Supporting Information

for

Alkyne Migrations in Alkylidene Carbenoid Species: A New Method of Polyyne Synthesis

Sara Eisler, Navjot Chahal, Robert McDonald, Rik R. Tykwinski*

Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G-2G2 E-mail: <u>rik.tykwinski@ualberta.ca</u>

Structural data and procedures for the synthesis of compounds **5a-j, 6a-j, 7a-j, 12a-b, 13a-b, 15, 17-19, 21-23, 25-27.**

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra for compounds all new compounds

5-(1-naphthyl)-1-trimethylsilylpenta-1,4-diyn-3-ol (5d). To 1-ethynylnaphthalene (0.600 g, 3.95 mmol) in THF (25 mL) at –78 °C was added BuLi (2.5 M in hexane, 1.6 mL, 4.0 mmol). After stirring for 30 min, 3-trimethylsilyl-1-propynal (0.504 g, 4.00 mmol) in Et₂O (5 mL) was added and stirring was continued for 2.5 h at –78 °C. The solution was quenched with satd. aq. NH₄Cl at –78 °C, extracted, and dried (MgSO₄). Chromatography (SiO₂, CH₂Cl₂) gave **5d** (663 mg, 60%) as a yellow oil: $R_f = 0.4$ (CH₂Cl₂); IR (CH₂Cl₂ cast) 3347, 3051, 2977, 2228, 2176, 1507 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.37 (d, *J* = 8.3 Hz, 1H), 7.88 (m, 2H), 7.74 (d, *J* = 7.3 Hz, 1H), 7.58 (m, 2H), 7.46 (dt, *J* = 7.3, 1.2Hz, 1H), 5.57 (s, 1H), 2.59 (s, 1H), 0.28 (s, 9 H); ¹³C NMR (75.5 MHz, CDCl₃) δ 133.5, 133.1, 130.9, 129.4, 128.3, 127.0, 126.5, 126.1, 125.1, 119.6, 102.0, 90.9, 90.0, 82.8, 53.4, –0.3; MS (EI, 70 eV) m/z 278.1 (M⁺, 100); HRMS calcd for C₁₅H₁₈OSi (M⁺) 278.1127, found 278.1123.

5-(1-naphthyl)-1-trimethylsilylpenta-1,4-diyn-3-one (6d). To **5d** (0.60 g, 2.2 mmol) in CH₂Cl₂ (50 mL) was added sequentially celite (0.6 g), molecular sieves (4 Å, 0.6 g), and PCC (0.58 g, 2.7 mmol). After stirring for 2 h at rt, the solution was filtered through a plug of silica gel (CH₂Cl₂) to give **6d** (0.32 g, 54%) as a yellow oil: $R_{\rm f} = 0.7$ (CH₂Cl₂); IR (CH₂Cl₂ cast) 3059, 2961, 2197, 2176, 2152, 1623 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.32 (d, J = 8.3 Hz, 1H), 7.98 (d, J = 8.3 Hz, 1H), 7.87 (dd, J = 7.3, 1.1 Hz, 2H), 7.60 (m, 2H), 7.46 (dd, J = 8.3 Hz, 1H), 0.31 (s, 9H); ¹³C NMR (125.3 MHz, CDCl₃) δ 160.5, 134.0, 133.8, 133.1, 132.2,

128.6, 127.9, 127.1, 125.7, 125.2, 117.0, 102.9, 99.6, 94.2, 90.6, -0.8; MS (EI, 70 eV) m/z276.1 (M⁺, 100); HRMS calcd for C₁₈H₁₆OSi (M⁺) 276.0971, found 276.0970.

3-(Dibromomethylidene)-5-(1-naphthyl)-1-trimethylsilylpenta-1,4-diyne (7d). CBr₄ (0.400 g, 1.21 mmol) and PPh₃ (0.680 g, 2.60 mmol) were added to CH₂Cl₂ (40 mL) and the mixture stirred for 5 min at rt. Ketone **6d** (0.276 g, 1.00 mmol) in CH₂Cl₂ (5 mL) was added in one portion and stirring continued until the reaction was complete (2-3 h) as monitored by TLC. The solution was concentrated to ca. 15 mL, hexanes (15 mL) was added, and the inhomogeneous mixture was filtered through celite. Evaporation gave a yellow oil that was further purified by column chromatography (SiO₂, hexanes/CH₂Cl₂ 2:1) to give **7d** (231 mg, 54%) as a yellow oil that solidified under refrigeration: Mp 78 °C; $R_f = 0.4$ (hexanes/CH₂Cl₂ 2:1); IR (CH₂Cl₂) 3058, 2959, 2199, 2153, 798 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.43 (d, *J* = 8.4 Hz, 1H), 7.87 (d, *J* = 7.8 Hz, 1H), 7.86 (d, *J* = 8.1 Hz, 1H), 7.78 (d, *J* = 7.2 Hz, 1H), 7.57 (m, 2H), 7.44 (t, *J* = 7.8 Hz, 1H), 7.86 (d, *J* = 8.1 Hz, 1H), 7.78 (d, *J* = 7.2 Hz, 1H), 7.57 (m, 2H), 7.44 (t, *J* = 7.8 Hz, 1H), 0.33 (s, 9H); ¹³C NMR (75.5 MHz, CDCl₃) δ 133.2 (2x), 131.0, 129.8, 128.4, 127.2, 126.7, 126.2, 125.2, 119.8, 114.6, 108.9, 102.8, 100.4, 94.4, 90.7, -0.3; MS (EI, 70 eV) *m/z* 431.9 (M⁺, 100); HRMS calcd for C₁₉H₁₆⁷⁹Br⁸¹BrSi (M⁺) 431.9368, found 431.9380; Anal. Calcd. for C₁₉H₁₆Br₂Si (432.23): C, 52.80; H, 3.73. Found: C, 52.83; H, 3.72.

1-Naphthyl-5-triisopropylsilyl-1,4-pentadiyne-3-ol (5e). To a solution of 1trimethylsilylacetylene-naphthalene (0.402 g, 1.79 mmol) in wet MeOH/THF (30 mL, 1:1 v/v) was added K₂CO₃ (0.06 g, 0.4 mmol), and the mixture stirred at rt for 2 h until TLC showed complete desilylation. Et₂O and satd. aq. NH₄Cl were added, the solution extracted, dried over (MgSO₄), reduced to ca. 5 mL, and added to dried Et₂O (30 mL). The temperature was lowered to -78 °C and *n*-BuLi (2.5 M in hexanes, 0.70 mL, 1.8 mmol) was slowly added. After stirring for ca. 1 h, 3-triisopropylsilylpropynal (0.382 g, 1.82 mmol) was added and allowed to stir overnight. The reaction was quenched with aq. NH₄Cl and dried over MgSO₄. The solvent was reduced to give **5e** (0.359, 55%) as a yellow oil: R_f = 0.40 (hexanes/CH₂Cl₂ 1:1); IR (CH₂Cl₂ cast) 3362, 2943, 2865, 2229, 2174, 1462 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.32 (m, 1H), 7.83 (m, 2H), 7.67 (dd, *J* = 7.1 Hz, 1.1 Hz, 1H), 7.52 (m, 2H), 7.41 (dd, *J* = 8.3 Hz, 7.2 Hz, 1H), 5.48 (d, *J* = 7.9 Hz, 1H), 2.37 (d, *J* = 7.9 Hz, 1H), 1.12 (s, 21H); ¹³C NMR (100 MHz, CDCl₃, APT) δ 133.5, 133.1, 130.8, 129.3, 128.3, 126.9, 126.5, 126.1, 125.1, 119.6, 104.1, 91.2, 86.4, 82.4, 53.3, 18.6, 11.2; MS (EI, 70 eV): *m/z*: 362 (M⁺, 79); HRMS calcd. for C₂₄H₃₀OSi 362.2066, found 362.2068.

