

CHEMISTRY

A EUROPEAN JOURNAL

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2006

The Reaction of *o*-Alkynylarene and Heteroarene Carboxaldehyde Derivatives with Iodonium Ions and Nucleophiles: A Versatile and Regioselective Synthesis of 1*H*-Isochromene, Naphthalene, Indole, Benzofuran and Benzothiophene Compounds

José Barluenga*,^[a] Henar Vázquez-Villa, Isabel Merino, Alfredo Ballesteros, José M. González

*[a] Instituto Universitario de Química Organometálica “Enrique Moles”
Unidad Asociada al C.S.I.C., Universidad de Oviedo
Julián Clavería, 8 33006 Oviedo Spain*

Contents

Characterization data and experimental procedures for all compounds.

Experimental section:

General:

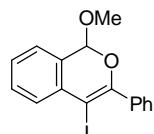
All reactions were conducted using oven-dried glassware under an atmosphere of nitrogen. Dichloromethane and 1,2-dichloroethane were distilled before used from CaH_2 . Ethanol and the solvents used in column chromatography, hexane and ethyl acetate, were obtained from commercial suppliers and used without further distillation. TLC was performed on aluminium-backed plates coated with silica gel 60 with F254 indicator (Merck). Flash chromatography was carried out on silica gel. NMR spectra were measured at room temperature on Bruker AC-200 MHz, Bruker DPX-300 MHz, Bruker AV-300 MHz and Bruker AV-400 MHz spectrometers. 2D NMR experiments were recorded on a Bruker AV-400 MHz. Chemical shifts are reported in ppm with the solvent resonance as the internal standard (deuterochloroform: δ 7.26 ppm in ^1H spectra, δ 77.00 ppm in ^{13}C spectra). Carbon multiplicities were assigned by DEPT techniques. High-resolution mass spectra were recorded on a Finnigan-Matt 95 mass spectrometer using EI at 70 eV. Infra-red spectra were obtained on a Unicam Mattson 3000 FTIR spectrometer, and only the most significant IR absorptions are given. Elemental analyses were carried out on a Perkin-Elmer 2400 and Carlo Erba 1108 microanalyzers. Melting points were measured on a Buchi-Totoli apparatus. Crystallographic structure determination for **6g** was performed on a Bruker SMART 1000 diffractometer, $\text{MoK}\alpha$ radiation ($\lambda = 0.71073 \text{ \AA}$), at 120 K.

Starting materials:

2-Alkynylbenzaldehydes were prepared by Sonogashira coupling reaction of 2-bromobenzaldehyde with various terminal alkynes.¹ *o*-(alkynyl)arylketones **3a-b** were also prepared by Sonogashira coupling reaction of the corresponding bromine derivatives.

N-tosyl protected 3-alkynylpyrrole-2-carboxaldehydes **7a** (R^1 : Ph) and **7b** (R^1 : *n*-Bu) were prepared by Sonogashira coupling reaction of 3-bromo-*N*-tosylpyrrole-2-carboxaldehyde with various terminal alkynes;¹ and this brominated pyrrole was

¹ Roesch, K. R.; Larock, R. C. *J. Org. Chem.* **2002**, 67, 86.

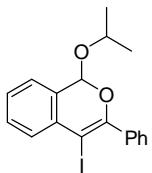

prepared according to literature procedure.² 3-phenylethynylfuran-2-carboxaldehyde **26** and 3-alkynylthiophene-2-carboxaldehyde **8a-b** were prepared using procedures already reported in the literature.³ Enamines **24** were also prepared according previously described procedures.⁴

Commercially available compounds were used as received. IPy_2BF_4 is a commercially available reagent.

