Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2005
Catalytic Asymmetric Mannich-Type Reactions Activated by ZnF₂ Chiral Diamine in Aqueous Media

Tomoaki Hamada, Kei Manabe, and Shu Kobayashi*

Graduate School of Pharmaceutical Sciences
The University of Tokyo, The HFRE Division, ERATO
Japan Science and Technology Agency (JST)
Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)
Fax: (+81) 3-5684-0634
E-mail: skobayas@mol.f.u-tokyo.ac.jp
For stereospecific, asymmetric Mannich-type reactions (Table 7)

While the \((E)\)-silyl enol ether derived from 3-pentanone (8E) gave the \textit{anti}-Mannich-type adduct (\textit{anti}-6d), the \textit{syn}-adduct (\textit{syn}-6d) was obtained from the \((Z)\)-silyl enol ether derived from 3-pentanone (8Z). We assumed an open transition state shown in Figure S-1. Due to steric and electronic repulsions between the CO$_2$Et and OSiMe$_3$ groups, the \(E\)- and \(Z\)-enolates gave \textit{anti-} and \textit{syn-}adducts, respectively.

![Figure S-1. Assumed Transition State Model (8E and 8Z)](image-url)

On the other hand, in the reactions with \((E)\)- and \((Z)\)-ketene silyl acetals derived from \textit{S-}tert-butyl thiopropionate (7E and 7Z), a different selectivity was observed. Namely, while the \(E\)-ketene silyl acetal (7E) gave the \textit{anti}-Mannich-type adduct (\textit{anti}-6c), the \textit{syn}-adduct (\textit{syn}-6c) was produced from the \((Z)\)-ketene silyl acetal (7Z). We also assumed an open transition state shown in Figure S-2. In this case, it was thought that the \textit{S’Bu} group was sterically larger than the OSiMe$_3$ group. Thus, we suppose that this interesting selectivity is due to the different steric influence of the Et and \textit{S’Bu} groups.
For transition state model

We assume the following transition state model based on the X-ray crystal structure shown in Figure 1 (Figure S-3). Zn(II) has a five-coordinated trigonal bipyramidal structure, in which one fluoride anion still remains on Zn(II). Due to basicity difference, it is assumed that an imino group and a carbonyl group of an amide in a hydrazone coordinate to Zn(II) via bidentate fashion. In the transition model, the si face of the hydrazone is shielded by two aromatic rings, an enolate would attack the hydrazone from the re face to afford the R adduct selectively. Hydrogen bondings between the amine protons and the oxygen atoms of the o-MeO groups of 1c and 1i are suggested.
Figure S-3. Assumed Transition State Model