1-Triisopropyl-5-naphthyl-1,4-pentadiyne-3-one (6e). To **5e** (0.351 g, 0.971 mmol) in CH₂Cl₂ (25 mL) was added sequentially celite (0.2 g), molecular sieves (4 Å, 0.2 g) and PCC (0.259 g, 1.20 mmol). After stirring for 2 h at rt, the solution was filtered through a plug of silica (CH₂Cl₂) and reduced to give **6e** as a yellow oil (0.166 g, 47%): $R_{\rm f} = 0.60$ (hexanes/CH₂Cl₂ 1:1). IR (CH₂Cl₂ cast) 2944, 2866, 2196, 2174, 2148, 1626 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.34 (d, J = 8.1 Hz, 1H), 7.98 (d, J = 8.3 Hz, 1H), 7.87 (m, 2H), 7.58 (m, 2H), 7.48 (dd, J = 8.1 Hz, 7.4 Hz, 1H), 1.17 (s, 21 H); ¹³C NMR (100 MHz, CDCl₃, APT) δ 160.2, 134.0, 133.8, 133.1, 132.1, 128.6, 127.8, 127.0, 125.7, 125.2, 117.0, 105.4, 97.6, 94.5, 90.2, 18.5, 11.1; MS (EI, 70 eV,): m/z: 360 (M⁺, 100); HRMS calcd. for C₂₄H₂₈OSi 360.1910, found 360.1917.

3-(Dibromomethylidene)-5-(1-naphthyl)-1-triisopropylsilylpenta-1,4-diyne (7e). CBr₄ (0.195 g, 0.589 mmol) and PPh₃ (0.334 g, 1.27 mmol) were added to CH_2Cl_2 (10 mL) and the mixture stirred for 5 min at rt. Ketone **6e** (0.166 g, 0.461 mmol) in CH_2Cl_2 (2 mL) was added in one portion and stirring continued until the reaction was complete (almost immediately) as monitored by TLC. The solution was concentrated to ca. 2 mL, hexanes added and the inhomogeneous mixture filtered through silica. Evaporation gave **7e** (0.196 g, 82%) as a yellow oil. $R_{\rm f} = 0.5$ (hexanes/CH₂Cl₂2:1); IR (CH₂Cl₂ cast) 3059, 2942, 2199, 2151, 1585 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ), 8.37 (m, 1H), 7.85 (m, 2H), 7.73 (dd, J = 7.2, 1.2 Hz, 1H), 7.53 (m, 2H), 7.42 (dd, J = 8.1, 7.2 Hz, 1H), 0.33 (s, 21H); ¹³C NMR (75.5 MHz, CDCl₃) δ 133.3, 133.2, 130.9, 129.8, 128.3, 127.1, 126.7, 126.2, 125.3, 119.9, 114.9, 108.1, 102.3, 99.8, 94.2, 91.1, 18.7, 11.3; MS (EI, 70 eV) *m/z* 516.0 (M⁺, 100); HRMS calcd for C₂₅H₂₈⁷⁹Br⁸¹BrSi (M⁺) 516.0306, found 516.0305.

3-(Dibromomethylidene)-5-(1-naphthyl)-1-triisopropylsilylpenta-1,4-diyne (7e). To a solution of **7c** (1.50 g, 3.26 mmol) in wet MeOH (25 mL) was added K_2CO_3 (10 mg, 0.07 mmol), and the mixture stirred at rt for 2 h until TLC showed complete desilylation. Et₂O and satd. aq. NH₄Cl were added, the solution was extracted, dried with (MgSO₄), reduced to ca. 5 mL, and added to Et₃N (35 mL). This solution was degassed and 1-iodonaphthalene (0.828 g, 3.28 mmol), PdCl₂(PPh₃)₂ (200 mg, 0.28 mmol), and CuI (100 mg, 0.53 mmol) were added. Reaction for 5 h, followed by removal of the Et₃N in vacuo, and column chromatography (SiO₂, hexanes) gave **7e** (0.482 g, 29%) as a yellow oil. See above for spectral details.

Trideca-5,8-diyn-7-ol (5f). To 1-hexyne (1.48 g, 18.0 mmol) in Et₂O (50 mL) at –78 °C was added BuLi (2.5 M in hexanes, 7.20 mL, 18.0 mmol). After stirring for 30 min, ethyl formate (0.435 g, 7.50 mmol) in Et₂O (5 mL) was added in one portion and the solution warmed to rt. The solution was quenched with satd. aq. NH4Cl, extracted, dried (MgSO4) and reduced to give a yellow oil that was passed through a plug of silica, first with hexanes to remove unreacted starting materials and then with CH₂Cl₂ to give **5f** (1.33 g, 92%) as a yellow oil: $R_f = 0.2$ (hexanes/CH₂Cl₂2:1); IR (CH₂Cl₂) 3381, 2926, 2286, 2226, 1120 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 5.03 (dp, J = 7.2 Hz, 2.1 Hz, 1H), 2.36 (d, J = 7.2 Hz, 1H), 2.17 (dt, J = 7.2 Hz, 2.1 Hz, 4H), 1.43 (m, 4H), 1.36 (m, 4H), 0.85 (m, 6H); ¹³C NMR (75.5 MHz, APT, CDCl₃) δ 84.5, 78.1, 52.1, 30.3, 21.7, 18.2, 13.3; MS (EI, 70 eV) *m/z* 192.2 (M⁺, 2), 107.5 ([C₇H₇O]⁺, 100); HRMS calcd for C₁₃H₂₀O (M⁺) 192.1514, found 192.1488.

