Towards Binuclear Polyaminocarboxylate MRI Contrast Agents?

Spectroscopic and MD Study of the Peculiar Aqueous Behaviour of $\mathbf{L n}_{2}(\mathbf{O H E C})^{\mathbf{2 -}}(\mathbf{L n}=\mathbf{E u}, \mathbf{G d}$ and Tb) : Implications for Relaxivity. By

Gaëlle M. Nicolle, ${ }^{\text {a }}$ Fabrice Yerly, ${ }^{\text {a }}$ Daniel Imbert, ${ }^{\text {b }}$ Ulrike Böttger, ${ }^{\text {c }}$ Jean- Claude Bünzli ${ }^{\text {b }}$ and André E. Merbach ${ }^{\text {a }}$

Figure S1. $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ COSY45 spectrum of $\mathrm{Eu}_{2}(\mathrm{OHEC})^{2-}$ at 273.6 K .

Figure S2. $600 \mathrm{MHz}{ }^{1} \mathrm{H}$ Clean-TOCSY spectrum of $\mathrm{Eu}_{2}(\mathrm{OHEC})^{2-}$ at 273.6 K .

Figure S3. $400 \mathrm{MHz}{ }^{13} \mathrm{C} \mathrm{HMQC}$ spectrum of $\mathrm{Eu}_{2}(\mathrm{OHEC})^{2-}$ at 268.2 K .

Figure S4. $600 \mathrm{MHz}{ }^{1} \mathrm{H}$ NOESY spectrum of $\mathrm{Eu}_{2}(\mathrm{OHEC})^{2-}$ at $274.8 \mathrm{~K}, \tau_{m}=60 \mathrm{~ms}$.

Figure S5. pH dependence of $600 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra of $\mathrm{Eu}_{2}(\mathrm{OHEC})^{2-}$.

Figure S6. Temperature dependence of $600 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra of $\mathrm{Eu}_{2}(\mathrm{OHEC})^{2-}$.

Figure S7. Pressure dependence of $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra of $\mathrm{Eu}_{2}(\mathrm{OHEC})^{2-}$.

Figure S8. Temperature dependence of $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra of $\mathrm{Tb}_{2}(\mathrm{OHEC})^{2-}$.

Figure S9. one dimensional representation of the temperature dependence of the ${ }^{7} \mathrm{~F}_{0}-{ }^{5} \mathrm{D}_{0}$ transition on the UV-vis spectra of $\mathrm{Eu}_{2}(\mathrm{OHEC})^{2-} . C_{\mathrm{Eu}} \sim 30 \mathrm{mmol} \mathrm{kg}{ }^{-1}$.

Figure S10. one dimensional representation of the pressure dependence of the ${ }^{7} \mathrm{~F}_{0}-{ }^{5} \mathrm{D}_{0}$ transition on the UV-vis spectra of $\mathrm{Eu}_{2}(\mathrm{OHEC})^{2-} . C_{\mathrm{Eu}} \sim 10 \mathrm{mmol} \mathrm{kg}^{-1}$.

Equation S1. Equations used for the simultaneous fit of variable temperature EPR spectra.

Equation S2. Equations used for the simultaneous fit of variable temperature and pressure UV-vis spectra.

Equation S3. Equations used for the simultaneous fit of variable temperature ${ }^{17}$ O NMR EPR and ${ }^{1} \mathrm{H}$ NMRD data.

Figure S11. Temperature dependence of EPR spectra of the $\mathrm{Gd}_{2}(\mathrm{OHEC})^{2-}$ and its α and β isomers at X -band. The dotted lines represent the calculated spectra calculated for each isomer.

Figure S12. Temperature dependence of EPR spectra of the $\operatorname{GdY}(\mathrm{OHEC})^{2-}$ and its α and β isomers at X -band. The dotted lines represent the calculated spectra calculated for each isomer.

Figure S13. pH dependence of the relaxivity of $\mathrm{Gd}_{2}(\mathrm{OHEC})^{2-}$.

Figure S14. Pressure dependence of the increase of the ${ }^{17} \mathrm{O}$ transverse relaxation rate $\left(1 / \mathrm{T}_{2 \mathrm{P}}\right)$ at 312 K and 9.4 T due to $\left[\mathrm{Gd}_{2}(\mathrm{OHEC})\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2-} . C_{G d}=45.17 \mathrm{mmol} \mathrm{kg}$.

Figure S15. Emission spectra of the $\mathrm{Eu}_{2}(\mathrm{OHEC}) . \mathrm{H}_{2} \mathrm{O}$ complex in solid state at 295 K , upon broad (${ }^{5} \mathrm{D}_{2}$) band and selective excitation.

Figure S16. Excitation spectra at 295 K of the $\mathrm{Eu}_{2}(\mathrm{OHEC}) . \mathrm{H}_{2} \mathrm{O}$ complex in solid state, upon monitoring the $\mathrm{Eu}\left({ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{1}\right.$, 2) transitions and enlargement (top) of the $\mathrm{Eu}\left({ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{0}\right)$ transition (broad band excitation $\left({ }^{5} \mathrm{D}_{2}\right)$).

Figure S17. Emission spectra of the $\mathrm{Eu}_{2}(\mathrm{OHEC}) . \mathrm{H}_{2} \mathrm{O}$ complex in solution $\left(10^{-3} \mathrm{M}\right)$, at 295 K , upon broad band (${ }^{5} \mathrm{D}_{2}$) and selective excitation.

Figure S18. Emission spectra of the $\mathrm{Eu}_{2}(\mathrm{OHEC}) . \mathrm{H}_{2} \mathrm{O}$ complex in solution $\left(10^{-4} \mathrm{M}\right)$, at 295 K , upon broad band and selective excitation.

Figure S19. Normalised emission spectra of the $\mathrm{Eu}_{2}(\mathrm{OHEC}) \cdot \mathrm{H}_{2} \mathrm{O}$ complex in solution (10^{-3} M), at 295 K , upon broad band and selective excitation.

Figure S20. Time evolution of the α and β isomers dihedral angles during the MD- α and MD- β simulations. The radial part represents the time in picosecond while the azimutal angle angle represents the dihedral angles.

Figure S21. Angular projections of the $\mathrm{Gd}^{\mathrm{III}}$ coordination polyhedrons centred on the C_{4} axis. Upper part: projection of the two coordination polyhedrons in MD- α. Lower part: corresponding projections in MD- β.

Table S1. Ratio of the molar fraction of the 2 isomers α and β of $E u_{2}(\mathrm{OHEC})^{2-}, \mathrm{x}_{\beta} / \mathrm{x}_{\alpha}=K$, obtained from the $600 \mathrm{MHz}^{1} \mathrm{H}$ NMR study at variable temperature.

Table S2. Ratio of the molar fraction of the 2 isomers α and β of $E u_{2}(\mathrm{OHEC})^{2-}, \mathrm{x}_{\beta} / \mathrm{x}_{\alpha}=K$, obtained from the variable pressure study at 400 MHz and, at 279.4 K .

Table S3. Half line widths $\left(1 / T_{2}\right)$ of the protons ${ }^{2} E,{ }^{2} e^{\prime}(\times 2)$ from the experimental 600 MHz ${ }^{1} \mathrm{H}$ NMR spectra of $\mathrm{Eu}_{2}(\mathrm{OHEC})^{2-}$ measured at variable temperature.

Table S4. Extrapolated half line widths $\left(1 / T_{2}\right)$ of the protons ${ }^{2} E^{\prime},{ }^{2} e^{\prime}(\times 2)$ from the experimental $600 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra of $\mathrm{Eu}_{2}(\mathrm{OHEC})^{2-}$ measured at variable temperature.

Table S5. Isomerisation constant, $k_{i s}$, obtained from the simulation of the experimental 600 $\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra of $\mathrm{Eu}_{2}(\mathrm{OHEC})^{2-}$ measured at variable temperature with the formalism of Kubo-Sack and a 3 sites exchange matrix (protons: ${ }^{2} \mathrm{E},{ }^{2} \mathrm{e}^{\prime}(\times 2)$).

Table S6. Half line widths $\left(1 / T_{2}\right)$ of the protons ${ }^{2} \mathrm{E}^{\prime},{ }^{2} \mathrm{e}^{\prime}(\times 2)$ from the experimental 400 MHz ${ }^{1} \mathrm{H}$ NMR spectra of $\mathrm{Eu}_{2}(\mathrm{OHEC})^{2-}$ measured at variable pressure and at 279.4 K .

