

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2005

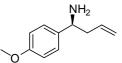
Highly Diastereoselective and Enantioselective Preparation of Homoallylic Amines. Application for the Synthesis of β -Amino Acids and γ -Lactams.

P. Veeraraghavan Ramachandran and Thomas E. Burghardt

Experimental procedures and spectral data

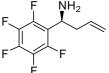
Preparation of *N*-silylimines, *N*-aluminoimines, and all 'allyl'boration reactions were carried out under nitrogen atmosphere. THF was distilled from sodium benzophenone ketyl prior to use; all other chemicals and solvents were purchased commercially and used without further purification; (-)-*B*-allyldiisopinocampheylborane (**I**) was prepared according to Brown's procedure by the treatment of (-)-B-methoxydiisopinocampheylborane with allylmagnesium bromide. The NMR chemical shifts (d) are reported in ppm.

NH₂


(1S)-1-phenylbut-3-en-1-amine (2a) from N-silyl imine (1a). To a stirring solution of (-)-B-Ph allyldiisopinocampheylborane (I; 1 M in pentane; 6 mL, 6 mmol) diluted with THF (5 mL) and cooled to -78°C was added 1a (0.9 g, 5.1 mmol), followed by a slow addition of water (0.09 mL, 5.0 mmol) in THF (0.5 ml). The mixture was stirred for 1 h at -78 °C and it was oxidised with NaOH (3 M in H₂O; 2 mL) and (slowly!) H₂O₂ (30% in H₂O; 1.2 mL) and was left stirring under positive N₂ pressure while it slowly warmed to RT. The product was then extracted with Et_2O (3×50 mL), treated with HCl (30% in H₂O; 3 mL), and stirred for 0.2 h. To the mixture was added water (50 mL) to extract the product. After removal of the organic layer, the aqueous solution of amine hydrochloride was neutralised with NaOH until pH~8. The resulting amine was extracted with Et_2O (3×50 mL), the solvent was removed under reduced pressure, and the material was purified on silica gel (hexanes:ethyl acetate:triethylamine 84.5:15:0.5) to afford 0.66 g (4.5 mmol, 90% yield) of 2a having 92% ee (HPLC analysis using Chiracel OD-H column and hexanes/isopropanol/triethylamine as the mobile phase). ¹H NMR (300 MHz, CDCl₃, d): 1.69 (br s, 2H), 2.32-2.50 (m, 2H), 4.00 (d, J = 8.0 Hz, 1H), 5.07-5.15 (m, 2H), 5.69-5.82 (m, 1H), 7.22-7.37 (m, 5H); ¹³C NMR (75 MHz, CDCl₃, d): 44.2, 55.4, 117.7, 126.4, 127.0, 128.5, 135.5, 145.8. MS (EI): 128, 106 [Ph-CH⁺-NH₂], 79; (CI): 148 [*M*+H], 131 [*M*-NH₃]; HRMS: 148.1126 (calc.), 148.1129 (actual). $[a]^{20}$, b = +43 $(CHCl_3, c = 1.9), lit.:+42, CHCl_3, c = 0.5).$

Ph' To a solution of benzonitrile (**3a;** 0.52 mL, 5.05 mmol) in Et₂O (5 mL) cooled to 0 °C was added DIBAL-H (0.89 mL, 5.0 mmol) and the mixture was stirred for 1 h. The obtained N-aluminoimine (4a; ¹H NMR (300 MHz, CDC_b, d): 0.14-0.19 (m, 3H), 0.76-1.07 (m, 12H), 1.79 (m qn, J = 6.6 Hz, 3H), 7.48-7.80 (m, 5H), 9.00 (s, 1H); ¹³C NMR (75 MHz, CDCh, d): 22.7, 22.8, 26.3, 26.5, 28.2, 28.3, 28.5, 28.7, 129.4, 129.5, 132.4, 132.8, 133.0, 137.1, 174.5, 175.0) was transferred *via* canula to a solution of **I** (1 M in pentane; 6 mL, 6 mmol) diluted with Et₂O (7 mL) and cooled to -100 °C, followed by a slow addition of methanol (0.20 mL, 5.0 mmol). The mixture was stirred for 3 h, while it was allowed to slowly warm from -100 °C to -78 °C and it was oxidised with NaOH (3 M in H₂O; 2 mL) and (slowly!) H₂O₂ (30% in H₂O; 1.2 mL) and was left stirring under positive N_2 pressure while it slowly warmed to RT. The product was then extracted with Et₂O (3×50 mL), treated with HCl (20% in H₂O; 5 mL), and stirred for 0.2 h. To the mixture was added water (50 mL) to extract the product. After removal of the organic layer, the aqueous solution of amine hydrochloride was neutralised with NaOH until pH~8. The resulting amine was extracted with Et_2O (3×50 mL), the solvent was removed under reduced pressure, and the material was purified on silica gel (hexanes:ethyl acetate:triethylamine 84.5:15:0.5) to afford 0.66 g (4.5 mmol, 90% yield) of 2a with 88% ee as analysed by the HPLC, having identical spectral data to the reported above. $[a]^{20}$, p = +39 (CHCl₃, c =0.10), lit.: +42 (CHCl₃, *c* =0.5). $\mathbf{N}\mathbf{H}_2$

S (1*S*)-1-thien-2-ylbut-3-en-1-amine (**2b**). ¹H NMR (200 MHz, CDCl₃, d): 1.84 (br s, 2H), 2.35-2.75 (m, 2H), 4.29 (t, J = 5.2 Hz, 1H), 5.10-5.19 (m, 1H), 5.68-5.89 (m, 1H), 6.92-6.96 (m, 2H), 7.10-7.20 (m, 1H); ¹³C NMR (50 MHz, CDCl₃, d): 45.3, 51.8, 118.2, 122.8, 123.6, 126.5, 134.5. [a]²⁰,_D = -20 (CDCl₃, c = 3.75).