Trideca-5,8-diyn-7-one (6f). To **5f** (1.20 g, 6.24 mmol) in CH₂Cl₂ (50 mL) was added sequentially celite (2 g), molecular sieves (4 Å, 2 g), and PCC (2.00 g, 9.28 mmol). After stirring for 2 h at rt, the solution was filtered through a plug of silica (CH₂Cl₂) and reduced to give a yellow oil that was purified by flash chromatography (SiO₂, hexanes/CH₂Cl₂2:1) to give **6f** (0.874 g, 73%) as a yellow oil: $R_f = 0.4$ (hexanes/CH₂Cl₂2:1); IR (film) 2959, 2206, 1628, 1241 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 2.34 (t, *J* = 7.1 Hz, 4H), 1.52 (m, 4H), 1.39 (m, 4H), 0.87 (m, 6H); ¹³C NMR (75.5 MHz, APT, CDCl₃) δ 161.3, 94.5, 82.3, 29.5, 21.9, 18.7, 13.4; MS (EI, 70 eV) *m*/*z* 190.1 (M⁺, 3), 148.1 ([M – C₃H₆]⁺, 85), 109.1 ([M – C₆H9]⁺, 100); HRMS calcd for C₁₃H₁₈O (M⁺) 190.1358, found 190.1352. **7-(1,1-Dibromomethylidene)-trideca-5,8-diyne (7f).** CBr₄ (1.74 g, 5.26 mmol) and PPh₃ (2.75 g, 10.5 mmol) were added to CH₂Cl₂ (50 mL) and the mixture stirred for 5 min at rt. Ketone **6f** (0.800 g, 4.20 mmol) in CH₂Cl₂ (5 mL) was added in one portion and stirring continued until the reaction was complete (2-3 h) as monitored by TLC. The solution was concentrated to ca. 15 mL, hexanes (15 mL) added, and the inhomogeneous mixture filtered through celite. Evaporation gave a yellow oil that was further purified by column chromatography (SiO₂, hexane/CH₂Cl₂2:1) to give **7f** (585 mg, 40%) as a yellow oil that slowly decomposes at rt. $R_f = 0.7$ (hexane/CH₂Cl₂2:1); IR (CH₂Cl₂) 2957, 2219, 1331 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 2.31 (t, J = 7.0 Hz, 4H), 1.54 (m, 4H), 1.44 (m, 4H), 0.90 (m, 6H); ¹³C NMR (75.5 MHz, APT, CDCl₃) δ 114.7, 105.0, 97.5, 78.1, 30.2, 21.9, 19.4, 13.6; MS (EI, 70 eV) m/z 346.0 (M⁺, 100); HRMS calcd for C₁₄H₁₈⁷⁹Br⁸¹Br (M⁺) 345.9755, found 345.9755.

Heneicosa-9,12-diyn-11-ol (5g). To 1-decyne (2.50 g, 18.1 mmol) in Et₂O (25 mL) at -78 °C was added BuLi (2.5 M in hexane, 7.20 mL, 18.0 mmol). After stirring for 30 min, ethyl formate (0.435 g, 7.50 mmol) in Et₂O (5 mL) was added in one portion and the solution warmed to rt. The solution was quenched with satd. aq NH4Cl, extracted, dried (MgSO4), and reduced to give a yellow oil that was passed through a plug of silica, first with hexane to remove unreacted starting materials and then with CH₂Cl₂ to give **5g** (1.74 g, 76%) as a yellow oil. $R_f = 0.2$ (hexanes/CH₂Cl₂2:1); IR (CH₂Cl₂) 3387, 2958, 2285, 2256, 2227, 1118 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 5.05 (p, J = 2.0 Hz, 1H), 2.38 (bs, 1H), 2.16 (dt, J = 7.1

Hz, 2.0 Hz, 4H), 1.46 (m, 4H), 1.30 (m, 4H), 1.23 (m, 16H), 0.83 (m, 6H); ¹³C NMR (75.5 MHz, APT, CDCl₃) δ 85.1, 78.1, 52.5, 31.8, 29.2, 29.1, 28.9, 28.4, 22.6, 18.7, 14.1; MS (EI, 70 eV) *m*/*z* 304.3 (M⁺, 2), 55 ([C₄H₇]⁺, 100); HRMS calcd for C₂₁H₃₆O (M⁺) 304.2766, found 304.2750.

Heneicosa-9,12-diyn-11-one (6g). To 5g (1.50 g, 4.93 mmol) in CH₂Cl₂ (50 mL) was added sequentially celite (1.5 g), molecular sieves (4 Å, 1.5 g), and PCC (1.58 g, 7.33 mmol). After stirring for 2 h at rt, the solution was filtered through a plug of silica (CH₂Cl₂), and reduced to give a yellow oil that was purified by flash chromatography (SiO₂, hexanes/CH₂Cl₂ 2:1) to give 6g (1.30 g, 87%) as a yellow oil. $R_f = 0.4$ (hexanes/CH₂Cl₂ 2:1); IR (CH₂Cl₂ cast) 2927, 2208, 1629, 1241 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 2.33 (t, J = 7.1 Hz, 4H), 1.55 (m, 4H), 1.35 (m, 4H), 1.24 (m, 16H), 0.84 (m, 6H); ¹³C NMR (75.5 MHz, CDCl₃) δ 161.3, 94.5, 82.3, 31.8, 29.1, 28.9, 28.8, 27.5, 22.6, 19.0, 14.0; MS (EI, 70 eV) m/z 302.3 (M⁺, 6), 55 ([C₄H₇]⁺, 100); HRMS calcd for C₂₁H₃₄O (M⁺) 302.2610, found 302.2608. Anal. Calcd. for C₂₁H₃₄O (302.49): C, 83.38; H, 11.33. Found: C, 83.17; H, 11.30.

11-(1,1-Dibromomethylidene)-heneicosa-9,12-diyne (7g). CBr₄ (1.57 g, 4.74 mmol) and PPh₃ (2.49 g, 9.50 mmol) were added to CH₂Cl₂ (50 mL) and the mixture stirred for 5 min at rt. Ketone **6g** (1.15 g, 3.78 mmol) in CH₂Cl₂ (5 mL) was added in one portion and stirring continued until the reaction was complete (2-3 h) as monitored by TLC. The solution was concentrated to ca. 15 mL, hexanes (15 mL) added, and the inhomogeneous mixture filtered through celite. Evaporation gave a yellow oil that was further purified by column chromatography (SiO₂, hexanes/CH₂Cl₂2:1) to give **7g** (935 mg, 54%) as a yellow oil that slowly decomposes at rt: $R_f = 0.8$ (hexanes/CH₂Cl₂2:1); IR (CH₂Cl₂ cast) 2926, 2220 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 2.31 (t, J = 7.1 Hz, 4H), 1.54 (m, 4H), 1.41 (m, 4H), 1.25 (m, 16H), 0.86 (m, 6H); ¹³C NMR (75.5 MHz, APT, CDCl₃) δ 114.8, 105.0, 97.6, 78.2, 31.9, 29.2, 29.1, 28.9, 28.2, 22.7, 19.8, 14.1; MS (EI, 70 eV) m/z 458.1 (M⁺, 100); HRMS calcd for

 $C_{22}H_{34}^{79}Br^{81}Br (M^{+}) 458.1007$, found 458.1006; Anal. Calcd. for $C_{22}H_{34}Br_2$ (458.31): C, 57.65; H, 7.48. Found: C, 57.54; H, 7.71.