Table S7. Extrapolated half line widths of the experimental $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra of $\mathrm{Eu}_{2}(\mathrm{OHEC})^{2-}$ measured at variable pressure and at 279.4 K .

Table S8. Kinetics constant, $k_{i s}$, obtained from the simulation of the experimental 400 MHz ${ }^{1} \mathrm{H}$ NMR spectra of $\mathrm{Eu}_{2}(\mathrm{OHEC})^{2-}$ measured at variable pressure with the formalism of KuboSack and a 3 sites exchange matrix (protons: ${ }^{2} \mathrm{E}^{\prime},{ }^{2} \mathrm{e}^{\prime}(\times 2)$).

Table S9. ${ }^{17} \mathrm{O}$ observed longitudinal and transverse relaxation rates at 9.4 T as a function of temperature for the diamagnetic reference at $\mathrm{pH}=9\left(1 / \mathrm{T}_{1 \mathrm{~A}}\right.$ and $\left.1 / \mathrm{T}_{2 \mathrm{~A}}\right)$ and in the presence of $\mathrm{Gd}_{2}(\mathrm{OHEC})^{2-}\left(1 / \mathrm{T}_{1}\right.$ and $\left.1 / \mathrm{T}_{2}\right)$. Solutions of $\mathrm{Gd}_{2}(\mathrm{OHEC})^{2-}: C_{\mathrm{Gd}}=21.87 \mathrm{mmol} \mathrm{kg}{ }^{-1}$.

Table S10. ${ }^{17} \mathrm{O}$ chemical shift of the diamagnetic reference, δ_{A}, and in the presence of $\mathrm{Gd}_{2}(\mathrm{OHEC})^{2-}, \delta$, at 9.4 T as a function of temperature. Solutions of $\mathrm{Gd}_{2}(\mathrm{OHEC})^{2-}: C_{\mathrm{Gd}}=$ $21.87 \mathrm{mmol} \mathrm{kg}^{-1}$.

Table S11. Pressure dependence of the increase of the ${ }^{17} \mathrm{O}$ transverse relaxation rate $\left(1 / \mathrm{T}_{2 \mathrm{P}}\right.$ $\left.=1 / \mathrm{T}_{2, \text { obs }}-1 / \mathrm{T}_{2 \mathrm{~A}}\right)$ due to $\left[\mathrm{Gd}_{2}(\mathrm{OHEC})\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2-}$ and of the diamagnetic reference $\left(1 / \mathrm{T}_{2 \mathrm{~A}}\right)$ (bidistilled water at $\mathrm{pH}=9$) at 312 K and $9.4 \mathrm{~T} . C_{G d}=45.17 \mathrm{mmol} \mathrm{kg}{ }^{-1}$.

Table S12. ${ }^{17} \mathrm{O}$ transverse relaxation rates at 4.7 T as a function of temperature for the diamagnetic reference at $\mathrm{pH}=9\left(1 / \mathrm{T}_{2 \mathrm{~A}}\right)$ and in the presence of $\mathrm{Gd}_{2}(\mathrm{OHEC})^{2-}\left(1 / \mathrm{T}_{2}\right)$. Solutions of $\mathrm{Gd}_{2}(\mathrm{OHEC})^{2-}: C_{\mathrm{Gd}}=21.87 \mathrm{mmol} \mathrm{kg}^{-1}$.

Table S13. Half line widths (W) and centres (C) of the bands of α and β isomers measured at variable temperature by UV-vis. The obtained equilibrium constant K is given for each temperature. $C_{\mathrm{Eu}} \sim 30 \mathrm{mmol} \mathrm{kg}$.

Table S14. Half line widths (W) and centres (C) of the bands of α and β isomers measured at variable pressure by UV-vis. The obtained equilibrium constant K is given for each temperature. $C_{\mathrm{Eu}} \sim 10 \mathrm{mmol} \mathrm{kg}$.

Table S15. Peak to peak line widths and resonance frequency of the EPR spectra of $\mathrm{Gd}_{2}(\mathrm{OHEC})^{2-}$, for its two α and β isomers, and the equilibrium constant K , as a function of temperature at the X-band $(0.34 \mathrm{~T})$. Solutions of $\mathrm{Gd}_{2}(\mathrm{OHEC})^{2-}: C_{\mathrm{Gd}}=40.7 \mathrm{mmol} \mathrm{kg}^{-1}$.

Table S16. Water proton relaxivity, r_{1} (in $\mathrm{mM}^{-1} \mathrm{~s}^{-1}$) of $\mathrm{Gd}_{2}(\mathrm{OHEC})^{2-}$ as a function of temperature and magnetic field. Solution of $\mathrm{Gd}_{2}(\mathrm{OHEC})^{2-}, C_{G d}^{a}=1.88 \mathrm{mmol} \mathrm{dm}^{-3}$.

Table S17. Peak to peak line widths and resonance frequency of the EPR spectra of $\operatorname{GdY}(\mathrm{OHEC})^{2-}$ for its two α and β isomers, and the equilibrium constant K , as a function of temperature at the X-band (0.34 T). Solutions of GdY (OHEC) $)^{2-}: C_{G d}=5.3 \mathrm{mmol} \mathrm{kg}^{-1}$.

Table S18. Integrated and corrected relative intensities of the $\operatorname{Eu}\left({ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{\mathrm{j}}\right)$ transitions at 295 K.

Table S19. Energy $\left(\mathrm{cm}^{-1}\right)$ of the identified crystar field sub-levels of the $\operatorname{Eu}\left({ }^{7} \mathrm{~F}_{\mathrm{j}}\right)$ manifold $(\mathrm{J}=$ 1-4) in Eu_{2} (OHEC). $\mathrm{H}_{2} \mathrm{O}$ as determined from excitation and emission spectra in solid state or in water solution at $295 \mathrm{~K} ;{ }^{7} \mathrm{~F}_{0}$ is taken as the origin.

Table S20. Lifetimes of the $\operatorname{Eu}\left({ }^{5} \mathrm{D}_{0}\right)$ excited level (ms) in the $\mathrm{Eu}_{2}(\mathrm{OHEC}) . \mathrm{H}_{2} \mathrm{O}$ complex under various excitation conditions (analysing wavelength set on the maximum of the ${ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{2}$);2 σ is given within parentheses.

Table S21. Calculated number of water molecules q.

Table S22. Selected time averaged dihedral angles calculated from MD simulations. Numbers in brackets are one standard deviation.

Figure S1. $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ COSY45 spectrum of $\mathrm{Eu}_{2}(\mathrm{OHEC})^{2-}$ at 273.6 K .

The $400 \mathrm{MHz}{ }^{1} \mathrm{H}$-COSY45 spectrum was recorded at 273.6 K with 56 scans with 1024 increments of 2048 data points and the same values for the zero-filled data points. The assignment of the nature of the protons (propylene $=p$, ethylene $=e$ and acetate $=a$) for the major isomer has been established in agreement with the ${ }^{1} \mathrm{H}$ clean-TOCSY spectrum. According to the COSY spectrum there are couplings between (1P', 3P'') (3P', 3P'") ($1 \mathrm{P}^{\prime \prime}$, $2 \mathrm{P}^{\prime \prime}$) and ($2 \mathrm{P}^{\prime}$ ', 2P'). The TOCSY confirmed the attribution of the propylene protons thanks to the cross-peak (1P', 2P'). The rest of the crosspeaks on the TOCSY spectrum can be mainly accounted for the ethylene protons.

Figure S2. $600 \mathrm{MHz}{ }^{1} \mathrm{H}$ Clean-TOCSY spectrum of $\mathrm{Eu}_{2}(\mathrm{OHEC})^{2-}$ at 273.6 K .

The $600 \mathrm{MHz}{ }^{1} \mathrm{H}$ Clean-TOCSY spectrum was recorded with a MLEV 17 sequence with trim-pulses after 16 scans at 273.6 K . The spin lock time was 12 ms . The number of data points were $4096 t_{2} \times 1600 t_{1}$ data points for the acquisition and $2048 t_{2} \times 2048 t_{1}$ data points for the zero-filled.

Figure S3. $400 \mathrm{MHz}{ }^{13} \mathrm{C} \mathrm{HMQC}$ spectrum of $\mathrm{Eu}_{2}(\mathrm{OHEC})^{2-}$ at 268.2 K .

400 MHz natural abundance ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMQC spectrum was recorded at 268.2 K with a BIRD pulse sequence for the preparation period and decoupled during the acquisition and then treated with time proportional phase incrementation (TPPI). The optimised delay for inversion recovery of the magnetisation, τ, was $265 \mathrm{~ms} .6144 \mathrm{t}_{2} \times 512 \mathrm{t}_{1}$ data points and $8192 \mathrm{t}_{2} \times 1024$ t_{1} data points for the zero-filled were used to obtain the spectrum, which consisted of 56 scans.