2

(1*S*)-1-(4-methoxyphenyl)but-3-en-1-amine (**2c**). ¹H NMR (300 MHz, CDCl₃, d): 1.71 (br s, 2H), 2.39-2.51 (m, 2H), 3.87 (s, 3H), 4.03 (dd, J = 7.6 Hz, 5.8 Hz, 1H), 5.13-5.22 (m, 2H), 5.75-5.89 (m, 1H), 6.95 (d, J = 8.4 Hz, 2H), 7.33 (d, J = 8.7 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃, d): 44.6, 55.1, 55.6, 114.1, 117.8, 126.7, 135.9, 138.3, 158.9. [a]²⁰, $_{\rm D} = -25$ (CDCl₃, c = 4.90).

 O_2N (1*S*)-1-(4-nitrophenyl)but-3-en-1-amine (**2f**). ¹H NMR (300 MHz, CDCl₃, d): 1.70 (br s, 2H), 2.37-2.57 (m, 2H), 4.21 (dd, J = 7.6 Hz, 5.2 Hz, 1H), 5.17-5.21 (m, 2H), 5.72-5.86 (m, 1H), 7.60 (d, J = 8.7 Hz, 2H), 8.25 (d, J = 8.7 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃, d): 44.0, 54.8, 118.6, 123.6, 127.2, 134.2, 146.9, 153.2. [a]²⁰, D = -24 (CDCl₃, c = 5.65).

F (1*S*)-1-pentafluorophenylbut-3-en-1-amine (**2g**). ¹H NMR (300 MHz, CDCl₃, d): 1.85 (br s, 2H), 2.48-2.65 (m, 2H), 4.32 (t, J = 7.4 Hz, 1H), 5.03-5.09 (m, 2H), 5.64-5.73 (m, 1H); ¹⁹F NMR (282 MHz, CDCl₃, d): -159.80--160.00 (m, 2F), -154.23 (t, J = 22.3 Hz, 1F), -141.70 (t, J = 12.1 Hz, 2F); ¹³C NMR (75 MHz, CDCl₃, d): 42.2, 48.0, 118.8, 134.2, 136.0-146.8 (m). MS (EI): 196 [*M*-C₃H₅], 99; (CI): 238 [*M*+H], 196. [a]²⁰,_D = +11 (CHCl₃, c = 5.57). NH₂

(1R)-1-butylbut-3-envlamine (2h). To a solution of valeronitrile (3h) (0.53 mL, 5.05 mmol) in Et₂O (5 mL) cooled to 0 °C was added DIBAL-H (0.89 mL, 5.0 mmol) and the mixture was stirred The obtained aluminoimine (4h) was transferred via canula to a solution of (-)-Bfor 1 h. allyldiisopinocampheylborane (1 M in pentane; 8 mL, 8 mmol) diluted with Et_2O (8 mL) and cooled to -55 $^{\circ}$ C, followed by slow addition of methanol (0.20 mL, 5.0 mmol). The mixture was stirred for 3 h at -55 $^{\circ}$ C, followed by oxidation with NaOH (3 M in H₂O; 2 mL) and (slowly!) H₂O₂ (30% in H₂O; 1.2 mL) and was left stirring under positive N2 pressure while it slowly warmed to RT. The product was then extracted with Et₂O (3×50 mL), treated with HCl (20% in H₂O, 5 mL), and stirred for 0.2 h. To the mixture was added water (50 mL) to extract the product. After removal of the organic layer, the aqueous solution of amine hydrochloride was neutralised with NaOH until pH~8. The resulting amine was extracted with Et_2O (3×50 mL), the solvent was removed under reduced pressure, and the material was purified on silica gel (hexanesæthyl acetate:triethylamine 84.5:15:0.5) to afford 0.4 g (3.1 mmol, 65% yield) of **2h**. ¹H NMR (200 MHz, CDCl₃, d): 0.95 (m, 3H), 1.30-1.48 (m, 8H), 1.87-2.02 (m, 1H), 2.18-2.24 (m, 1H), 2.07-2.08 (m, 1H), 5.01-5.07 (m, 2H), 5.66-5.82 (m, 1H); ¹³C NMR (50 MHz, CDCl₃, d): 15.0, 23.6, 29.2, 38.0, 43.2, 51.1, 117.2, 135.7. MS (EI):126 $[M^+]$, 86 $[M-C_3H_5]$, 70; (CI):154 [M+H], 136 $[M^+]$, 70. $[a]^{20}$, b = +4 (CDCl₃, c = -4) 2.75).

NH₂

(1*S*)-1-cyclohexylbut-3-en-1-amine (**3i**). ¹H NMR (300 MHz, CDCl₃, d): 0.94-1.30 (m, 6H), 1.37 (br s, 2H), 1.67-1.78 (m, 5H), 1.93-2.01 (m, 1H), 2.25-2.31 (m, 1H), 2.56 (q, J = 4.2 Hz, 1H), 5.06-5.12 (m, 2H), 5.73-5.84 (m, 1H); ¹³C NMR (75 MHz, CDCl₃, d): 26.5, 26.6, 26.7, 28.4, 29.8, 39.5, 43.5, 55.4, 117.2, 136.7. MS (EI):152 [*M*–H], 112 [*M*–C₃H₅], 95, 70; (CI):154 [*M*+H], 112; HRMS: 154.1596 (calc.), 154.1599 (actual). [a]²⁰,_D = +9 (CHCl₃, c = 0.37).