1-(Trimethylsilyl)-5-((4-triisopropylsilylethynyl)-phenyl)-1,4-pentadiyne-3-ol (5h). K₂CO₃ (40 mg) was added to a MeOH/THF (10 mL, 1:1 v/v) solution of 1triisopropylsilylethynyl-4-trimethylsilylethyl-benzene (0.749 g, 2.11 mmol) and stirred until TLC analysis showed removal of the TMS group (about 30 min). Ether (50 mL) was added and the solution washed with aqueous NH₄Cl and dried over MgSO₄. The ether was reduced in vacuo to ca. 5 mL, and the solution was then added to 10 mL of dried ether at -78 °C. *n*-BuLi (2.5 M in hexanes, 0.85 mL, 2.1 mmol) was added and the mixture stirred for 1 hr. 3-Trimethylsilylpropynal (0.218 g, 1.72 mmol) was added and the mixture was allowed to warm up to rt over the course of an hour. Aqueous work-up and flash chromatography (SiO₂, hexanes/CH₂Cl₂1:1) gave alcohol **5h** (0.267, 31%) as a yellow oil: *R_f* = 0.38 (hexanes/CH₂Cl₂, 1:1); IR (CH₂Cl₂ cast) 3322, 2958, 2892, 2234, 2155, 1497 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.41 (m, 4H), 5.32 (d, *J* = 7.2 Hz, 1H), 2.30 (d, *J* = 7.2 Hz, 1H), 1.11 (s, 21H), 0.19 (s, 9H); ¹³C NMR (125 MHz, APT, CDCl₃) δ 131.8, 131.6, 124.0, 121.7, 106.4, 101.5, 93.1, 90.0, 87.5, 84.1, 53.2, 18.7, 11.4, -0.2; MS (EI, 70 eV) *m*/*z* 408, (M⁺, 24), 365 ([M – *i*-Pr]⁺, 100); HRMS calcd for C₂₅H₃₆OSi₂ 408.2305, found 408.2307.

1-(Trimethylsilyl)-5((4-triisopropylsilylethynyl)-phenyl)-3-(1,1-

dibromomethylidene)-1,4-pentadiyne (7h). To alcohol **5h** (0.267 g, 0.652 mmol) in CH_2Cl_2 (10 mL) was added sequentially celite (0.2 g), molecular sieves (4 Å, 0.2 g) and PCC (0.225 g, 1.05 mmol). After an hour the reaction was complete and the mixture was filtered through

silica. The solvent was reduced to about 5 mL, and this solution ketone **6h** was added to a mixture of CBr₄ (0.250 g, 0.754 mmol) and PPh₃ (0.429 g, 1.64 mmol) in CH₂Cl₂ (10 mL). The bromination reaction was complete within a 0.5 hr (monitored by TLC, hexanes/CH₂Cl₂ 1:1). The solution was concentrated to ca. 15 mL, hexanes (15 mL) added, and the inhomogeneous mixture filtered through celite. Column chromatography (SiO₂, hexanes) gave dibromide **7h** (0.194, 53%) as a yellow solid. Mp = 60-61 °C; $R_{\rm f}$ = 0.90 (hexanes/CH₂Cl 1:1); IR (CH₂Cl₂ cast) 2958, 2891, 2203, 2154, 1492 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.42 (m, 4H), 1.12 (s, 21H), 0.24 (s, 9H); ¹³C NMR (125 MHz, APT, CDCl₃) δ 131.9, 131.3, 124.2, 121.8, 114.1, 109.4, 106.4, 102.7, 100.0, 95.3, 93.5, 87.5, 18.7, 11.4, -0.3; MS (EI, 70 eV) *m*/*z* 562, (M⁺, 25), 518 ([M – *i*-Pr]⁺, 100); HRMS calcd. for C₂₆H₃₄Si₂⁷⁹Br⁸¹Br 562.0545, found 562.0512. Anal. Calcd. for C₂₆H₃₄Si₂Br₂ (560.10): C, 55.51; H, 6.09. Found: C, 55.73; H, 5.99.

1-Trimethylsilyl-1,4-nonadiyne-3-ol (5i). To 1-hexyne (0.389 g, 4.75 mmol) in Et₂O (25 mL) at -78 °C was added *n*-BuLi (2.5 M in hexanes, 1.80 mL, 4.50 mmol). After stirring for 0.5 h, 3-trimethylsilylpropynal (0.691 g, 5.47 mmol) was added in one portion and the solution allowed to warm up overnight. The reaction was quenched with NH₄Cl, extracted with Et₂O, and dried over MgSO₄. After passing through a plug of silica (CH₂Cl₂), **5i** (0.92 g, 98%) was isolated as a yellow oil: $R_f = 0.43$ (hexanes/CH₂Cl₂ 1:1); IR (CH₂Cl₂ cast) 3377, 2959, 2293, 2232, 2178, 1466 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 5.07 (bs, 1H), 2.21 (dt, J = 2.1, 7.1 Hz, 2H), 2.12 (d, J = 6.5 Hz, 1H), 1.48 (m, 2H), 1.40 (m, 2H), 0.89 (t, J = 7.2 Hz, 3H), 0.12 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, APT) δ 102.6, 88.8, 85.8, 52.8, 30.3, 21.9,

18.4, 13.5, -0.3 (one coincident peak not observed); MS (EI, 70 eV) m/z 208.1, (M⁺, 0.8), 73.0 (Me₃Si⁺, 100); HRMS calcd. for C₁₂H₂₀OSi 208.1283, found 208.1272.

1-Trimethylsilyl-1,4-nonadiyne-3-one (6i). To **5i** (0.791 g, 3.79 mmol) in CH₂Cl₂ (70 mL) was added sequentially celite (1.0 g), molecular sieves (4 Å, 1.0 g), and PCC (1.07 g, 4.98 mmol). After stirring for 1 h at rt, the solution was filtered through a plug of silica (CH₂Cl₂), and reduced to give a yellow oil that was purified by flash chromatography (SiO₂, hexanes/CH₂Cl₂ 1:1) to give **6i** (0.448 g, 57%): $R_{\rm f} = 0.62$ (hexanes/CH₂Cl₂ 1:1); IR (CH₂Cl₂ cast) 2961, 2231, 2212, 2148, 1629 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.39 (t, *J* = 7.1 Hz, 2H), 1.57 (m, 2H), 1.42 (tq, *J* = 7.3, 7.5 Hz, 2H), 0.91 (t, *J* = 7.3 Hz, 3H), 0.23 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, APT) δ 160.8, 102.8, 97.9, 96.1, 82.2, 29.5, 22.0, 18.9, 13.4, -0.9; MS (EI, 70 eV) *m/z* 206, (M⁺, 2), 191 ([M – CH₃]⁺, 82); HRMS calcd. for C₁₂H₁₈OSi 206.1127, found 206.1129.