Figure S4. $600 \mathrm{MHz}{ }^{1} \mathrm{H}$ NOESY spectrum of $\mathrm{Eu}_{2}(\mathrm{OHEC})^{2-}$ at $274.8 \mathrm{~K}, \tau_{m}=60 \mathrm{~ms}$.

A 600 MHz spectrum was recorded at 274.8 K using the conventional NOESY phase sensitive pulse sequence $\left(90^{\circ}-t_{1}-90^{\circ}-\tau_{\mathrm{m}}-90^{\circ}\right.$-acq) with $8192 \mathrm{t} \times 1024 \mathrm{t}$ data points and apodized with TPPI and zero filled to $8192 t_{2} \times 2048 t_{1}$. The number of scans was 100 and the mixing time, τ_{m}, equal to 60 ms .

Figure S5. pH dependence of $600 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra of $\mathrm{Eu}_{2}(\mathrm{OHEC})^{2-}$ at 274.8 K .

Figure S6. Temperature dependence of $600 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra of $\mathrm{Eu}_{2}(\mathrm{OHEC})^{2-}$.

Figure S7. Pressure dependence of $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra of $\mathrm{Eu}_{2}(\mathrm{OHEC})^{2-}$ at 279.4 K .

Figure S8. Temperature dependence of $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra of $\mathrm{Tb}_{2}(\mathrm{OHEC})^{2-}$.

Figure S9. one dimensional representation of the temperature dependence of the ${ }^{7} \mathrm{~F}_{0}-{ }^{5} \mathrm{D}_{0}$ transition on the UV-vis spectra of $\mathrm{Eu}_{2}(\mathrm{OHEC})^{2-} . C_{\mathrm{Eu}} \sim 30 \mathrm{mmol} \mathrm{kg}{ }^{-1}$.

Figure S10. one dimensional representation of the pressure dependence of the ${ }^{7} \mathrm{~F}_{0}-{ }^{5} \mathrm{D}_{0}$ transition at 298.2 K on the UV-vis spectra of $\mathrm{Eu}_{2}(\mathrm{OHEC})^{2-} . C_{\mathrm{Eu}} \sim 10 \mathrm{mmol} \mathrm{kg}^{-1}$.

Equations S1. The EPR spectra (S) are the sum of two spectra of each isomers weighted by their molar fraction x_{α} and x_{β}.

Each spectrum versus the magnetic field B can be then described as the sum of two derivatives one for the absorption part of the EPR spectrum (y_{ab}) and the other for the dispersion part $\left(\mathrm{y}_{\mathrm{d}}\right)$. An additional term has then to be added for the baseline correction (described as linear versus the magnetic field).

The fitted parameters was done simultaneously for the 7 spectra with this following parameters, which were different for each spectrum except for the K^{298} and $\Delta \mathrm{H}^{0}$, which describe the equilibrium constant $K=\mathrm{X}_{\beta} / \mathrm{X}_{\alpha}\left(\mathrm{X}_{\alpha}\right.$ and X_{β} are the molar fractions of the isomers α and β.): \quad-Peak to peak line widths of the isomers α and $\beta: \Delta \mathrm{H}_{\mathrm{pp}, \alpha} ; \Delta \mathrm{H}_{\mathrm{pp}}, \beta$
-Centre fields for the isomers α and $\beta: \mathrm{B}_{0, \alpha} ; \mathrm{B}_{0, \beta}$
-the equilibrium constant, $K\left(K^{298}, \Delta H^{0}\right)$ extracted from the molar fractions of the isomers α and $\beta\left(\mathrm{x}_{\alpha} ; \mathrm{x}_{\beta}\right)$ as $K=\mathrm{x}_{\beta} / \mathrm{x}_{\alpha}$.
-Phasing parameters for the absorption part : ϕ_{1}
-Phasing parameters for the dispersion part: ϕ_{2}
-Slope to describe the baseline: basl $_{1}$
-Origine ordinate to describe the baseline: basl $_{2}$
$y_{a b}(\mathrm{i})=\frac{\Delta \mathrm{H}_{\mathrm{pp}, \mathrm{i}} \times \sqrt{3} \times\left(B_{0, i}-B\right)}{\left\{\left(\frac{\Delta \mathrm{H}_{\mathrm{pp,i}} \times \sqrt{3}}{2}\right)^{2}+\left(B_{0, i}-B\right)^{2}\right\}^{2}}$
$y_{d}(\mathrm{i})=\frac{\left(B_{0, i}-B\right)^{2}-\left(\frac{\Delta \mathrm{H}_{\mathrm{pp}, \mathrm{i}} \times \sqrt{3}}{2}\right)^{2}}{\left\{\left(\frac{\Delta \mathrm{H}_{\mathrm{pp}, i} \times \sqrt{3}}{2}\right)^{2}+\left(B_{0, i}-B\right)^{2}\right\}^{2}}$

For the global spectrum we obtained:
$\mathrm{S}=\mathrm{X}_{\alpha} \times\left[\phi_{1} \times y_{a b}(\alpha)+\phi_{2} \times y_{d}(\alpha)+\operatorname{basl}_{1} \times \mathrm{B}+\mathrm{bask}\right]+\mathrm{X}_{\beta} \times\left[\phi_{1} \times y_{a b}(\beta)+\phi_{2} \times y_{d}(\beta)+\right.$ basl $_{1} \times$ B + bask $]$

Equations S2. The UV-vis spectra (S) are the sum of two spectra of each isomers weighted by their concentration C_{α} and C_{β}.

Each band can be described by a convolution gaussian-lorentzian. For a species i the following fitted parameters were different for each temperature except K^{298} and ΔH^{0} and are: -the area of the band, A_{i}
-the half line width of the band of i: Wi
-the centre of the band of i: C_{i}
-the ratio Gaussian compared to Lorentzian: Q
-the equilibrium constant, $K\left(K^{298}, \Delta H^{0}\right)$ extracted from the area of the bands of α and $\left.\beta \mathrm{x}_{\beta}\right)$ as $K=\mathrm{A}_{\beta} / \mathrm{A}_{\alpha}$

For the band of i we obtained:

$$
\begin{align*}
& S_{i}=-2.77258872 \times\left(A_{i}-\frac{Q}{1+Q} A_{i}\right) \times \frac{W_{i}}{4 \times\left(X-C_{i}\right)+W_{i}^{2}} \\
& +0.93943278\left(\frac{Q}{1+Q} \frac{A_{i}}{W_{i}}\right) \times \exp \left\{-2.77258872 \times\left(X-C_{i}\right)^{2}\right\}
\end{align*}
$$

For the global spectrum, S, we obtained:
$\mathrm{S}=\mathrm{S}_{\alpha}+\mathrm{S}_{\beta}$ Eq.S5

The half line width and the centres of the band were assumed to have a linear dependence versus temperature and pressure.

Equations S3. From the measured ${ }^{17} \mathrm{O}$ NMR relaxation rates and angular frequencies of the paramagnetic solutions, $1 / T_{1}, 1 / T_{2}$ and ω, and of the acidified water reference, $1 / T_{1 A}, 1 / T_{2 A}$ and ω_{A}, the increase of the longitudinale and transverse relaxation rates, $1 / \mathrm{T}_{1}-1 / \mathrm{T}_{1 \mathrm{~A}}$ and $1 / \mathrm{T}_{2}-$ $1 / T_{2 \mathrm{~A}}$ respectively, and the decrease of the chemical shift, $\omega-\omega_{\mathrm{A}}$ can be deduced (Eq.S6-8), where $1 / T_{l m}, 1 / T_{2 m}$ are the relaxation rates of the bound water and $\Delta \omega_{m}$ is the chemical shift difference between bound and bulk water, τ_{m} is the mean residence time or the inverse of the water exchange rate $k_{e x}$ and P_{m} is the mole fraction of the bound water.[Swift, T.J.; Connick R.E. J. Chem. Phys. 1962, 37, 307.; Zimmermann, J. R.; Brittin, W. E. J. Phys. Chem. 1957, 61, 1328.] with $P_{m}=C_{G d} d(1+\mathrm{K})$.