Ph

(1*S*,2*S*)-2-methyl-1-phenylbut-3-en-1-amine (**5a**). To potassium *tert*-butoxide (1 M in THF; 6 mL, 6 mmol) diluted with THF (6 mL) and cooled to -78 °C was added *trans*-butene (1 mL, 11 mmol) and butyllithium (2.5 M in hexanes; 2.4 mL, 6.0 mmol). The mixture was stirred for 0.1 h at -78 °C, followed by 0.3 h at -55 °C, and cooled again to -78 °C, when a solution of (-)-B-methoxydiisopinocampheylborane (2.28 g, 7.2 mmol) in THF (5 mL) was added and the reaction was stirred for 1 h at -78 °C. To thus generated V was added via canula 4a [prepared as follows: To 3a (0.52 mL, 5.05 mmol) diluted with THF (5 mL) and cooled to 0 °C was added DIBAL-H (0.89 mL, 5.0 mmol) and the mixture was stirred for 1 h], followed by methanol (0.20 mL, 5.0 mmol) and the mixture was stirred for 3 h at -78 °C, when it was oxidized with NaOH (3 M in H₂O; 2 mL) and (slowly!) H₂O₂ (30% in H₂O; 1.2 mL) and was left stirring under positive N₂ pressure while it slowly warmed to RT. The product was extracted with Et₂O (3×50 mL) after the acid-base manipulation, the solvent was removed under reduced pressure, and the crude material was purified on silica gel (hexanes:ethyl acetate:triethylamine 84.5:15:0.5) to afford 0.59 g (3.7 mmol, 74% yield) of **5a.** ¹H NMR (300 MHz, CDC_b, d): 0.83 (d, J = 6.7 Hz, 3H), 1.53 (br s, 2H), 2.37 (q, J = 7.4 Hz, 1H), 3.65 (d, J = 8.46 Hz, 1H), 5.10-5.204 (m, 2H), 5.69-5.81 (m, 1H), 7.26-7.33 (m, 5H); ¹³C NMR (75 MHz, CDCl₃, d): 17.7, 46.4, 60.7, 115.9, 127.1, 127.3, 128.3, 141.8, 144.7. MS (EI): 160 [M-H], 106, 79; (CI): 162, 145, 106. $[a]^{20}$, a = +76 (CHCl₃, c = 0.92), lit: +1.5 (MeOH, c = 1.0). NH_{2}

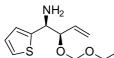
 $\int_{-\infty}^{1} \frac{1}{3} (15,25)-2-\text{methyl-1-thien-2-ylbut-3-en-1-amine (5b)} = \frac{1}{1} \text{ NMR (200 MHz, CDCl}_{\text{s}}, \text{ d}): 0.92 (d, J = 6.8 \text{ Hz}, 3\text{H}), 1.71 (br s, 2\text{H}), 2.38 (q, J = 7.3 \text{ Hz}, 1\text{H}), 3.98 (d, J = 7.8 \text{ Hz}, 1\text{H}), 5.03-5.21 (m, 2\text{H}), 5.45.816 (m 1\text{H}), 6.90-6.94 (m, 2\text{H}), 7.17-7.20 (m, 1\text{H}); \frac{13}{13}\text{C NMR (50 MHz, CDCl}_{\text{s}}, \text{ d}): 18.2, 47.5, 56.9, 116.3, 123.7, 123.8, 126.0, 140.7, 148.8. [a]^{20}, \text{D} = +6 (\text{CHCl}_{\text{s}}, c = 1.55).$

(1R,2S)-1-butyl-2-methylbut-3-enylamine (**5h**). To potassium *tert*-butoxide (1 M in THF; 6 mL, 6 mmol) diluted with pentane (6 mL) and cooled to -78 °C was added *trans*-butene (1 mL, 11 mmol) and butyllithium (2.5 M in hexanes; 2.4 mL, 6.0 mmol). The mixture was stirred for 0.1 h at -78 °C, followed by 0.3 h at -55 °C, and cooled again to -78 °C, when a solution of (-)-Bmethoxydiisopinocampheylborane (2.28 g, 7.2 mmol) in pentane (5 mL) was added and the reaction was stirred for 1 h at -78 °C. To thus generated V was added via canula a solution of **4h** [prepared as follows: To a solution of valeronitrile (3h) (0.55 mL, 5.2 mmol) in pentane (10 mL) cooled to 0 °C was added DIBAL-H (0.90 mL, 5.0 mmol) and the mixture was stirred for 1 h], followed by methanol (0.20 mL, 5.0 mmol) and the mixture was stirred for 3 h at -78 °C when it was oxidised with NaOH (3 M in H₂O; 2 mL) and (slowly!) H_2O_2 (30% in H_2O ; 1.2 mL) and was left stirring under positive N₂ pressure while it slowly warmed to RT. The product was extracted with Et₂O (3×50 mL) after the acid-base manipulations, the solvent was removed under reduced pressure, and the crude material was purified on silica gel (hexanes:ethyl acetate:triethylamine 84.5:15:0.5) to afford 0.4 g (2.8 mmol, 64% yield) of **5h.** ¹H NMR (200 MHz, CDCb, d): 0.95 (t, J = 4.5Hz, 3H), 1.06 (d, J = 4.6 Hz, 3H), 1.27-1.40 (m, 8H), 2.16 (q, J = 4.5 Hz, 1H), 2.57-2.60 (m, 1H), 5.06-5.09 (m, 2H), 5.72-5.84 (m, 1H); ¹³C NMR (50 MHz, CDCl₃, d): 14.4, 17.0, 23.2, 28.9, 34.9, 44.3, 55.6, 115.4, 141.4. MS (EI): 142 [*M*+H], 86 [*M*-C₄H₇]; (CI): 142 [*M*+H], 86. [a]²⁰, $_{D}$ = +15 (CDCl₃, *c* =1.28). $\mathbf{N}H_2$