3-Dibromomethylidene-1-trimethylsilyl-1,4-nonadiyne (7i). CBr₄ (0.848 g, 2.56 mmol) and PPh₃ (1.28 g, 4.88 mmol) were added to CH₂Cl₂ (25 mL) and the mixture stirred for 5 min at rt. **6i** (0.412 g, 2.00 mmol) in CH₂Cl₂ (5 mL) was added in one portion and stirring continued until the reaction was complete (15 min) as monitored by TLC. The solution was concentrated to ca. 5 mL, hexanes added, and the inhomogeneous mixture filtered through celite. Evaporation gave **7i** (0.437 g, 60%) as a yellow oil: $R_f = 0.91$ (hexanes/CH₂Cl₂ 1:1); IR (CH₂Cl₂ cast) 2959, 2222, 2147 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 2.32 (t, J = 7.0 Hz, 2H), 1.55 (m, 2H), 1.44 (m, 2H), 0.91 (t, J = 7.3 Hz, 3H), 0.20 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, APT) δ 114.5, 107.7, 101.7, 100.7, 98.4, 77.5, 30.1, 21.9, 19.4, 13.5, -0.4; MS (EI, 70 eV) m/z 362, (M⁺, 100); HRMS calcd. for C₁₃H₁₈Si⁷⁹Br⁸¹Br 361.9524, found 361.9525.

1,5-Bis(2-thienyl)-1,4-pentadiyne-3-ol (5j). 2-Trimethylsilylethynylthiophene (0.878 g, 4.87 mmol) and K₂CO₃ (0.14 g, 1.0 mmol) in wet THF (10 mL) and MeOH (10 mL) was stirred for 2 h until TLC showed complete desilylation. After work-up with Et₂O and saturated aqueous NH₄Cl, the terminal acetylene was dried over MgSO₄. The solvent was reduced to ca. 5 mL and the acetylene added to 20 mL of dried Et₂O. *n*-BuLi (2.5 M in hexanes, 2.00 mL, 5.00 mmol) was subsequently added at -78 °C and allowed to stir for an hour. Ethyl formate (0.180 g, 2.43 mmol) was added and the mixture warmed to rt. The reaction was quenched with NH₄Cl, extracted with Et₂O, and dried over MgSO₄. The alcohol was purified by flash chromatography (SiO₂, hexanes/CH₂Cl₂ 1:1) to give a brown oil (0.231 g, 40%): $R_{\rm f} = 0.25$ (hexanes/CH₂Cl₂ 1:1); IR (CH₂Cl₂ cast) 3335, 3105, 2224, 1517 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.27 (m, 4H), 6.96 (dd, J = 3.7, 5.1 Hz, 2H), 5.60 (bs, 1H), 2.79 (s, 1H); ¹³C NMR (100 MHz, CDCl₃, APT) δ 133.1, 133.0, 128.0, 127.9, 127.0, 126.9, 121.6, 89.4, 78.3, 53.3; MS (EI, 70 eV) m/z 244, (M⁺, 54), 108 ([C₆H₄S]⁺, 100).

1,5-Bis(2-thienyl)-1,4-pentadiyne-3-one (6j). To **5j** (0.172 g, 0.705 mmol) in CH₂Cl₂ (10 mL) was added sequentially celite (0.2 g), molecular sieves (4Å, 0.2 g), and PCC (0.231 g, 1.07 mmol). After stirring for 2 h at rt, the solution was filtered through a plug of silica (CH₂Cl₂) and further purified by flash chromatography (SiO₂, hexanes/CH₂Cl₂ 1:1) to give **6j** (0.0853 g, 50%) as a brown solid: Mp 99–101 °C. $R_f = 0.33$ (hexanes/CH₂Cl₂ 1:1); IR (CH₂Cl₂ cast) 3093, 2170, 1599 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.55 (dd, J = 1.0, 3.8 Hz, 2H), 7.53 (dd, J = 1.1, 5.1 Hz, 2H), 7.08 (dd, J = 3.8, 5.1 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃, APT) δ 159.6, 137.5, 132.6, 127.9, 119.3, 93.9, 86.0; MS (EI, 70 eV) *m/z* 242, (M⁺, 100); HRMS calcd. for C₁₃H₆OS₂ 241.9860, found 241.9847. **3-Dibromomethylidene-1,5-bis(2-thienyl)-1,4-pentadiyne (7j).** CBr₄ (0.154 g, 0.464 mmol) and PPh₃ (0.277 g, 1.06 mmol) were added to CH₂Cl₂ (10 mL) and the mixture stirred for 5 min at rt. **6j** (0.0853 g, 0.352 mmol) in CH₂Cl₂ (5 mL) was added in one portion and stirring continued until the reaction was complete (0.5 h) as monitored by TLC. The solution was concentrated to ca. 1 mL, hexanes (15 mL) added, and the inhomogeneous mixture filtered through celite. Evaporation gave **7j** (0.066 g, 47%) as a brown solid: Mp 60 - 63 °C; $R_f = 0.76$ (hexanes/CH₂Cl₂ 1:1); IR (CH₂Cl₂ cast) 3104, 2023, 2197, 1419 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.35 (dd, J = 1.1, 5.1 Hz, 2H), 7.34 (dd, J = 1.1, 3.7 Hz, 2H), 7.01 (dd, J = 3.7, 5.1 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃, APT) δ 133.1, 128.7, 127.2, 121.8, 113.8, 107.6, 89.3, 89.3; MS (EI, 70 eV) *m*/*z* 397, (M⁺, 100); HRMS calcd. for C₁₄H₆⁷⁹Br⁸¹BrS₂ 397.8257, found 397.8250.

5-Phenyl-1-trimethylsilyl-1,4-pentadiyne-3-one (**12a**). To **11** (0.999 g, 6.84 mmol) was added thionyl chloride (7 mL) and the reaction stirred overnight. The excess thionyl chloride was removed in vacuo and the acid chloride was dissolved in CH_2Cl_2 (50 mL) and bis-trimethylsilylacetylene (1.18 g, 6.90 mmol) was added. The temperature lowered to 0 °C, AlCl₃ (1.07 g, 8.04 mmol) was carefully added, and the reaction stirred for 3 h. Aqueous work-up (10% HCl, NaHCO₃, NaCl) and purification by column chromatography (SiO₂, hexanes/CH₂Cl₂ 1:1) yielded **12a** (0.729 g, 47%). Spectra date consistent with those reported (D. H. Wadsworth, S. M. Geer, M. R. Detty, *J. Org. Chem.* **1987**, *52*, 3662-3668.)

5-Phenyl-trimethylsilyl-3-dibromomethylidene-1,4-pentadiyne (**13a**). CBr₄ (1.26 g, 3.80 mmol) and PPh₃ (2.14 g, 8.18 mmol) were added to CH₂Cl₂ (100 mL) and the mixture stirred for 5 min at rt. Ketone **12a** (0.669 g, 2.96 mmol) in CH₂Cl₂ (5 mL) was added and the reaction monitored by TLC until complete (0.5 h). The solution was concentrated to ca. 5 mL, hexanes added, and the inhomogeneous mixture filtered through celite. Evaporation gave **13a** (0.806 g, 71%) as a yellow solid: Mp 76 - 78 °C; R_f = 0.74 (hexanes/CH₂Cl₂ 1:1); IR (CH₂Cl₂ cast) 2960, 2203, 2153, 1597 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.50 (dd, *J* = 7.9, 1.7 Hz, 2H), 7.34 (m, 3H), 0.24 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, APT) δ 131.7, 129.2, 128.4, 122.2, 114.3, 109.1, 102.6, 100.2, 95.8, 85.9, -0.4; MS (EI, 70 eV) *m/z* 382, (M⁺, 100); HRMS calcd. for C₁₅H₁₄Si⁷⁹Br⁸¹Br 381.9211, found 381.9233.