$$
\begin{align*}
& {\left[\frac{1}{T_{1}}-\frac{1}{T_{1 \mathrm{~A}}}\right]=P_{\mathrm{m}}\left[\frac{1}{T_{1 \mathrm{~m}}+\tau_{\mathrm{m}}}+\frac{1}{T_{1 o s}}\right]} \\
& {\left[\frac{1}{T_{2}}-\frac{1}{T_{2 \mathrm{~A}}}\right]=P_{\mathrm{m}}\left[\frac{1}{\tau_{\mathrm{m}}} \frac{T_{2 \mathrm{~m}}^{-2}+\tau_{\mathrm{m}}^{-1} T_{2 \mathrm{~m}}^{-1}+\Delta \omega_{\mathrm{m}}^{2}}{\left(\tau_{\mathrm{m}}^{-1}+T_{2 \mathrm{~m}}^{-1}\right)^{2}+\Delta \omega_{\mathrm{m}}^{2}}+\frac{1}{T_{2 o s}}\right]} \\
& \left(\omega-\omega_{\mathrm{A}}\right)=P_{\mathrm{m}}\left[\frac{\Delta \omega_{\mathrm{m}}}{\left(1+\tau_{\mathrm{m}} T_{2 \mathrm{~m}}^{-1}\right)^{2}+\tau_{\mathrm{m}}^{2} \Delta \omega_{\mathrm{m}}^{2}}+\Delta \omega_{\mathrm{os}}\right]
\end{align*}
$$

Eq. 57

Eq.S8

Previous studies have shown that outer sphere contributions to the ${ }^{17} \mathrm{O}$ relaxation rates, $1 / \mathrm{T}_{1 \text { os }}$ and $1 / \mathrm{T}_{20 \mathrm{~s}}$, are negligible [Micskei, K.; Helm, L.; Brücher, E.; Merbach, A. E. Inorg. Chem. 1993, 32, 3844] therefore no outer sphere contribution has been further considered.

The ${ }^{17} \mathrm{O}$ longitudinal relaxation rates in $\mathrm{Gd}^{\mathrm{III}}$ solutions are the sum of the contributions of the dipole-dipole and quadrupolar (in the approximation developed by Halle) mechanisms as expressed by Eq.S9-11 for extreme narrowing conditions, where γ_{S} and γ_{I} are the electron and the nuclear gyromagnetic ratio respectively $\left(\gamma_{S}=1.76 \times 10^{11} \mathrm{rad} \mathrm{s}^{-1} \mathrm{~T}^{-1}, \gamma_{I}=-3.626 \times 10^{7} \mathrm{rad} \mathrm{s}^{-1} \mathrm{~T}^{-1}\right)$, $r_{G d O}$ is the effective distance between the electron charge and the ${ }^{17} \mathrm{O}$ nucleus, I is the nuclear $\operatorname{spin}\left(5 / 2\right.$ for $\left.{ }^{17} \mathrm{O}\right), \chi$ is the quadrupolar coupling constant and η is an asymmetry parameter :

$$
\frac{1}{T_{l m}}=\frac{1}{T_{l d d}}+\frac{l}{T_{l q}}
$$

with:

$$
\begin{align*}
& \frac{1}{T_{1 d d}}=\frac{2}{15}\left(\frac{\mu_{0}}{4 \pi}\right)^{2} \frac{\hbar^{2} \gamma_{I}^{2} \gamma_{S}^{2}}{r_{G d O}^{6}} S(S+1) \times\left[3 J\left(\omega_{I} ; \tau_{d 1}\right)+7 J\left(\omega_{S} ; \tau_{d 2}\right)\right] \\
& \frac{1}{T_{1 q}}=\frac{3 \pi^{2}}{10} \frac{2 I+3}{I^{2}(2 I-1)} \chi^{2} \times \tau_{R}
\end{align*}
$$

The spectral density function is expressed as in Eq S12.

$$
J(\omega ; \tau)=\left(\frac{\tau}{1+\omega^{2} \tau^{2}}\right)
$$

Eq.S12

The transverse relaxation of ${ }^{17} \mathrm{O}$ bound directly to $\mathrm{Gd}^{\text {III }}$ is governed by scalar relaxation and can be expressed by Eq.S13 with $\tau_{\mathrm{Si}}=1 / \tau_{\mathrm{m}}+1 / \mathrm{T}_{\mathrm{ie}}$ and where $\frac{A}{\hbar}$ is the scalar coupling constant.

$$
\frac{1}{T_{2 M}}=\frac{S(S+1)}{3}\left(\frac{A}{\hbar}\right)^{2}\left(\tau_{S 1}+\frac{\tau_{S 2}}{1+\omega_{s}^{2} \tau_{S 2}^{2}}\right)
$$

Eq.S13

The electronic longitudinal and transverse relaxation rate, $1 / \mathrm{T}_{1 \mathrm{e}}$ and $1 / \mathrm{T}_{2 \mathrm{e}}$, are principally dominated by the modulation of the zero field splitting for $\mathrm{Gd}^{\mathrm{II}}$ chelates and are expressed in the following Eq.S14-15, where Δ^{2} is the mean square zero field splitting energy and τ_{v} is the correlation time for modulation of the zero field splitting interaction. This latter can be expressed by a simple Arrhenius law as written in eq S16, with τ_{v}^{298} being the value of τ_{v} at 298.15 K and E_{v} the associated activation energy.

$$
\begin{aligned}
& \frac{1}{T_{1 e}}=\left(\frac{1}{T_{1 e}}\right)^{Z F S}=\frac{1}{25} \Delta^{2} \tau_{v}(4 S(S+1)-3)\left[\frac{1}{1+\omega_{S}^{2} \tau_{v}^{2}}+\frac{4}{1+4 \omega_{S}^{2} \tau_{v}^{2}}\right] \\
& \frac{1}{T_{2 e}}=\left(\frac{1}{T_{2 e}}\right)^{Z F S}=\Delta^{2} \tau_{v}\left[\frac{5.26}{1+0.372 \omega_{S}^{2} \tau_{v}^{2}}+\frac{7.18}{1+1.24 \omega_{S} \tau_{v}}\right]
\end{aligned}
$$

$\tau_{v}=\tau_{v}^{298} \exp \left\{\frac{\mathrm{E}_{v}}{R}\left(\frac{1}{T}-\frac{1}{298}\right)\right\}$

The transverse electronic relaxation rates, $1 / T_{2 e}$, for both homobinuclear and mixed $\mathrm{Gd}^{\mathrm{II}} / \mathrm{Y}^{\mathrm{III}}$ complexes were directly calculated from the measured peak-to-peak EPR line widths, $\Delta \mathrm{H}_{\mathrm{pp}}$, according to Eq. S17, where μ_{B} is the Bohr magneton and h the Planck constant.[J . Reuben J. Chem. Phys. 1971, 75, 3164]

$$
\frac{1}{T_{2 e}}=\frac{g_{L} \mu_{B} \pi \sqrt{3}}{h} \Delta H_{p p}
$$

Eq.S17

The exchange rate is supposed to assume the Eyring equation. In eq S18 ΔS^{\ddagger} and ΔH^{\ddagger} are the entropy and enthalpy of activation for the water exchange process, and $k_{\text {ex }}^{298}$ is the exchange rate at 298.15 K .

$$
\frac{1}{\tau_{m}}=k_{e x}=\frac{k_{B} T}{h} \exp \left\{\frac{\Delta S^{\ddagger}}{R}-\frac{\Delta H^{\ddagger}}{R T}\right\}=\frac{k_{e x}^{298} T}{298.15} \exp \left\{\frac{\Delta H^{\ddagger}}{R}\left(\frac{1}{298.15}-\frac{1}{T}\right)\right\}
$$

In Eq S 8 , the chemical shift of the bound water molecule, $\Delta \omega_{m}$, depends on the hyperfine interaction between the $\mathrm{Gd}^{\text {III }}$ electron spin and the ${ }^{17} \mathrm{O}$ nucleus and is directly proportional to the scalar coupling constant, $\frac{A}{\hbar}$, as expressed in Eq.S19.[H.G. Brittain, J.F. Desreux Inorg. Chem. 1984, 23, 4459.]

$$
\Delta \omega_{m}=\frac{g_{L} \mu_{B} S(S+1) B}{3 k_{B} T} \frac{A}{\hbar}
$$

The isotopic Landé g_{L} factor is equal to 2.0 for the $\mathrm{Gd}^{\mathrm{III}}$, B represents the magnetic field, and k_{B} is the Boltzmann constant.

