Supporting Information

for

Synthesis of Directly Linked ZincII Porphyrin-Imide Dyads and

Energy Gap Dependence of Intramolecular Electron Transfer

Reactions

By

Naoya Yoshida, Tomoya Ishizuka, Katsuyuki Yofu, Masataka Murakami, Prof.Hiroshi
Miyasaka,* Prof.Tadashi Okada, Yasushi Nagata, Akira Itaya, Hyun Sun Cho, Dongho
Kim,* and Prof. Atsuhiro Osuka*,

Supporting Information Captions

1. X-ray structure of ZP-MPH. Hydrogen atoms and t-butyl groups are omitted for clarity.
2. X-ray structure of ZP-Cl$_2$PH. Hydrogen atoms and t-butyl groups are omitted for clarity.
3. X-ray structure of ZP-Cl$_4$PH. Hydrogen atoms and t-butyl groups are omitted for clarity.
4. Fluorescence decays of ZP-PH (a) and ZP-CIPH (b) in THF (λ_{ex}=590 nm, λ_{em}=650 nm). Solid lines indicate biexponential fits; 280 ps (67%) and 1440 ps (33%) for ZP-PH and 280 ps (58%) and 1190 ps (42%) for ZP-CIPH.
5. Fluorescence decay of ZP-PH in DMF (λ_{ex}=590 nm, λ_{em}=650 nm). Solid line indicates a biexponential with lifetimes of 160 ps (46%) and 1180 (54%).
Supporting Information 4

a) ZP-PH in THF

b) ZP-CIPH in THF
ZP-PH in DMF

Fluorescence Intensity vs. Time / ps

Supporting Information 5