7-phenyl-1-trimethylsilyl-1,3,6-heptatriyne-5-one (**12b**). To **11** (1.01 g, 6.91 mmol) was added thionyl chloride (7 mL) and the reaction stirred overnight. The excess thionyl chloride was removed in vacuo, the acid chloride dissolved in CH₂Cl₂ (50 mL), bis-trimethylsilylbutadiyne (1.29 g, 6.62 mmol) was added, and the temperature lowered to 0 °C. AlCl₃ (0.938 g, 7.04 mmol) was carefully added and the reaction stirred for 3 h. Aqueous work-up (10% HCl, NaHCO₃, NaCl) and purification by column chromatography (SiO₂, hexanes/CH₂Cl₂ 1:1) yielded **12b** (0.959 g, 55%) as an unstable light brown oil: $R_f = 0.56$ (hexanes/CH₂Cl₂ 1:1); IR (CH₂Cl₂ cast) 2962, 2196, 2098, 1622 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.59 (m, 2H), 7.48 (m, 1H), 7.38 (t, *J* = 7.7, 2H), 0.24 (s, 9H); ¹³C NMR (125 MHz, APT, CDCl₃) δ 159.2, 133.3, 131.4, 128.6, 119.0, 99.2, 92.6, 89.1, 85.8, 75.7, 74.1, -0.7; MS

(EI, 70 eV) m/z 250.1 (M⁺, 24), 207.1 ([C₁₄H₁₁Si[⁺, 100); HRMS calcd. for C₁₆H₁₄OSi 250.0814, found 250. 0808.

7-phenyl-1-trimethylsilyl-(5-dibromomethylidene)-1,3,6-heptatriyne (13b). CBr₄ (1.69 g, 5.09 mmol) and PPh₃ (2.67 g, 10.2 mmol) were added to CH₂Cl₂ (100 mL) and the mixture stirred for 5 min at rt. Ketone **12b** (0.959 g, 4.09 mmol) in CH₂Cl₂ (5 mL) was added and the reaction monitored by TLC until complete (0.5 h). The solution was concentrated to ca. 5 mL, hexanes added, and the inhomogeneous mixture filtered through celite. Evaporation gave **13b** (0.804 g, 48%) as a brown solid: Mp 35 - 37 °C; $R_f = 0.69$ (hexanes/CH₂Cl₂ 1:1). IR (CH₂Cl₂ cast) 2960, 2222, 2197, 2097, 1487 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.49 (m, 2H), 7.34 (m, 3H), 0.22 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, APT) δ 131.7, 129.4, 128.4, 121.8, 113.3, 110.9, 96.5, 95.2, 87.2, 85.2, 80.3, 72.2, -0.6; MS (EI, 70 eV) *m/z* 406, (M⁺, 100). HRMS calcd. for C₁₇H₁₄Si⁷⁹Br⁸¹Br 405.9211, found 405.9219.

1,10-bis(**triisopropylsilyl**)-**3,8-bis**(**1,1-dibromomethylene**)**deca-1,4,6,9-tetrayne** (**15**). A mixture of compound **7c** (0.190 g, 0. 411 mmol) and K₂CO₃ (30 mg, 0.217 mmol) in MeOH/THF (20 mL, 1:1 v/v) was stirred for 0.5h. After work-up, the deprotected vinyl bromide was oxidatively homocoupled in CH₂Cl₂ (20 mL) using TMEDA (1 mL, 6.6 mmol) and CuI (0.0485 g, 0.25 mmol) (A. S. Hay, *J. Org. Chem.* **1962**, *27*, 3320-3321). Work-up and column chromatography (silica gel, hexanes) gave **15** (0.0873 g, 55%) as an off-white solid: Mp 64-65 °C; $R_f = 0.71$ (hexane); IR (CH₂Cl₂ cast) 2943, 2152, 1462 cm⁻¹; ¹H NMR (300 MHz, CD₂Cl₂) δ 1.2 (s); ¹³C NMR (75 MHz, CD₂Cl₂) δ 113.9, 113.3, 102.0, 101.0, 80.9, 79.3, 18.7, 11.5; MS (EI, 70 eV) m/z 778, (M⁺, 100); HRMS calcd. for $C_{30}H_{42}Si_2^{79}Br_2^{81}Br_2$ 777.9518 (M⁺), found 777.9527; Anal. Calcd. for $C_{30}H_{42}Si_2Br_4$ (773.96): C, 46.29; H, 5.44. Found: C, 46.67; H, 5.55.

Compound (17). To 1,4-diethynylbenzene (0.949 g, 7.53 mmol) in THF (25 mL) at –78 °C was added BuLi (2.5 M in hexanes, 6.00 mL, 15.0 mmol). After stirring for 30 min, 3-trimethylsilyl-1-propynal (2.00 g, 15.8 mmol) in Et₂O (5 mL) was added and stirring was continued for 2.5 h at –78 °C. The solution was quenched with satd. aq NH4Cl at –78 °C and then extracted with Et₂O, dried (MgSO₄), evaporation, and crystallization from hexanes at 4 °C to give **17** (1.19 g, 42%) as a white solid that is presumably a mixture of stereoisomers: Mp 99 °C; $R_{\rm f} = 0.2$ (CH₂Cl₂); IR (µscope) 3314, 2959, 2237, 2177, 1500 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.42 (s, 4H), 5.34 (d, J = 6 Hz, 2H), 2.41 (d, J = 6 Hz, 2H), 0.21 (s, 18H); ¹³C NMR (75.5 MHz, CDCl₃) δ 131.7, 122.4, 101.6, 90.0, 87.8, 83.8, 53.0, –0.3; MS (EI, 70 eV) m/z 378.1 (M⁺, 72), 73.0 (Me₃Si⁺, 100); HRMS calcd for C₂₂H₂₆O₂Si₂ (M⁺) 378.1471, found 378.1468. Anal. Calcd. for C₂₂H₂₆O₂Si₂ (378.61): C, 69.79; H, 6.92. Found: C, 69.61; H, 7.02.