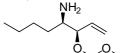
(1R,2S)-1-cyclohexyl-2-methylbut-3-en-1-amine (**5i**). ¹H NMR (300 MHz, CDCl₃, d): 0.99 (d, J = 6.4 Hz, 3H), 1.05-1.20 (m, 8H), 1.60-1.68 (m, 5H), 2.24-2.26 (m, 2H), 4,.99-5.06 (m, 2H), 5.66-5.72 (m, 1H); ¹³C NMR (75 MHz, CDCl₃, d): 18.0, 26.7, 26.9, 27.0, 27.4, 31.2, 40.7, 41.1, 60.3, 115.4, 141.8. MS (EI): 169 [*M*+H], 150 [*M*-NH₃], 112 [*M*-C₄H₇]; (CI): 168 [*M*+H], 151, 112; HRMS: 168.1752 (calc.), 168.1757 (actual). [a]²⁰, D = -18 (CDCl₃, c = 5.80).

Ph MH₂

Ph


(15,2R)-2-methyl-1-phenylbut-3-en-1-amine (6a). Amines 6 were obtained like 5, however cisbutene was used in place of trans-butene. ¹H NMR (300 MHz, CDCl₃, d): 1.06 (d, J = 7.2 Hz, 3H), 1.65 (brs, 2H), 2.57 (q, J = 8.6 Hz, 1H), 3.96 (d, J = 5.1 Hz, 1H), 5.08-5.11 (m, 2H), 5.70-5.76 (m, 1H), 7.28-7.36(m, 5H); ¹³C NMR (75 MHz, CDCl₃, d): 15.3, 45.0, 60.2, 115.3, 127.1, 127.4, 128.3, 141.3, 144.5. [a]²⁰, D = -27 (CDCl₃, c = 2.46).NH₂

S (1*S*,2*R*)-2-methyl-1-thien-2-ylbut-3-en-1-amine (**6b**). ¹H NMR (300 MHz, CDCl₃, d): 1.03 (d, *J* = 6.5 Hz, 3H), 1.64 (br s, 2H), 2.56 (q, *J* = 6.4 Hz, 1H), 4.19 (d, *J* = 4.9 Hz, 1H), 5.05-5.08 (m, 2H), 5.73-5.79 (m, 1H), 6.89-6.93 (m, 2H), 7.20 (dd, *J* = 8.2 Hz, 12.1 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃, d): 14.9, 44.9, 56.1, 115.7, 123.6, 123.6, 126.4, 140.4, 149.1. MS (EI): 150, 112, 85; (CI): 168 (*M*+H], 151[*M*+H−NH₃], 112. HRMS: 168.0847 (calc.), 168.0852 (actual). [a]²⁰,_D = −53 (CDCl₃, *c* = 2.46). NH₂


(1R,2R)-1-butyl-2-methylbut-3-enylamine (**6h**). ¹H NMR (300 MHz, CDCl₃, d): 0.96 (t, *J* = 6.7 Hz, 3H), 1.03 (d, *J* = 6.6 Hz, 3H), 1.24-1.52 (m, 8H), 2.23 (q, *J* = 6.0 Hz, 1H), 2.68-2.71 (m, 1H), 5.05-5.12 (m, 2H), 5.77-5.88 (m, 1H); ¹³C NMR (75 MHz, CDCl₃, d): 14.3, 14.4, 23.1, 29.2, 34.6, 43.7, 55.4, 114.7, 142.4. MS (EI): 142 [*M*+H], 86 [*M*-C₄H₇], 69, 44; (CI): 142 [*M*+H], 86. [a]²⁰,_D = +25 (CDCl₃, *c* = 5.25). NH₂

(1R,2R)-1-cyclohexyl-2-methylbut-3-en-1-amine (**6i**). ¹H NMR (300 MHz, CDCl₃, d): 1.03 (d, J = 6.6 Hz, 3H), 1.16-1.43 (m, 7H), 1.68-1.92 (m, 6H), 2.37-2.42 (m, 2H), 5.05-5.11 (m, 2H), 5.78-5.90 (m, 1H); ¹³C NMR (75 MHz, CDCl₅, d): 13.5, 26.6, 26.8, 26.9, 28.5, 30.8, 40.0, 41.0, 60.0, 114.2, 143.5. [a]²⁰, _D = +70 (CDCl₃, c = 1.66).

0 O'(1R,2R)-2-[(2-Methoxyethoxy)methoxy]-1-phenylbut-3-en-1-amine (7a). To 3-[(2methoxyethoxy]prop-1-ene (0.91 g, 6.2 mmol) diluted with THF (6 mL) and cooled to -78 °C was added sec-butyllithium (1.4 M in cyclohexane; 4.4 mL, 6.1 mmol) and the mixture was stirred for 0.5 h at -78 °C. Then, a solution of (-)-B-methoxydiisopinocampheylborane (2.37 g, 7.5 mmol) in THF (5 mL) was added and the mixture was stirred for 1 h. To thus generated VII was added via canula a solution of 4a [prepared as follows: To 3a (0.52 mL, 5.05 mmol) diluted with THF (5 mL) and cooled to 0 °C was added DIBAL-H (0.89 mL, 5.0 mmol) and the mixture was stirred for 1 h], followed by methanol (0.20 mL, 5.0 mmol). The reaction was stirred for 3 h at -78 °C and was oxidised with NaOH (3 M in H₂O; 2 mL) and (slowly!) H₂O₂ (30% in H₂O; 1.2 mL). The material was left stirring under positive N₂ pressure while it slowly warmed to RT. The product was extracted with Et_2O (3×50 mL) and the volatiles were removed under reduced pressure. The obtained material was purified on silica gel (hexanes:ethyl acetate:triethylamine 94.5:5:0.5 to 69.5:30:0.5) to furnish 7a in 65% yield (0.81 g, 3.2 mmol). ¹H NMR (300 MHz, CDCh, d): 1.73 (br s, 2H), 3.34 (s, 3H), 3.37-3.49 (m, 4H), 3.96 (d, J = 5.8 Hz, 1H), 4.18 (t, J = 6.5 Hz, 1H), 4.67 (dd, J = 6.9 Hz, 38.7 Hz, 2H), 5.11-5.11 (m, 2H), 5.58-5.69 (m, 1H), 7.21-7.34 (m, 5H); ¹³C NMR (75 MHz, CDCl₃, d): 59.0, 59.8, 67.0, 71.7, 81.7, 93.0, 118.7, 127.2, 127.5, 128.2, 135.5, 142.6. MS (EI):176 [M-OCH₂CH₂OCH₃], 106, 79, 59; (CI):252 [*M*+H], 176 [*M*+H–CH₃OCH₂CH₂OH], 106, 79; HRMS: 252.1600 (calc.), 252.1604 (actual). $[a]^{20}$, p = +103 (CHCb, c = 4.22).

