41.933 min (minor).

(*S*)-2-Phenylethyl-2,3-dihydro-4*H*-pyran-4-one (3k).¹ IR (liquid film) v_{max} 3063, 2930, 2866, 1720, 1676, 1595, 1496, 1455, 1407, 1270, 1227, 1197, 1045, 943, 888, 832 cm⁻¹. ¹H NMR (300MHz, CDCl₃) δ 7.39 (d, J = 6.11Hz, 1H), 7.34-7.19 (m, 5H), 5.42-5.40 (m, 1H), 4.43-4.36 (m, 1H), 2.85-2.75 (m, 2H), 2.61-2.40 (m, 2H), 2.19-2.06 (m, 1H), 2.01-1.88 (m, 1H). EIMS *m/z* (relative intensity): 202 (M⁺, 6.23), 158

(5.24), 130 (16.72), 117 (7.72), 104 (9.89), 91 (100.00), 77 (5.84), 69(6.88).

Enantiomeric excess was determined by HPLC on Chiralcel OD column, hexane : isopropanol = 90 : 10, flow rate = 1.0 mL/min, t_{R1} = 18.583 min (*S*), t_{R2} = 32.567 min (*R*).

The Effect of the Ligands on the Yield and Enantioselectivity of HDA Reaction between 1 and 2a

Ligand	Yield(%)	Ee(%)	Ligand	Yield(%)	ee(%)
L1	80	85	L12	59	42
L2	34	26	L13	70	85
L3	40	48	L14	39	3
L4	96	28	L15	49	60
L5	75	83	L16	39	6
L6	90	91	L17	39	7
L7	90	88	L18	75	4
L8	90	91	L19	78	30
L9	45	46	L20	100	59
L10	15	57	L21	69	65
L11	48	69	L22	28	16

The Effect of Carboxylic Acid Additives on the Yield and Enatioselectivity of the HDA Reaction between 1 and 2a

1

2a

(S)-**3a**

^{//}Ph

Acid	Yield(%)	Ee(%)	Acid	Yield(%)	Ee(%)
A1	80	85	A19	100	48
A2	69	81	A20	46	46
A3	100	87	A21	100	97
A4	97	84	A22	100	88
A5	100	67	A23	100	83
A6	100	75	A24	24	5
A7	100	75	A25	16	8
A8	83	86	A26	57	50
A9	50	83	A27	39	40
A10	66	78	A28	58	1
A11	71	83	A29	71	22
A12	65	78	A30	51	37
A13	72	70	A31	48	47
A14	14	54	A32	62	50
A15	35	83	A33	23	39
A16	87	85	A34	9	39
A17	78	48	A35	13	53
A18	41	86	A36	17	46

Ee of (<i>S</i>)-	Yield	Ee (%) of 3a	Ee of (<i>R</i>)-	Yield	Ee(%) of 3a
L1 (%)	(%)	(Configuration.)	L1 (%)	(%)	(Configuration.)
0	69	55 (S)	0	69	55(<i>S</i>)
15	71	74(<i>S</i>)	25	39	36(<i>R</i>)
30	75	87(<i>S</i>)	50	48	42(<i>R</i>)
50	100	93(S)	75	78	60(<i>R</i>)
75	99.5	93(S)	100	87	76(<i>R</i>)
100	100	97(<i>S</i>)			

The Search for Nonlinear Effect in the Catalytic System with L1/Ti/A21

The Search for Nonlinear Effect in the Catalytic System with (S)-L1/Ti/A1

Ee of (<i>S</i>)-	Yield	Ee (%) of 3a	Ee of (<i>R</i>)-	Yield	Ee(%) of 3a
L1 (%)	(%)	(Configuration.)	L1 (%)	(%)	(Configuration.)
0	0	0	60	64	83.1(<i>S</i>)
15	39	39.1(<i>S</i>)	75	64.3	83.4(<i>S</i>)
30	53.6	53.3(<i>S</i>)	100	80	85(<i>S</i>)
45	62.7	82.7(<i>S</i>)			

References

- [1] S. Danishefsky; T. Kitahara J. Am. Chem. Soc. 1974, 96, 7807-7808.
- [2] E. J. Corey; C. L. Cywin; T. D. Roper Tetrahedron Lett., 1992, 33, 6907-6910.
- [3] T. Hanamoto; H. Furuno; Y. Sugimoto; J. Inanaga SynLett., 1997, 79-80.
- [4] S. Danishefsky; N. Kato; D. Askin; J. F. Kerwin Jr. J. Am. Chem. Soc., 1982, 104, 360-362.
- [5] B. Wang; X. Feng; X. Cui; H. Liu; Y. Jiang Chem. Commun., 2000, 1605-1606.
- [6] S. E. Schaus; J. Branalt; E. N. Jacobsen J. Org. Chem., 1998, 63, 403-405.