Supporting Information

for

Photocurrent Generation in Multilayer Self-Assembly Films Fabricated from Water-soluble Poly (phenylene vinylene)

Hongmei Li, Yuliang Li, Jin Zhai, Guanglei Cui, Huibiao Liu, Shengqiang Xiao, Yang Liu, Fushen Lu, Lei Jiang, Daoben Zhu

Supplementary Figure 1. The GPC trace for the BH-PPV

[a] Prof. Y. Li, Dr. H. Li, Dr. J. Zhai, Dr. G. Cui, Dr. H. Liu, Dr. S. Xiao, Dr. Y. Liu, Dr. F. Lu, Prof. L. Jiang, Prof. D. Zhu
Center for Molecular Sciences, Institute of Chemistry, The Chinese Academy of Sciences, Beijjing, 100080, (China)
Fax: (+86) 10 –82616576
E-mail: ylli@iccas.ac.cn
Supplementary Figure 2. The TGA thermogram of the BH-PPV

Supplementary Figure 3. Fluorescence decay curve of BH-PPV
Supplementary Figure 4. Tapping-mode AFM images of BH-PPV and BH-PPV/C\textsubscript{60}-HS films

Picture A is tapping-mode AFM image of BH-PPV on mica, and picture B is the corresponding 3D image of A. Picture C is tapping-mode AFM image of BH-PPV/C\textsubscript{60}-HS bilayer on mica, and picture D is corresponding 3D images of C.

Electrochemical Measurements. Cyclic voltammograms (CV) were recorded on an IM 6e Zahner Potentiostat. Dried DMF was used to prepared a solution of BH-PPV (4 × 10-4M) and C\textsubscript{60}-HS (5 × 10-5M) containing Bu\textsubscript{4}NPF\textsubscript{6} (0.1M) as a supporting electrolyte. The scan rate of BH-PPV and C\textsubscript{60}-HS was 20 mV/s and 200mV/s, respectively. A three-electrode configuration consisting of a glassy carbon working electrode, a Pt wire counter electrode, and an Ag wire quasi-reference electrode was used. All potentials reported are referenced vs. Ag wire. N\textsubscript{2} bubbling was used to remove to oxygen from the electrolyte solutions in the electrochemical cell.
Supplementary Figure 5. The Cyclic voltammograms of BH-PPV: the oxidation process.

Supplementary Figure 6. The Cyclic voltammograms of BH-PPV: the reduction process.

Supplementary Figure 7. The Cyclic voltammograms of C_{60}-HS