(1*S*,2*R*)-2-[(2-Methoxyethoxy)methoxy]-1-thien-2-ylbut-3-en-1-amine (**7b**). ^{1}H Ό NMR (300 MHz, CDCl₃, d): 2.06 (br s, 2H), 3.36 (s, 3H), 3.45-3.63 (m, 4H), 4.18 (t, J = 6.6 Hz, 1H), 4.26 (d, J = 5.8 Hz, 1H), 4.72 (dd, J = 6.9 Hz, 34.5 Hz, 2H), 5.11-5.24 (m, 2H), 5.61-5.73 (m, 1H), 6.86-6.94 (m, 2H), 7.19 (dd, J = 1.4 Hz, 4.7 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃, d): 55.8, 59.0, 67.2, 71.7, 81.9, 93.1, 119.4, 124.2, 124.3, 126.4, 135.0, 146.8. MS (EI):205, 112 [2-Thp-CH⁺NH₂], 85, 59; (CI): 258 [M+H], 182, 165, 112, 89 [CH₃OCH₂CH₂OCH₂⁺]; HRMS: 258.1164 (calc.), 258.1166 (actual). [a]²⁰, $_{\rm D}$ = +73 (CHCl₃, c = 9.08).

O'(1R,2R)-1-Butyl-2-[(2-methoxyethoxy)methoxy]but-3-enylamine (7h). ^{1}H NMR (300 MHz, CDCl₃, d): 0.86 (t, J = 6.8 Hz, 3H), 1.23-1.45 (m, 5H), 2.65-2.69 (m, 1H), 3.34 (s, 3H), 3.49-3.60 (m, 3H), 3.76-3.83 (m, 2H), 4.69 (dd, J = 6.9 Hz, 33.9 Hz, 2H), 5.18-5.26 (m, 2H), 5.58-5.70 (m, 1H); ¹³C NMR (75 MHz, CDCb, d): 14.1, 22.8, 28.4, 33.2, 54.7, 59.0, 67.2, 71.7, 81.6, 92.9, 119.1, 135.9. MS (EI): 156 [M-OCH₂CH₂OCH₃], 86 [CH₃CH₂CH₂CH₂CH⁺NH₂], 232 [self-protonating in EI]; (CI): 232 [M+H], 156 $[M+H-HOCH_2CH_2OCH_3]$, 126, 86; HRMS: 232.1913 (calc.), 232.1913 (actual). $[a]^{20}$, a = +70 $(CHCl_3, c = 2.25).$ NH_2

A O O (1*R*,2*R*)-1-Cyclohexyl-2-[(2-methoxyethoxy)methoxy]but-3-en-1-amine (**7i**). ¹H NMR (300 MHz, CDCl₃, d): 1.07-1.34 (m, 9H), 1.67-1.76 (m, 5H), 2.47 (t,
$$J = 5.2$$
 Hz, 1H), 3.38 (s, 3H), 3.53-3.63 (m, 3H), 3.80-3.86 (m, 1H), 4.07 (t, $J = 6.6$ Hz, 1H), 4.72 (dd, $J = 7.0$ Hz, 36.3 Hz, 2H), 5.22-5.29 (m, 2H), 5.65-5.76 (m, 1H); ¹³C NMR (75 MHz, CDCl₃, d): 25.3, 25.5, 25.6, 26.4, 28.7, 29.7, 38.6, 58.0, 58.6, 66.3, 70.7, 78.1, 91.9, 117.5. MS (EI): 205, 112, 95, 59; (CI): 258 (*M*+H], 182, 112; HRMS: 258.2069 (calc.), 258.2073 (actual). [a]²⁰, $_{\rm D} = +18$ (CHCl₃, $c = 0.25$).

$$\begin{array}{c} \mathsf{NH}_2 \\ \mathsf{Ph} \end{array} \xrightarrow{1. \operatorname{Boc}_2 \mathsf{O}} \\ 2. \operatorname{O}_3 / \operatorname{Me}_2 \mathsf{S} \\ 3. \operatorname{NaClO}_2 \\ 4. \operatorname{HCl} \end{array} \xrightarrow{\mathsf{NH}_2 \mathsf{OH}} \\ \begin{array}{c} \mathsf{NH}_2 \\ \mathsf{OH} \\ \mathsf{HCl} \end{array} \xrightarrow{\mathsf{OH}} \\ \begin{array}{c} \mathsf{HCl} \\ \mathsf{OH} \\ \mathsf{OH$$