The outer sphere term of the chemical shift was found proportional to $\Delta \omega_{m}$, through an empirical constant $C_{o s .}$ [G. Gonzalez, H.D. Powell, V.Tissières, A.E. Merbach J. Phys. Chem. 1994, 98, 53.]

$$
\Delta \omega_{o s}=C_{o s} \Delta \omega_{m}
$$

The measured longitudinal proton relaxation rate, $R_{l}^{\text {obs }}$, is the sum of a paramagnetic and a diamagnetic contribution as expressed in Eq S 21 , where r_{1} is the proton relaxivity:

$$
R_{1}^{o b s}=R_{1}^{d}+R_{1}^{p}=R_{1}^{d}+r_{1}\left[G d^{3+}\right]
$$

Eq.S21

The relaxivity can be divided into an inner and an outer sphere term as follows:

$$
r_{I}=r_{\text {lis }}+r_{l o s}
$$

Taking into account the contribution of each isomer to the relaxivity, r_{1}^{α} and r_{1}^{β}, weighted by their molar fraction we obtained:

$$
r_{1}=x_{\alpha}\left(r_{\text {lis }}^{\alpha}+r_{\text {los }}^{\alpha}\right)+x_{\beta} r_{\text {los }}^{\beta}
$$

with $x_{\alpha}=(1 / 1+\mathrm{K})$ and $x_{\beta}=1-x_{\alpha}$ with

$$
r_{l i s}=\frac{1}{1000} \times \frac{q}{55.55} \times \frac{1}{T_{1 m}^{H}+\tau_{m}}
$$

The longitudinal relaxation rate of the inner sphere protons, $1 T_{1 m}{ }^{H}$ is expressed by Eq S25, where $r_{G d H}$ is the effective distance between the electron charge and the ${ }^{1} \mathrm{H}$ nucleus and was fixed to the common value of 3.1 angström, ω_{I} is the proton resonance frequency and ω_{S} is the Larmor frequency of the $\mathrm{Gd}^{\text {III }}$ electron spin.

$$
\begin{align*}
& \frac{1}{T_{1 m}^{H}}=\frac{2}{15}\left(\frac{\mu_{0}}{4 \pi}\right)^{2} \frac{\hbar^{2} \gamma_{I}^{2} \gamma_{S}^{2}}{r_{G d H}^{6}} S(S+1) \times\left[3 J\left(\omega_{I} ; \tau_{d 1}\right)+7 J\left(\omega_{S} ; \tau_{d 2}\right)\right] \\
& \frac{1}{\tau_{d i}}=\frac{1}{\tau_{m}}+\frac{1}{\tau_{R H}}+\frac{1}{T_{i e}}
\end{align*}
$$

With $\tau_{\mathrm{RH}}=\mathrm{R}_{\mathrm{OH}} \times \tau_{\mathrm{R}}$, where R_{OH} is the ratio of the rotational correlation times influencing the ${ }^{17} \mathrm{O}$ relaxation and the proton relaxation, respectively. The same activation energy was considered for the temperature dependence of both rotation correlation times.

The spectral density functions are given by Eq S12. The outer sphere contribution can be described by Eq.S27 where N_{A} is the Avogadro constant, and $J_{o s}$ is its associated spectral density function.[J. H. Freed J. Chem. Phys. 1978, 68, 4034; S.H. Koenig, RD. Brown III, Prog. Nucl. Magn. Reson. Spectrosc. 1991, 22, 487].

$$
\begin{align*}
& r_{\mathrm{los}}^{\alpha, \beta}=\frac{32 N_{\mathrm{A}} \pi}{405}\left(\frac{\mu_{0}}{4 \pi}\right)^{2} \frac{\hbar^{2} \gamma_{\mathrm{S}}^{2} \gamma_{\mathrm{I}}^{2}}{a_{\mathrm{GdH}} D_{\mathrm{GdH}}} S(S+1)\left[3 J_{\mathrm{os}}\left(\omega_{\mathrm{I}}, T_{1 e}^{\alpha, \beta}\right)+7 J_{\mathrm{os}}\left(\omega_{\mathrm{S}}, T_{2 e}^{\alpha, \beta}\right)\right] \\
& J_{o s}\left(\omega, T_{j e}\right)=\operatorname{Re}\left[\frac{1+1 / 4\left(i \omega \tau_{G d H}+\frac{\tau_{G d H}}{T_{j e}}\right)^{1 / 2}}{1+\left(i \omega \tau_{G d H}+\frac{\tau_{G d H}}{T_{j e}}\right)^{1 / 2}+4 / 9\left(i \omega \tau_{G d H}+\frac{\tau_{G d H}}{T_{j e}}\right)+1 / 9\left(i \omega \tau_{G d H}+\frac{\tau_{G d H}}{T_{j e}}\right)^{3 / 2}}\right]
\end{align*}
$$

Eq.S28
$j=1,2$
The diffusion coefficient for the diffusion of a water proton away from a $\mathrm{Gd}^{\text {III }}$ complex, $D_{G d H}$, is assumed to obey an exponential law versus the inverse of the temperature, with an activation energy $E_{G d H}$, as given in Eq.S29. $D_{G d H}^{298}$ is the diffusion coefficient at 298.15 K .

$$
D_{G d H}=D_{G d H}^{298} \exp \left\{\frac{E_{G d H}}{R}\left(\frac{1}{T}-\frac{1}{298.15}\right)\right\}
$$

Eq.S29

The correlation time, $\tau_{\text {GdH }}$, characteristic for the diffusion of a water proton away from the vicinity of the $\mathrm{Gd}^{\text {III }}$ is equal to $\frac{a_{G d H}^{2}}{D_{G d H}}$, with $\mathrm{a}_{\mathrm{GdH}}$ the closest approach distance for a second sphere water proton to the $\mathrm{Gd}^{\text {III }}$ center fixed to 4.5 angström for the fit.

Figure S11. Temperature dependence of EPR spectra of the $\mathrm{Gd}_{2}(\mathrm{OHEC})^{2-}$ and its α and β isomers at X -band. The dotted lines represent the calculated spectra calculated for each isomer.

Figure S12.Temperature dependence of EPR spectra of the $\operatorname{GdY}(\text { OHEC })^{2-}$ and its α and β isomers at X -band. The dotted lines represent the calculated spectra calculated for each isomer.

Figure S13. pH dependence of the relaxivity of $\mathrm{Gd}_{2}(\mathrm{OHEC})^{2-}$ at 298.2 K .

Figure S14. Pressure dependence of the increase of the ${ }^{17} \mathrm{O}$ transverse relaxation rate $\left(1 / \mathrm{T}_{2 \mathrm{p}}\right)$ at 312 K and 9.4 T due to $\left[\mathrm{Gd}_{2}(\mathrm{OHEC})\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2-} . C_{G d}=45.17 \mathrm{mmol} \mathrm{kg}{ }^{-1}$

Figure S15. Emission spectra of the $\mathrm{Na}_{2}\left[\mathrm{Eu}_{2}\right.$.OHEC. $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ complex in solid state at 295 K , upon broad (${ }^{5} \mathrm{D}_{2}$) band and selective excitation.

Figure S16. Excitation spectra at 295 K of the $\mathrm{Na}_{2}\left[\mathrm{Eu}_{2}\right.$.OHEC. $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ complex in solid state, upon monitoring the $\operatorname{Eu}\left({ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{1,2}\right)$ transitions and enlargement (top) of the $\mathrm{Eu}\left({ }^{5} \mathrm{D}_{0} \rightarrow^{7} \mathrm{~F}_{0}\right)$ transition (broad band excitation $\left({ }^{5} \mathrm{D}_{2}\right)$).

Figure S17. Emission spectra of the $\left[\mathrm{Eu}_{2}(\mathrm{OHEC})\right]^{2-}$ complex in solution $\left(10^{-3} \mathrm{M}\right)$, at 295 K , upon broad band $\left({ }^{5} \mathrm{D}_{2}\right)$ and selective excitation.

Figure S18. Emission spectra of the $\left[\mathrm{Eu}_{2}(\mathrm{OHEC})\right]^{2-}$ complex in solution $\left(10^{-4} \mathrm{M}\right)$, at 295 K , upon broad band and selective excitation.

Figure S19. Normalised emission spectra of the $\left[\mathrm{Eu}_{2}(\mathrm{OHEC})\right]^{2-}$ complex in solution $\left(10^{-3} \mathrm{M}\right)$, at 295 K , upon broad band and selective excitation.

Figure S20. Time evolution of the α and β isomers dihedral angles during the simulations MD- α and MD- β. The radial part represent the time in picosecond while the azimutal angle angle represent the dihedral angles.