1,4-Bis-(5-trimethylsilyl-3-one-penta-1,4-diyne)-benzene (**18**). To diol **17** (1.0 g, 2.6 mmol) in CH₂Cl₂ (100 mL) was added sequentially celite (1.5 g), molecular sieves (4 Å, 1.5 g), and PCC (1.43 g, 6.63 mmol). After stirring for 2 h at rt, the solution was filtered through a plug of silica (CH₂Cl₂), evaporation, and crystallization from hexanes at –4 °C gave **18** (0.78 g, 80%) as a yellow solid: Mp 101 °C; $R_f = 0.3$ (CH₂Cl₂); IR (µscope) 3090, 2961, 2208, 2151, 1613, 1143 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.65 (s, 4H), 0.28 (s, 18H); ¹³C NMR

(75.5 MHz, CDCl₃) δ 160.1, 133.3, 122.2, 102.5, 100.3, 91.1, 89.3, -0.9; MS (EI, 70 eV) *m/z* 374.1 (M⁺, 100); HRMS calcd for C₂₂H₂₂O₂Si₂ (M⁺) 374.1158, found 374.1150. Anal. Calcd. for C₂₂H₂₂O₂Si₂ (374.58): C, 70.54; H, 5.92. Found: C, 70.32; H, 5.94.

Compound (19). CBr₄ (1.51 g, 4.56 mmol) and PPh₃ (2.40 g, 9.16 mmol) were added to CH₂Cl₂ (80 mL) and the mixture stirred for 5 min at rt. Dione **18** (0.681 g, 1.82 mmol) in CH₂Cl₂ (5 mL) was added in one portion and stirring continued until the reaction was complete (2-3 h) as monitored by TLC. The solution was concentrated to ca. 15 mL, hexanes (10 mL) added, and the inhomogeneous mixture filtered through celite. Evaporation gave a yellow oil that was purified by column chromatography (SiO₂, hexanes) to give **19** (1.05 g, 85%) as a yellow solid: Mp 68-69 °C; $R_f = 0.3$ (hexanes); IR (µscope) 3044, 2898, 2207, 2157, 1515, 1249 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.49 (s, 4H), 0.25 (s, 18H); ¹³C NMR (75.5 MHz, CDCl₃) δ 131.7, 122.9, 114.1, 109.8, 103.0, 100.0, 95.1, 88.1, -0.4; MS (EI, 70 eV) m/z 685.8 (M⁺, 100); HRMS calcd for C₂₄H₂₂⁷⁹Br₂⁸¹Br₂Si₂ (M⁺) 685.7953, found 685.7945; Anal. Calcd. for (686.23): C₂₄H₂₂Br₄Si₂ C, 42.01; H, 3.23. Found: C, 42.12; H, 3.37.

Compound (21). To 1,3,5-triethynylbenzene (1.49 g, 4.06 mmol) in Et_2O (50 mL) at -78 °C was added BuLi (2.5 M in hexane, 4.90 mL, 12.2 mmol). After stirring for 30 min, 3-trimethylsilyl-1-propynal (1.90 g, 15.1 mmol) in Et_2O (5 mL) was added and stirring was

continued for 2.5 h at -78 °C The solution was quenched with satd. aq NH4Cl at -78 °C and then extracted with Et₂O. Drying (MgSO₄), evaporation, and column chromatography (hexane/Et₂O 7:3) gave **21** (891 mg, 42%) as a viscous light yellow oil, presumably a mixture of stereoisomers, that solidified under refrigeration: Mp 59 °C; $R_f = 0.3$ (hexanes/Et₂O 95:5); IR (CH₂Cl₂ cast) 3313, 2959, 2225, 2179 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.51 (s, 3H), 5.35 (d, J = 7.3 Hz, 3H), 2.62 (d, J = 7.3 Hz, 3H), 0.25 (s, 27H); ¹³C NMR (75.5 MHz, CDCl₃) δ 135.0, 122.7, 101.3, 90.2, 87.3, 82.3, 52.9, -0.4; MS (EI, 70 eV) m/z 528.2 (M⁺, 5), 73.0 (Me₃Si⁺, 100); HRMS calcd for C₃₀H₃₆O₃Si₃ (M⁺) 528.1972, found 528.1959.

Compound (22). To triol **21** (0.851 g, 1.61 mmol) in CH₂Cl₂ (150 mL) was added sequentially celite (1.2 g), molecular sieves (4 Å, 1.2 g), and PCC (2.19 g, 10.2 mmol). After stirring for 2.5 h at rt, the solution was filtered through a plug of silica (CH₂Cl₂), and column chromatography (CH₂Cl₂) gave **22** (0.665 g, 79%) as a light yellow oil: $R_f = 0.2$ (hexanes/CH₂Cl₂2:1); IR (CH₂Cl₂ cast) 2962, 2200, 2154, 1632, 1583 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.83 (s, 3H), 0.26 (s, 27H); ¹³C NMR (75.5 MHz, CDCl₃) δ 159.5, 138.6, 121.5, 102.2, 100.8, 90.0, 86.2, -0.6; MS (EI, 70 eV) *m*/*z* 522.2 (M⁺, 56), 73.0 (Me₃Si⁺, 100); HRMS calcd. for C₃₀H₃₀O₃Si₃ (M⁺) 522.1503, found 522.1499.

Compound (23). CBr₄ (1.62 g, 4.89 mmol) and PPh₃ (2.57 g, 9.82 mmol) were added to CH₂Cl₂ (150 mL) and the mixture stirred for 5 min at rt. Trione **22** (0.665 g, 1.27 mmol) in CH₂Cl₂ (5 mL) was added in one portion and stirring continued until the reaction was complete (2-3 h) as monitored by TLC. The solution was concentrated to ca. 15 mL, hexanes (50 mL) added, and the inhomogeneous mixture filtered through celite. Evaporation gave a yellow oil that was purified by column chromatography (SiO₂, hexanes/CH₂Cl₂ 2:1) to give **23** (0.806 g, 64%) as a yellow oil: $R_f = 0.7$ (hexane/CH₂Cl₂ 2:1); IR (CH₂Cl₂ cast) 2960, 2216, 2153, 1582, 1250 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.61 (s, 3H), 0.24 (s, 27H); ¹³C NMR (50 MHz, CDCl₃) δ 134.6, 123.2, 113.8, 110.4, 103.2, 99.8, 93.2, 87.3, -0.5; MS (ESI,

CH₂Cl₂, with AgOTf added) m/z 1098.6 ([M + Ag]⁺, 100); HRMS calcd for $C_{33}H_{30}^{-79}Br_3^{-81}Br_3Si_3^{-109}Ag$ ([M + Ag]⁺) 1098.5742, found 1098.5750.