(3S)-3-Amino-3-phenylpropanoic acid hydrochloride (8a). To 2a (0.43 g, 2.9 mmol) dissolved in Et₂O (30 mL) was added di-tert-butyldicarbonate (0.7 g, 3.55 mmol) and the reaction was stirred for 6 h at RT, after which time the solvent was removed under reduced pressure. The crude material was dissolved in CH₂Cl₂ (150 mL) and methanol (150 mL) and cooled to -78 °C. Ozone was passed for 1 h (aqueous KI used as an indicator), followed by quenching with Me₂S (2 mL) at -78 °C and stirring for 1 h, while the material warmed to RT. The mixture was washed with H₂O (50 mL) and the organic layer was concentrated under reduced pressure. The crude aldehyde was diluted with 2methylpropan-2-ol (30 mL) and 2-methylbut-2-ene (5 mL) and to this were added sodium chlorite (2.2 g, 24.3 mmol), sodium phosphate monobasic (2.3 g, 16.9 mmol), and water (6 mL). The mixture was stirred at RT for 1 h and the product was extracted with ethyl acetate (3×60 mL). The solvents were removed under reduced pressure and the obtained acid was filtered through a short plug of silica gel (ether). After evaporation of the solvent, the residue was diluted with Et₂O (10 mL) and treated with HCl (1 M in Et₂O; 3 mL, 3 mmol) for 0.5 h. The obtained solid was filtered and dried to afford 8a in 84% yield (0.49 g, 2.4 mmol). ¹H NMR (200 MHz, D₂O, d): 2.93-3.01 (m, 2H), 4.57 (t, J = 7.2 Hz, 1H), 7.24-7.31 (m, 5H); ¹³C NMR (50 MHz, D₂O, δ): 38.7, 52.4, 127.2, 129.6, 129.8, 135.2, 173.2. [a]²⁰, $_{\rm D}$ = +6 (D₂O, c = 0.9), +3.9 (MeOH, c = 0.8), (lit.: +3, MeOH, c = 2.9).

 ^{1}H

 \dot{F} (3*S*)-3-Amino-3-pentafluorophenylpropanoic acid hydrochloride (**8g**). ¹H NMR (300 MHz, D₂O, d): 3.06-3.30 (m, 2H), 5.15 (t, *J* = 6.9 Hz, 1H); ¹⁹F NMR (282 MHz, D₂O, δ): -161.09--160.90 (m, 2F), -151.41 (t, *J* = 20.7 Hz, 1F), -141.62--141.54 (m, 2F); ¹³C NMR (75 MHz, D₂O, d): 35.8, 42.0, 172.1. [a]²⁰_{DE} = +24 (D₂O, *c* = 2.47).

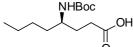
$$VH_2 OH \cdot HCI$$

(t, J = 4.8 Hz, 3H), 1.29-1.12 (m, 6H), 1.60-1.64 (m, 2H), 2.59-2.82 (m, 2H), 3.51-3.61 (m, 1H); ¹³C NMR (50 MHz, D₂O, d): 14.2, 22.7, 27.6, 32.6, 36.8, 49.1, 174.1. [a]²⁰, D = +39 (D₂O, c = 4.39).

(2R,3S)-3-Amino-2-methyl-3-phenylpropanoic acid hydrochloride (**8a'**). To **6a** (0.2 g, 1.2 mol) dissolved in Et₂O (12 mL) was added di-*tert*-butyldicarbonate (0.3 g, 1.4 mmol) and the reaction was stirred for 6 h at RT, after which time the solvent was removed under reduced pressure. To the crude material dissolved in CH₃CN (40 mL) was added RuCl₃·H₂O (0.02 g, 0.1 mmol) and the mixture was cooled to 0 °C. After addition of NaIO₄ (0.8 g, 3.7 mmol) dissolved in water (40 mL), the mixture was stirred for 0.5 h, followed by extraction with EtOAc (3×30 mL) and filtration through silica gel (Et₂O). After evaporation of the solvents, the residue was diluted with Et₂O (5 mL) and treated with HCl (1 M in Et₂O; 2 mL, 2 mmol) for 0.5 h. The obtained solid was filtered and dried to afford **8a'** in 77% yield (0.2 g, 0.9 mmol). ¹H NMR (200 MHz, D₂O, d): 0.91 (d, *J* = 7.2 Hz, 3H), 2.97-3.09 (m, 1H), 4.36 (d, *J* = 9.4 Hz, 1H), 7.29-7.31 (m, 5H); ¹³C NMR (50 MHz, D₂O, d):15.4, 43.9, 57.8, 127.4, 127.6, 129.6, 129.8, 134.5, 177.3. [a]²⁰, = +19 (D₂O, *c* =1.19).

OH (2S,3R)-3-Amino-2-hydroxy-3-phenylpropanoic acid hydrochloride (**8a''**): ¹H NMR (200 MHz, CD₃OD, d): 3.24-3.29 (m, 1H), 3.86 (t, J = 4.5 Hz, 1H), 4.51 (d, J = 3.6 Hz, 1H), 7.36-7.40 (m, 5H); $[a]_{,D}^{20} = +17$ (D₂O, c = 0.8). NHBoc

Ph tert-butyl (1*S*)-4-hydroxy-1-phenylbutylcarbamate (**9a**). To **2a** (0.43 g, 2.9 mmol) dissolved in Et₂O (30 mL) was added di-*tert*-butyldicarbonate (0.7 g, 3.5 mmol) and the reaction was stirred for 6 h at RT, after which time the solvent was removed under reduced pressure. The crude material was dissolved in THF (7 mL) and treated with 9-BBN (0.5 M in THF; 13 mL, 6.5 mmol) for 24 h at RT, followed by oxidation with NaOAc (20% in H₂O, 20 mL) and H₂O₂ (30% in H₂O; 6 mL) for 3 h at RT. The product was extracted with Et₂O (3×30 mL), washed with brine, and after evaporation of the solvents purified on silica gel (flash; hexanes:ethyl acetate 2:1) to furnish **9a** in 86% yield (0.66 g, 2.5 mmol). ¹H NMR (300 MHz, CDCl₃, d): 1.45 (s, 9H), 1.53-1.88 (m, 4H), 2.55 (br s, 1H), 3.67 (t, *J* = 5.9 Hz, 2H), 4.67 (br s, 1H), 5.12 (br s, 1H), 7.29-7.39 (m, 5H); ¹³C NMR (75 MHz, CDCl₃, d): 28.3, 29.1, 33.2, 54.6, 62.1, 79.5, 126.3, 127.2, 128.5, 142.7, 155.5. NHBoc