Figure S21. Angular projections of the $\mathrm{Gd}^{\mathrm{III}}$ coordination polyhedrons centred on the C_{4} axis. Upper part: projection of the two coordination polyhedrons in MD- α. Lower part: corresponding projections in MD- β.

Table S1. Ratio of the molar fraction of the 2 isomers α and β of $E u_{2}(\mathrm{OHEC})^{2-}, \mathrm{x}_{\beta} / \mathrm{x}_{\alpha}=K$, obtained from the $600 \mathrm{MHz}^{1} \mathrm{H}$ NMR study at variable temperature.

T / K	$\mathrm{x}_{\beta} / \mathrm{x}_{\alpha}$	$\ln \left(\mathrm{x}_{\beta} / \mathrm{x}_{\alpha}\right)=\ln (K)$
273.7	0.36	-1.03
279.5	0.38	-0.96
284.6	0.39	-0.94
289.7	0.42	-0.87
294.9	0.43	-0.85

Table S2. Ratio of the molar fraction of the 2 isomers α and β of $E u_{2}(\mathrm{OHEC})^{2-}, \mathrm{x}_{\beta} / \mathrm{x}_{\alpha}=K$, obtained from the variable pressure study at 400 MHz and, at 279.4 K

P	$\ln (K)$
0	-1.01
14	-1.00
58	-1.06
82	-1.10
108	-1.15
125	-1.15
147.5	-1.20
184	-1.25

Table S3. Half line widths $\left(1 / T_{2}\right)$ of the protons ${ }^{2} \mathrm{E}^{\prime},{ }^{2} \mathrm{e}^{\prime}(\times 2)$ from the experimental 600 MHz ${ }^{1} \mathrm{H}$ NMR spectra of $\mathrm{Eu}_{2}(\mathrm{OHEC})^{2-}$ measured at variable temperature.

T / K	$1 / \mathrm{T}_{2,2 \mathrm{E}^{\mathrm{e}}} / \mathrm{Hz}$	$1 / \mathrm{T}_{2,2 \mathrm{e}^{\mathrm{e}}} / \mathrm{Hz}$	$1 / \mathrm{T}_{2,2 \mathrm{e}^{\prime} / \mathrm{Hz}}$
274.8	104.8	128.48	128.4
278.9	102.7	128.86	138.5
283.8	102.0	128.92	153.6
288.9	108.3	133.77	187.7
293.8	122.4	144.83	250.2
298.9	148.6	168.17	384.3

Table S4. Extrapolated half line widths $\left(1 / T_{2}\right)$ of the protons ${ }^{2} \mathrm{E}^{\prime},{ }^{2} \mathrm{e}^{\prime}(\times 2)$ from the experimental $600 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra of $\mathrm{Eu}_{2}(\mathrm{OHEC})^{2-}$ measured at variable temperature.

T / K	$1 / \mathrm{T}_{2,2 \mathrm{E}^{\prime}} / \mathrm{Hz}$	$1 / \mathrm{T}_{2,2 \mathrm{e}^{\mathrm{e}}} / \mathrm{Hz}$	$1 / \mathrm{T}_{2,2 \mathrm{e}^{\mathfrak{}}} / \mathrm{Hz}$
274.8	98.1	106.0	108.4
278.9	91.2	114.5	107.7
283.8	83.8	125.1	106.9
288.9	76.9	136.7	106.0
293.8	71.1	148.5	105.3
298.9	65.6	161.4	104.5
309.8	55.9	191.0	102.9
319.5	48.8	219.8	101.7

Table S5. Isomerisation constant, $k_{i s}$, obtained from the simulation of the experimental 600 $\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra of $E u_{2}(\mathrm{OHEC})^{2-}$ measured at variable temperature with the formalism of Kubo-Sack and a 3 sites exchange matrix (protons: ${ }^{2} \mathrm{E}^{\prime},{ }^{2} \mathrm{e}^{\prime}(\times 2)$).

T / K	$k_{i s} / \mathrm{s}^{-1}$
274.8	6.8
278.9	12.6
283.8	16.7
288.9	30.2
293.8	51.3
298.9	83.1
309.8	219.8
319.5	582

Table S6. Half line widths $\left(1 / T_{2}\right)$ of the protons ${ }^{2} \mathrm{E}^{\prime},{ }^{2} \mathrm{e}^{\prime}(\times 2)$ from the experimental 400 MHz ${ }^{1} \mathrm{H}$ NMR spectra of $\mathrm{Eu}_{2}(\mathrm{OHEC})^{2-}$ measured at variable pressure and at 279.4 K .

T / K	$1 / \mathrm{T}_{2,2 \mathrm{E}^{\prime}} / \mathrm{Hz}$	$1 / \mathrm{T}_{2,2 \mathrm{e}^{\prime} / \mathrm{Hz}}$	$1 / \mathrm{T}_{2,2 \mathrm{e}^{\prime}} / \mathrm{Hz}$
0	127.2	163.8	158.3
14	127.9	162.8	151.7
58	130.0	159.8	133.0
82	148.1	138.8	128.0
108	140.7	121.5	120.6

Table S7. Extrapolated half line widths of the experimental $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra of $\mathrm{Eu}_{2}(\mathrm{OHEC})^{2-}$ measured at variable pressure and at 279.4 K .

$\mathrm{P} / \mathrm{Mpa}$	$1 / \mathrm{T}_{2,2 \mathrm{E}^{\prime}} / \mathrm{Hz}$	$1 / \mathrm{T}_{2,2 \mathrm{e}^{\mathrm{e}}} / \mathrm{Hz}$	$1 / \mathrm{T}_{2,2 \mathrm{e}^{\mathrm{e}}} / \mathrm{Hz}$
0	113.7	132.2	120.0
14	115.5	127.8	116.0
58	121.2	115.0	104.4
82	124.5	108.6	98.6
108	128.1	102.0	92.6
125	130.5	97.9	88.9
147.5	133.8	92.8	84.2
184	139.3	85.0	77.2

Table S8. Kinetics constant, $k_{i s}\left(\alpha \underset{ }{\stackrel{k_{i s}}{\rightleftarrows}} \beta\right)$, obtained from the simulation of the experimental $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra of $\mathrm{Eu}_{2}(\mathrm{OHEC})^{2-}$ measured at variable pressure with the formalism of Kubo-Sack and a 3 sites exchange matrix (protons: ${ }^{2} \mathrm{E},{ }^{2} \mathrm{e}^{\prime}(\times 2)$).

$\mathrm{P} / \mathrm{MPa}$	$k_{i s} / \mathrm{s}^{-1}$
0	14.5
14	13.8
58	12.0
82	10.0
108	10.8
125	9.4
147.5	8.7
184	7.7

Table S9. ${ }^{17} \mathrm{O}$ observed longitudinal and transverse relaxation rates at 9.4 T as a function of temperature for the diamagnetic reference at $\mathrm{pH}=9.0\left(1 / \mathrm{T}_{1 \mathrm{~A}}\right.$ and $\left.1 / \mathrm{T}_{2 \mathrm{~A}}\right)$ and in the presence of $\mathrm{Gd}_{2}(\mathrm{OHEC})^{2-}\left(1 / \mathrm{T}_{1}\right.$ and $\left.1 / \mathrm{T}_{2}\right)$. Solution of $\mathrm{Gd}_{2}(\mathrm{OHEC})^{2-}: C_{\mathrm{Gd}}=21.87 \mathrm{mmol} \mathrm{kg}{ }^{-1}$.

T / K	$1 / \mathrm{T}_{1 \mathrm{~A}} / \mathrm{s}-1$	$1 / \mathrm{T}_{2 \mathrm{~A}} / \mathrm{s}-1$	$1 / \mathrm{T}_{1} / \mathrm{s}-1$	$1 / \mathrm{T}_{2} / \mathrm{s}-1$	$\ln \left(1 / \mathrm{T}_{1-1} 1 / \mathrm{T}_{1 \mathrm{~A}}\right)$	$\ln \left(1 / \mathrm{T}_{2-} 1 / \mathrm{T}_{2 \mathrm{~A}}\right)$
270.5	353.9	376.3	364.0	-	2.32	-
277.2	270.3	289.2	281.4	337.7	2.40	3.88
284.7	210.0	223.8	219.3	281.1	2.23	4.05
292.4	163.7	176.8	174.3	275.0	2.37	4.59
295.2	151.1	163.2	160.8	270.4	2.27	4.68
302.1	125.8	137.0	134.8	267.1	2.20	4.87
308.2	107.9	118.5	115.5	270.0	2.02	5.02
311.7	101.1	109.2	108.0	275.3	1.93	5.11
318.6	87.7	96.7	94.1	288.6	1.85	5.26
325.6	75.8	83.7	80.9	308.3	1.62	5.41
335.6	63.2	72.9	67.7	340.2	1.49	5.59

Table S10. ${ }^{17} \mathrm{O}$ chemical shift of the diamagnetic reference, δ_{A}, and in the presence of $\mathrm{Gd}_{2}(\mathrm{OHEC})^{2-}$ at $\mathrm{pH}=9.0, \delta$, at 9.4 T as a function of temperature. Solution of $\mathrm{Gd}_{2}(\mathrm{OHEC})^{2-}$: $C_{\mathrm{Gd}}=21.87 \mathrm{mmol} \mathrm{kg}$.