Compound (25). 1,3,5-Tris-(1-trimethylsilylethynyl)benzene (1.56 g, 4.25 mmol) and K₂CO₃ (0.4 g, 2 mmol) were added to wet THF/MeOH (50 mL, 1:1 v/v) and stirred for 2 h until TLC showed complete desilylation. Et₂O was added, the solution washed with saturated aqueous NH₄Cl, and dried over MgSO₄. The solvent was reduced to ca. 10 mL and added to dried Et₂O (250 mL). *n*-BuLi (2.5 M in hexanes, 5.1 mL, 13 mmol) was subsequently added at -78 °C and allowed to stir for an hour. 3-Trimethylsilylpropynal (1.67g, 13.2 mmol) was added and the mixture allowed to warm to rt overnight. Aqueous work-up, solvent removal, and column chromatography (silica gel, hexanes/CH₂Cl₂ 8:2), gave **25** (0.623g, 36%) as an orange oil: $R_f = 0.13$ (hexanes/CH₂Cl₂ 4:1); IR (CH₂Cl₂ cast) 3291(OH and ≡C-H), 2960, 2235, 2179, 1584 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.50 (m, 3H), 5.30 (s, 2H), 3.08 (s, 2H), 2.51 (s, 1H), 0.19 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 135.3, 135.0, 122.9, 122.8, 101.3, 90.2, 87.3, 82.3, 81.6, 78.8, 52.9, -0.4; MS (EI, 70 eV) *m*/*z* 402.1 (M⁺, 9), 73.0 (Me₃Si⁺, 100); HRMS calcd. for C₂₄H₂₆O₂Si₂ 402.1471, found 402.1459.

Compound (26). To **25** (0.0220 g, 0.0546 mmol) in CH₂Cl₂ (20 mL) was added sequentially celite (0.1 g), molecular sieves (4 Å, 0.1 g), and PCC (0.037 g, 0.17 mmol). After stirring for 6 h at rt, the solution was filtered through a plug of silica (CH₂Cl₂) to give **26** (0.0142 g, 65%) as a white solid: Mp 72 - 74 °C; $R_{\rm f} = 0.71$ (hexanes/Et₂O 7:3); IR (CH₂Cl₂ cast) 3289, 2962, 2210, 2153, 2103, 1631 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.78 (m, 1H), 7.76 (m, 2H), 3.18 (s, 1H), 0.27 (s, 18H); ¹³C NMR (100 MHz, CDCl₃, APT) δ 159.8, 138.2, 137.0, 124.1, 121.0, 102.3, 100.6, 89.7, 87.3, 80.4, -0.9 (one coincident signal not observed); MS (EI, 70 eV) *m*/*z* 398.1 (M⁺, 100); HRMS calcd. for C₂₄H₂₂O₂Si₂ 398.1158, found 398.1160.

Compound (27). CBr₄ (0.316 g, 0.954 mmol) and PPh₃ (0.514 g, 1.96 mmol) were added to CH₂Cl₂ (50 mL) and the mixture stirred for 5 min at rt. Ketone **26** (0.156 g, 0.392 mmol) in CH₂Cl₂ (3 mL) was added and the reaction was complete within 0.5 h as monitored by TLC. The solution was concentrated to ca. 5 mL, hexanes (15 mL) was added and the mixture filtered through celite. Evaporation gave **27** (0.151 g, 56%) as a white solid: Mp 118-120 °C. $R_{\rm f} = 0.78$ (hexanes/CH₂Cl₂ 1:1); IR (CH₂Cl₂ cast) 3298, 2959, 2211, 2153, 1581 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.59 (m, 3H), 3.10 (s, 1H), 0.24 (s, 18H); ¹³C NMR (100 MHz, CDCl₃, APT) δ 135.3, 134.4, 123.2, 123.1, 113.8, 110.3, 103.2, 102.5, 99.8, 93.3, 87.2, 81.4, 79.0, -0.5; MS (EI, 70 eV) *m*/*z* 402.1 (M⁺, 40), 73.0 (Me₃Si⁺, 100); HRMS calcd. for C₂₆H₂₂⁷⁹Br₂⁸¹Br₂Si₂709.7953, found 709.7975.

Figure S1-¹H and 13 C NMR spectra of **5d**

Figure S2- ¹H NMR and ¹³C NMR spectra of **6d**

Figure S3 - ¹H NMR and ¹³C NMR spectra of **7d**

Figure S4 - ¹H NMR ¹³C NMR spectra of **4d**

Figure S5 - ¹H NMR and ¹³C NMR spectra of **5e**

Figure S6 - ¹H NMR and ¹³C NMR spectra of **6e**

Figure S7 - ¹H NMR and ¹³C NMR spectra of **7e**

Figure S8 - ¹H NMR and ¹³C NMR spectra of **4e**

Figure S9 - ¹H NMR and ¹³C NMR spectra of **5**f

Figure S10 - ¹H NMR and ¹³C NMR spectra of **6f**

Figure S11 - ¹H NMR and ¹³C NMR spectra of **7f**

Figure S12 - ¹H NMR and ¹³C NMR spectra of **4f**

Figure S13 - ¹H NMR and ¹³C NMR spectra of 5g

Figure S14 - ¹H NMR and ¹³C NMR spectra of 6g

Figure S15 - ¹H NMR and ¹³C NMR spectra of 7g

Figure S16 - ¹H NMR and ¹³C NMR spectra of 4g

"Figure S17 - ¹H NMR and ¹³C NMR spectra of **5**h

Figure S18 - ¹H NMR and ¹³C NMR spectra of 7h

Figure S19 - ¹H NMR and ¹³C NMR spectra of $\mathbf{4h}$

Figure S20 - ¹H NMR and ¹³C NMR spectra of 5i

Figure S21 - ¹H NMR and ¹³C NMR spectra of **6i**

Figure S22 - ¹H NMR and ¹³C NMR spectra of 7i

Figure S23 - ¹H NMR and ¹³C NMR spectra of **4i**

Figure S24 - ¹H NMR and ¹³C NMR spectra of **5**j

Figure S25 - ¹H NMR and ¹³C NMR spectra of 6j

Figure S26 - ¹H NMR and ¹³C NMR spectra of **7**j

Figure S27 - ¹H NMR and ¹³C NMR spectra of 4j

Figure S28 - ¹H NMR and ¹³C NMR spectra of **10a**

Figure S29 - ¹H NMR and ¹³C NMR spectra of **13a**

Figure S30 - ¹H NMR and ¹³C NMR spectra of **14a**

Figure S31 - ¹H NMR and ¹³C NMR spectra of 12b

Figure S32 - ¹H NMR and ¹³C NMR spectra of **13b**

Figure S33 - ¹H NMR and ¹³C NMR spectra of **14b**

Figure S34 - ¹H NMR and ¹³C NMR spectra of **15**

Figure S35 - ¹H NMR and ¹³C NMR spectra of **16**

Figure S36 - ¹H NMR and ¹³C NMR spectra of **17**

Figure S37 - ¹H NMR and ¹³C NMR spectra of **18**

Figure S38 - ¹H NMR and ¹³C NMR spectra of 20

Figure S39 - ¹H NMR and ¹³C NMR spectra of **21**

Figure S40 - ¹H NMR and ¹³C NMR spectra of **22**

Figure S41 - ¹H NMR and ¹³C NMR spectra of 23

Figure S42 - ¹H NMR and ¹³C NMR spectra of **24**

Figure S43 - 1 H NMR and 13 C NMR spectra of 25

Figure S44 - ¹H NMR and ¹³C NMR spectra of 26

Figure S45 - ¹H NMR and ¹³C NMR spectra of 27

Figure S46 - ¹H NMR and ¹³C NMR spectra of **28**

Figure S47 - ¹H NMR and ¹³C NMR spectra of 29