OH *tert*-butyl (1*R*)-1-(3-hydroxypropyl)pentylcarbamate (**9h**). ¹H NMR (300 MHz, CDCl₃, d): 0.93 (d, J = 6.3 Hz, 3H), 1.47 (s, 10H), 1.65-1.69 (m, 1H), 2.12 (br s, 1H), 2.45 (br s, 1H), 3.70-3.76 (m, 2H), 4.73 (br s, 1H), 5.10 (br s, 1H), 7.28-7.36 (m, 5H); ¹³C NMR (75 MHz, CDCl₃, d): 14.9, 28.3, 35.4, 36.3, 58.2, 60.7, 79.5, 126.5, 126.8, 128.3, 141.8, 155.7.

 $\overline{I} = \frac{1}{100} tert-butyl (1S,2R)-4-hydroxy-2-methyl-1-phenylbutylcarbamate ($ **9a'**). ¹H NMR (300 MHz, CDCl₃, d): 0.93 (d, <math>J = 6.3 Hz, 3H), 1.47 (s, 10H), 1.65-1.69 (m, 1H), 2.12 (br s, 1H), 2.45 (br s, 1H), 3.70-3.76 (m, 2H), 4.73 (br s, 1H), 5.10 (br s, 1H), 7.28-7.36 (m, 5H); ¹³C NMR (75 MHz, CDCl₃, d): 14.9, 28.3, 35.4, 36.3, 58.2, 60.7, 79.5, 126.5, 126.8, 128.3, 141.8, 155.7.

Ph OH

OMEM *tert*-butyl (1*R*,2*R*)-[4-hydroxy-2-(2-methoxy-ethoxymethoxy)-1-phenylbutyl]-carbamate (**9a**"). To **7a** (0.3 g, 1.2 mmol) dissolved in Et₂O (12 mL) was added di-*tert*-butyldicarbonate (0.4 g, 1.3 mmol) and the reaction was stirred for 3 h at RT, after which time the solvent was removed under reduced pressure. The crude material dissolved in THF (6 mL) was added to a slurry of dicyclohexylborane (0.5 g, 2.8 mmol) in THF (6 mL) and stirred for 16 h at RT, cooled to 0 °C and oxidised with NaOH (3 M in H₂O, 0.4 mL) and (slowly!) H₂O₂ (30% in H₂O; 0.7 mL) for 3 h at RT. The product was extracted with Et₂O (3×30 mL), washed with brine, and after evaporation of the solvents purified on silica gel (flash; hexanes:ethyl acetate 1:1) to furnish the desired primary alcohol **9a**" in 68% yield (0.2 g, 0.7 mmol). ¹H NMR (200 MHz, CDCl₃, d): 1.41 (s, 9H), 1.70-1.90 (m, 2H), 2.75 (br s, 1H), 3.32 (s, 3H), 3.37-3.41 (m, 3H), 3.56-3.77 (m, 3H), 4.06-4.14 (m, 2H), 4.48 (d, *J* = 6.8 Hz, 1H), 4.76 (d, *J* = 7.0 Hz, 1H), 5.51 (d, *J* = 7.8 Hz, 1H), 7.19-7.26 (m, 5H); ¹³C NMR (50 MHz, CDCl₃, δ): 29.1, 35.9, 57.7, 58.9, 59.4, 67.7, 71.9, 79.0, 79.8, 95.8, 126.2, 127.0, 128.2, 140.8, 155.3.

O (4*S*)-4-[(*tert*-butoxycarbonyl)amino]-4-phenylbutanoic acid (**10a**). The alcohol **9a** (0.22 g, 0.8 mmol) in DMF (10 mL) was added slowly to a stirring solution of pyridinium dichromate (1.13 g, 3.0 mmol) in DMF (20 mL) and the mixture was stirred for 18 h at RT. The reaction was quenched with H₂O (5 mL), the product was extracted with Et₂O (3×50 mL), the combined ether layers were washed with H₂O (3×50 mL), the solvent was removed and the obtained material was purified on silica gel (flash; hexanes:ethyl acetate 2:1) to afford 0.192 g (0.7 mmol, 86% yield) of **10a**. ¹H NMR (200 MHz, CDCl₃, d): 1.22 (s, 9H), 1.78-2.01 (m, 1H), 2.35-2.71 (m, 3H), 5.07-5.13 (m, 1H), 7.15-7.34 (m, 5H); ¹³C NMR (50 MHz, CDCl₃, d): 28.0, 28.3, 31.9, 61.9, 82.9, 124.8, 127.3, 128.4, 142.1, 149.0, 174.1.

O (4*R*)-4-[(*tert*-butoxycarbonyl)amino]octanoic acid (**10h**). ¹H NMR (200 MHz, CDCl₃, d): 0.91 (t, J = 6.6 Hz, 3H), 1.20-2.67 (m, 11H), 4.04-4.12 (m, 1H); ¹³C NMR (50 MHz, CDCl₃, δ): 14.9, 23.2, 28.5, 28.8, 32.1, 34.0, 58.5, 82.9, 149.6, 174.0.