T / K	$\delta_{\mathrm{A}} / \mathrm{Hz}$	δ / Hz	$\omega-\omega_{\mathrm{A}} / \mathrm{rad} \mathrm{s}^{-1}$
281.1	-3494	-3501	-43.96
290.7	-3514	-3519	-31.40
300.9	-3542	-3549	-43.96
310.4	-3560	-3560.3	-1.88
320.4	-3579	-3584	-31.40
329.1	-3604	-3608.2	-26.38
339.2	-3631.3	-3634.6	-20.72

Table S11. Pressure dependence of the increase of the ${ }^{17} \mathrm{O}$ transverse relaxation rate $\left(1 / \mathrm{T}_{2 \mathrm{P}}\right.$ $\left.=1 / \mathrm{T}_{2, \text { obs }}-1 / \mathrm{T}_{2 \mathrm{~A}}\right)$ due to $\left[\mathrm{Gd}_{2}(\mathrm{OHEC})\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2-}$ at $\mathrm{pH}=9.0$ and of the diamagnetic reference $\left(1 / \mathrm{T}_{2 \mathrm{~A}}\right)$ (bidistilled water at $\left.\mathrm{pH}=9.0\right)$ at 312 K and $9.4 \mathrm{~T} . C_{G d}=45.17 \mathrm{mmol} \mathrm{kg}^{-1}$

$\mathrm{P} / \mathrm{MPa}$	$1 / \mathrm{T}_{2, \text { obs }} / \mathrm{s}^{-1}$	$1 / \mathrm{T}_{2 \mathrm{~A}} / \mathrm{s}^{-1}$	$\ln \left(1 / \mathrm{T}_{2 \mathrm{p}}\right)$
0.2	428.33	105.48	5.78
6.1	429.09	105.13	5.78
48.4	384.39	102.63	5.64
96.3	349.37	99.80	5.52
146.1	317.57	96.86	5.40
196.5	296.12	93.88	5.31
169.5	304.06	95.47	5.34
115	341.93	98.69	5.49
70.3	372.65	101.34	5.60
12.6	403.23	104.75	5.70

Table S12. ${ }^{17} \mathrm{O}$ transverse relaxation rates at 4.7 T as a function of temperature for the diamagne tic reference at $\mathrm{pH}=9\left(1 / \mathrm{T}_{2 \mathrm{~A}}\right)$ and in the presence of $\mathrm{Gd}_{2}(\mathrm{OHEC})^{2-}\left(1 / \mathrm{T}_{2}\right)$. Solutions of $\mathrm{Gd}_{2}(\mathrm{OHEC})^{2-}: C_{\mathrm{Gd}}=21.87 \mathrm{mmol} \mathrm{kg}^{-1}$.

T / K	$1 / \mathrm{T}_{2 \mathrm{~A}} / \mathrm{s}-1$	$1 / \mathrm{T}_{2} / \mathrm{s}-1$	$\ln \left(1 / \mathrm{T}_{2}-1 / \mathrm{T}_{2 \mathrm{~A}}\right)$
272.0	142.9	169.25	3.27
281.6	193.6	234.81	3.72
290.2	248.3	311.93	4.15
301.0	331.9	424.14	4.52
304.7	107.3	207.85	4.61
313.6	134.9	265.25	4.87
322.3	83.0	216.86	4.90
328.6	82.0	227.43	4.98
337.5	50.2	235.87	5.22

Table S13. Half line widths (W) and centres (C) of the bands of α and β isomers measured at variable temperature by UV-vis. The obtained equilibrium constant K is given for each temperature. $C_{\mathrm{Eu}} \sim 30 \mathrm{mmol} \mathrm{kg}$.

T / K	$\mathrm{W}_{\alpha} / \mathrm{cm}^{-1}$	$\mathrm{~W}_{\beta} / \mathrm{cm}^{-1}$	$\mathrm{C}_{\alpha} / \mathrm{cm}^{-1}$	$\mathrm{C}_{\beta} / \mathrm{cm}^{-1}$	$K^{\mathrm{a})}$
275.5	9.4	14.5	17247.2	17260.9	0.35
282.3	9.3	14.4	17247.7	17261.3	0.36
298.5	9.2	14.0	17248.7	17262.4	0.40
310.5	9.1	13.8	17249.5	17263.3	0.42
324.5	9.0	13.4	17250.4	17264.2	0.45
338.5	8.8	13.1	17251.3	17265.2	0.48

${ }^{\text {a) }} K$ values calculated from the fitted K^{298} and ΔH^{0} values

Table S14. Half line widths (W) and centres (C) of the bands of α and β isomers measured at variable pressure by UV-vis. The obtained equilibrium constant K is given for each temperature. $C_{\mathrm{Eu}} \sim 10 \mathrm{mmol} \mathrm{kg}$.

$\mathrm{P} / \mathrm{MPa}$	$\mathrm{W}_{\alpha} / \mathrm{cm}^{-1}$	$\mathrm{~W}_{\beta} / \mathrm{cm}^{-1}$	$\mathrm{C}_{\alpha} / \mathrm{cm}^{-1}$	$\mathrm{C}_{\beta} / \mathrm{cm}^{-1}$	$K^{\mathrm{a})}$
48	14.0	24.0	17250.1	17260.6	0.31
99	13.8	20.7	17252.0	17262.5	0.24
150	13.6	17.4	17254.0	17264.5	0.19
190	13.4	14.9	17255.5	17266.0	0.15

${ }^{\text {a) }} K$ values calculated from the fitted K^{298} and ΔH^{0} values

Table S15. Peak to peak line widths and resonance frequency of the EPR spectra of $\mathrm{Gd}_{2}(\mathrm{OHEC})^{2-}$, for its two α and β isomers, and the equilibrium constant K, as a function of temperature at the X-band $(0.34 \mathrm{~T})$. Solutions of $\mathrm{Gd}_{2}(\mathrm{OHEC})^{2-}: C_{\mathrm{Gd}}=40.7 \mathrm{mmol} \mathrm{kg}^{-1}$.

T / K	$\Delta \mathrm{H}_{\mathrm{pp}, \alpha} /$ Gauss	$\Delta \mathrm{H}_{\mathrm{pp}, \beta} /$ Gauss	$\mathrm{B}_{0, \alpha} /$ Gauss	$\mathrm{B}_{0, \beta} /$ Gauss	$K^{\mathrm{a})}$
273.9	582.5	502.1	3541.3	2983.7	0.38
284.1	562.9	516.5	3542.5	2991.0	0.40
292.7	547.0	537.8	3542.1	2998.6	0.42
298.3	652.3	663.3	3917.9	3255.7	0.44
311.2	626.7	712.7	3913.3	3270.9	0.47
326.5	610.0	788.2	3903.6	3285.4	0.50
342.7	615.2	875.8	3890.7	3285.9	0.54

${ }^{\text {a) }} K$ values calculated from the fitted K^{298} and ΔH^{0} values

Table S16. Water proton relaxivity, r_{1} (in $\mathrm{mM}^{-1} \mathrm{~s}^{-1}$) of $\mathrm{Gd}_{2}(\mathrm{OHEC})^{2-}$ as a function of temperature and magnetic field. Solution of $\mathrm{Gd}_{2}(\mathrm{OHEC})^{2-}, C_{G d}=1.88 \mathrm{mmol} \mathrm{dm}^{-3}$.

	$\boldsymbol{r}_{\mathbf{1}} / \mathrm{mM}^{-1} \mathbf{s}^{-1}$				
$\mathbf{H} \vee / \mathbf{M H z}$	$\mathbf{5}^{\circ} \mathbf{C}$	$\mathbf{1 5}^{\circ} \mathbf{C}$	$\mathbf{2 5}{ }^{\circ} \mathbf{C}$	$\mathbf{3 7}^{\circ} \mathbf{C}$	$\mathbf{5 0}{ }^{\circ} \mathbf{C}$
10.00	3.78	3.32	3.66	3.89	3.82
6.00	4.21	3.84	4.14	4.33	4.11
3.60	4.46	4.05	4.34	4.55	4.76
2.16	4.67	4.17	4.46	4.77	4.91
1.30	4.62	4.55	4.46	4.76	4.86
0.78	4.72	4.48	4.71	4.88	4.91
0.47	4.96	4.52	4.66	4.84	4.70
0.28	4.96	4.53	4.73	4.89	4.96
0.17	5.04	4.53	4.63	4.85	5.08
0.10	4.99	4.57	4.57	4.67	5.09
0.06	5.00	4.44	4.57	4.76	4.99
0.04	4.88	4.54	4.71	4.83	4.90
12.00	3.74	3.39	3.48	3.75	3.54
14.00	3.57	3.29	3.42	3.54	3.39
16.00	3.48	3.00	3.31		3.33
40.00	3.28	3.12	3.19	3.22	2.93
29.00	3.31	3.14	3.20	3.28	3.08
50.10	3.28	3.22	3.25	3.12	2.93
20.00	3.51	3.28	3.41	3.45	3.18
200.00	3.04	2.90	2.98	3.05	2.89

Table S17. Peak to peak line widths and resonance frequency of the EPR spectra of $\operatorname{GdY}(\mathrm{OHEC})^{2-}$ for its two α and β isomers, and the equilibrium constant K, as a function of temperature at the X-band (0.34 T). Solutions of GdY (OHEC) $)^{2-}$: $C_{\mathrm{Gd}}=5.3 \mathrm{mmol} \mathrm{kg}^{-1}$.

T / K	$\Delta \mathrm{H}_{\mathrm{pp}, \alpha} /$ Gauss	$\Delta \mathrm{H}_{\mathrm{pp}, \beta} /$ Gauss	$\mathrm{B}_{0, \alpha} /$ Gauss	$\mathrm{B}_{0, \beta} /$ Gauss	$\mathrm{K}^{\mathrm{a})}$
273.9	494.2	349.7	3525.6	2945.8	0.24
283.8	467.0	360.4	3535.9	2965.7	0.26
292.5	444.6	372.7	3541.4	2981.6	0.27
297.8	431.2	381.3	3543.0	2994.1	0.28
310.7	412.0	415.0	3542.6	3014.8	0.30
326.4	415.4	486.1	3537.5	3031.9	0.33
341.8	434.3	580.6	3527.2	3033.4	0.36

${ }^{\text {a) }} K$ values calculated from the fitted K^{298} and ΔH^{0} values

Table S18: Integrated and corrected relative intensities of the $\mathrm{Eu}\left({ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{\mathrm{j}}\right)$ transitions at 295 K.

	$v_{e x}^{2} / \mathrm{cm}^{-1}$	$\int_{0 \rightarrow 0}$	$\int_{0 \rightarrow 1}$	$\int_{0 \rightarrow 2}$	$\int_{0 \rightarrow 3}$	$\int_{0 \rightarrow 4}$
Solid state	21468	0.11	1.00	4.41	0.03	1.64
	17256	-	1.00	4.46	0.03	1.80
Solution in $\mathrm{H}_{2} \mathrm{O}\left(10^{-3}\right.$ $\mathrm{M})$	21468	0.09	1.00	4.24	0.04	1.56
	17255	-	1.00	4.90	0.04	2.05
Solution in $\mathrm{D}_{2} \mathrm{O}\left(10^{-3}\right.$ $\mathrm{M})$	21468	0.12	1.00	4.12	0.04	1.53
	17255	-	1.00	4.72	0.03	1.84
	17270	-	1.00	4.35	0.04	1.43

Table S19. Energy $\left(\mathrm{cm}^{-1}\right)$ of the identified crystar field sub-levels of the $\operatorname{Eu}\left({ }^{7} \mathrm{~F}_{\mathrm{j}}\right)$ manifold ($\mathrm{J}=$ 1-4) in $\mathrm{Eu}_{2}(\mathrm{OHEC})^{2-}$ as determined from excitation and emission spectra in solid state or in water solution at $295 \mathrm{~K} ;{ }^{7} \mathrm{~F}_{0}$ is taken as the origin.

	Solid state		Water solution				Solid state		Water solution		
$\begin{aligned} & v_{\mathrm{ex}}^{2} / \\ & \mathrm{cm}^{-1} \end{aligned}$	21468	17256	21468	17270	17256		21468	17256	21468	17270	17256
site				I	II					I	II
${ }^{5} \mathrm{D}_{0}$	17256	17256	17255	17270	17256	${ }^{7} \mathrm{~F}_{3}$	1845	1846	1852	1860	1840
							1866	1882	1887	1911	1882
${ }^{7} \mathrm{~F}_{1}$	315	314	303	296	296		1946	1945	1941	1973	1936
	358	357	361	362	358						
	390	389				${ }^{7} \mathrm{~F}_{4}$	2741	2740	2748	2772	2742
	453	451	462	510	454		2812	2812			
							2876	2878	2890	2913	2888
${ }^{7} \mathrm{~F}_{2}$	964	963	981	950	966		2934	2935	2937	2967	2936
	1005	1004		994	990		2995	2997	2980	3025	2982
	1041	1040	1036		1033		3091	3089	3087	3105	3090
	1105	1108	1094	1113	1092						

Table S20. Lifetimes of the $\operatorname{Eu}\left({ }^{5} \mathrm{D}_{0}\right)$ excited level (ms) in $\mathrm{Eu}_{2}(\mathrm{OHEC})^{2-}$ under various excitation conditions (analysing wavelength set on the maximum of the ${ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{2}$);2 σ is given within parentheses.

$T / \mathrm{K} \mathrm{Eu} 2 \mathrm{O}-\mathrm{HEC}$	$v_{\mathrm{ex}}^{2} / \mathrm{cm}^{-1}$	$v_{\mathrm{an}}^{2} / \mathrm{cm}^{-1}$	τ / ms	
Solution in $\mathrm{H}_{2} \mathrm{O}$				
	28170	16279	$0.92(4)$	$0.53(5)$
	17275	16793	$0.98(2)$	
	17270		$1.01(2)$	
	17255	17000	$0.55(2)$	
	17249		$0.57(3)$	
Solution in $\mathrm{D}_{2} \mathrm{O}$				
	28170	16279	$1.68(7)$	
	17275	16793	$1.72(1)$	
	17270		$1.71(2)$	
	17249		17000	$1.65(2)$
		$1.62(2)$		

Table S21. Calculated number of water molecules q.

$v_{\text {ex }}^{2} / \mathrm{cm}^{-1}$	Solution in $\mathrm{H}_{2} \mathrm{O}$	Solution in $\mathrm{D}_{2} \mathrm{O}$	$q=1.05\left(\Delta k_{\text {obs }}\right)$	$q=1.2\left(\Delta k_{\text {obs }}-0.25\right)$	$q=1.11\left(\Delta k_{\text {obs }}-0.31\right)$
	τ / ms	τ / ms			
28170 site β, α	0.92 0.53	1.68	0.5 1.4	0.3 1.2	0.2 1.1
17275 site β	0.98	1.72	0.5	0.2	0.1
17270 site β	1.01	1.71	0.4	0.2	0.1
17255 site α	0.55	1.65	1.3	1.2	1.0
17249 site α	0.57	1.62	1.2	1.1	0.9

Table S22. Selected time averaged dihedral angles calculated from MD simulations. Numbers in brackets are one standard deviation.

Angle / ${ }^{\circ}$	MD- α	conf.	MD- β	conf.
I	60 (6)	δ	-66 (6)	λ
II	-56 (6)	λ	48 (7)	δ
III	-62 (7)	λ	65 (6)	δ
IV	-60 (6)	λ	-66 (6)	λ
V	56 (6)	ס	49 (7)	δ
VI	61 (7)	δ	65 (6)	δ
VII	181 (8)	a	156 (11)	p
VIII	186 (8)	a	173 (8)	a
IX	180 (8)	a	156 (11)	p
X	174 (8)	a	173 (8)	a
XI	23 (17)	δ	5 (15)	δ
XII	-9 (18)	λ	7 (17)	δ
XIII	27 (14)	δ	-19 (13)	λ
XIV	22 (18)	δ	-16 (13)	λ
XV	-23 (16)	λ	7 (14)	δ
XVI	10 (19)	δ	7 (17)	δ
XVII	-25 (15)	λ	-19 (13)	λ
XVIII	-24 (17)	λ	-15 (13)	λ