Ph ____OH

¹O (3*R*,4*S*)-4-[(*tert*-butoxycarbonyl)amino]-3-methyl-4-phenylbutanoic acid (**10a**'). ¹H NMR (200 MHz, CDCl₃, d): 0.69 (d, J = 6.6 Hz, 3H), 1.25 (s, 9H), 2.28-2.80 (m, 3H), 5.10 (d, J = 8.0 Hz, 1H), 7.09-7.12 (m, 2H), 7.30-7.33 (m, 3H); ¹³C NMR (50 MHz, CDCl₃, d): 16.3, 20.0, 31.2, 39.2, 65.7, 82.5, 125.8, 127.2, 127.9, 137.4, 148.7, 173.6.

Ph OH

MEMO O (3R,4R)-4-[(*tert*-butoxycarbonyl)amino]-3-(2-methoxy-ethoxymethoxy)-4-phenylbutanoic acid (**10a''**). ¹H NMR (200 MHz, CDCl₃, d): 1.20 (s, 9H), 2.67-2.90 (m, 2H), 3.22-3.71 (m, 8H), 4.38-4.55 (m, 3H), 5.20 (d, J = 6.2 Hz, 1H), 7.22-7.30 (m, 5H); ¹³C NMR (50 MHz, CDCl₃, δ): 28.3, 29.1, 39.6, 59.4, 65.7, 67.4, 70.2, 71.8, 83.3, 94.3, 126.2, 127.1, 127.7, 128.0, 136.3, 148.7, 171.7.

Ph (5*S*)-5-phenylpyrrolidin-2-one (**11a**). The *N*-Boc protected γ -amino acid **10a** (0.13 g, 0.5 mmol) dissolved in CH₂Cl₂ (3 mL) was treated with CF₃COOH (1 mL) for 0.5 h at RT. After concentration under reduced pressure, the obtained material was purified on silica gel (flash; hexanes:ethyl acetate 1:1) to give lactam **11a** (0.074 g, 0.5 mmol, 98%). ¹H NMR (300 MHz, CDCl₃, d): 1.97-2.11 (m, 1H), 2.41-2.70 (m, 3H), 4.83 (t, *J* = 7.1 Hz, 1H), 6.70 (br s, 1H), 7.34-7.46 (m, 5H); ¹³C NMR (75 MHz, CDCl₃, d): 30.3, 31.3, 58.1, 125.6, 127.8, 128.8, 142.5, 178.7. MS (EI): 161 [*M*⁺], 117, 104, 77; (CI): 162 [*M*+H]. [a]²⁰, $_{\rm D}$ = +25 (CDCl₃, *c* = 3.7).

(5*R*)-5-butylpyrrolidin-2-one (**11h**). ¹H NMR (200 MHz, CDCl₃, d): 0.91 (t, J = 6.4 Hz, 3H), 1.25-1.75 (m, 8H), 2.18-2.37 (m, 2H), 3.62 (qn, J = 6.4 Hz, 1H), 6.49 (br s, 1H); ¹³C NMR (50 MHz, CDCl₃, δ): 14.9, 23.4, 28.0, 28.7, 31.0, 37.1, 42.4, 55.2, 177.9. MS (EI): 141 [M^+], 84 [M-C₄H₉], 56; (CI): 142 [M+H], 126. [a]²⁰,_D = +8 (CDCl₃, c = 2.5), lit.:+8 (CHCl₃, c = 1.2).

Ph² (4*R*,5*S*)-4-methyl-5-phenylpyrrolidin-2-one (**11a'**). ¹H NMR (300 MHz, CDCl₃, d): 0.72 (d, J = 7.2 Hz, 3H), 2.19 (dd, J = 8.1 Hz, 16.8 Hz, 1H), 2.59 (dd, J = 8.4 Hz, 16.8 Hz, 1H), 2.92 (dt, J = 7.5 Hz, 15.0 Hz, 1H), 4.85 (d, J = 7.5 Hz, 1H), 6.13 (br s, 1H), 7.24-7.45 (m, 5H); ¹³C NMR (50 MHz, CDCl₃, d): 16.9, 34.7, 38.0, 61.7, 126.1, 127.4, 128.1, 138.1, 177.4. MS (EI): 175 [M^+], 146 [M-C₂H₅], 106; (CI): 176 [M+H]. HRMS: 175.0997 (calc.), 175.0998 (actual). [a]²⁰, p = -12 (CDCl₃, c = 1.4).

HN

OMEM(4*R*,5*R*)-4-[(2-methoxyethoxy)methoxy]-5-phenylpyrrolidin -2-one (**11a**''): ¹H NMR (300 MHz, CDCl₃, δ): 2.60 (dd, *J* = 2.6 Hz, 17.2 Hz, 1H), 2.80 (dd, *J* = 6.3 Hz, 17.4 Hz, 1H), 3.19-3.25 (m, 1H), 3.44 (s, 3H), 3.44-3.53 (m, 3H), 4.29 (d, *J* = 6.9 Hz, 1H), 4.45 (d, *J* = 7.2 Hz, 1H), 4.64-4.68 (m, 1H), 4.98 (d, *J* = 5.4 Hz, 1H), 6.06 (br s, 1H), 7.34-7.49 (m, 5H); ¹³C NMR (50 MHz, CDCl₃, δ): 39.4, 59.9, 63.5, 67.6, 72.3, 74.5, 94.6, 127.9, 128.7, 137.4, 177.2. MS (EI): 189 [*M*-CH₃O-CH₂CH₂-OH], 176 [*M*-CH₃O-CH₂CH₂-O-CH₂], 106, 59 [⁺CH₂CH₂OCH₃]; (CI): 266 [*M*+H], 190 [*M*+H-CH₃-O-CH₂CH₂-OH], 176; HRMS: 266.1392 (calc.), 266.1393 (actual). [a]²⁰, p = -8 (CHCl₃, *c* = 0.1).