General procedure for the synthesis of 4-iodo-1*H*-isochromenes 2, 6, 10 and 12 using IPy_2BF_4 and HBF_4 : IPy_2BF_4 (0.37 g, 1 mmol, 1 equiv) was dissolved in dry CH_2Cl_2 (10 mL). The solution was cooled at 0°C and tetrafluoroboric acid, 54% solution in diethyl ether (0.15 mL, 1.1 mmol, 1.1 equiv) was added. After 10 min., the corresponding 2-alkynylbenzaldehyde **1** (1 mmol, 1 equiv) was added and the solution was stirred during 30 min. at room temperature. After this time, the nucleophile (alcohols, silylated compounds **5**, arenes **10** or heteroarenes **12**) (1.2 mmol, 1.2 equiv) was added and the solution was further stirred until disappearance of starting benzaldehyde (reaction times are given in the Main Text). The reaction mixture was quenched with saturated aqueous NaHCO_3 and vigorously stirred. The organic layer was washed with a 5% aqueous solution of $\text{Na}_2\text{S}_2\text{O}_3$ (50 mL) and water (50 mL); dried over sodium sulfate and concentrated. The crude were purified by flash column chromatography (neutral aluminium oxide, hexane/EtOAc) to afford pure compounds **2**, **6**, **11** and **13**.

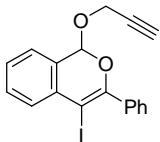
For the reaction of the pyrrole and thiophene derivatives **7a** and **8b**, the same procedure was used to obtain the corresponding bi-heterocyclic compounds **9a-b**.

4-Iodo-1-methoxy-3-phenyl-1*H*-isochromene (2a)

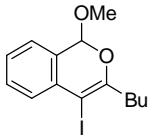

Yellow oil. R_f = 0.42 (Hexane: EtOAc, 10:1). $^1\text{H-NMR}$ (CDCl_3 , 200 MHz): 7.79-7.70 (m, 3H), 7.58-7.51 (m, 4H), 7.38 (t, J = 7 Hz, 1H), 7.26 (d, J = 7 Hz, 1H), 6.11 (s, 1H), 3.74 (s, 3H) ppm. $^{13}\text{C-NMR}$ (CDCl_3 , 75 MHz): 151.6 (C), 137.2 (C), 131.2 (C), 129.9 (CH), 129.8 (CH), 129.6 (CH), 129.2 (CH), 127.8 (CH), 127.7 (CH), 127.0 (C), 125.3 (CH), 99.8 (CH), 73.7 (C-I), 55.9 (CH₃) ppm. IR (CH_2Cl_2 , cm^{-1}) 3039, 2936, 1052. HRMS (EI) Calcd for $\text{C}_{16}\text{H}_{13}\text{IO}_2$ 363.9960, Found 363.9964.

4-Iodo-1-isopropoxy-3-phenyl-1*H*-isochromene (2b)

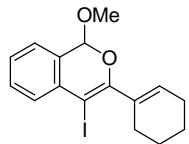
² Ghosez, L.; Franc, C.; Denonne, F.; Cuisinier, C.; Touillaux, R. *Can. J. Chem.* **2001**, 79, 1827.


³ Zhang, Y.; Herndon, J. W. *J. Org. Chem.* **2002**, 67, 4177.

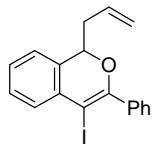
⁴ Gilbert, A. *Enamines*, New York, 1998.


Yellow oil. R_f = 0.45 (Hexane: EtOAc, 10:1). $^1\text{H-NMR}$ (CDCl_3 , 300 MHz): 7.75-7.71 (m, 3H), 7.54-7.44 (m, 4H), 7.39 (t, J = 7.5 Hz, 1H), 7.24 (d, J = 7.5 Hz, 1H), 6.29 (s, 1H), 4.46-4.38 (m, 1H), 1.40 (t, J = 6.2 Hz, 6H) ppm. $^{13}\text{C-NMR}$ (CDCl_3 , 75 MHz): 151.8 (C), 137.6 (C), 131.3 (C), 129.7 (CH), 129.5 (CH), 129.4 (CH), 129.0 (CH), 127.8 (CH), 127.7 (C), 127.6 (CH), 124.9 (CH), 96.5 (CH), 73.6 (C-I), 69.9 (CH), 23.3 (CH₃), 21.6 (CH₃) ppm. IR (CH_2Cl_2 , cm^{-1}) 3063, 2968, 1021, 960. HRMS (FAB+) Calcd for $\text{C}_{18}\text{H}_{18}\text{IO}_2$ ($\text{M}+\text{H}$) 393.0352, Found 393.0340. Anal. Calcd for $\text{C}_{18}\text{H}_{17}\text{IO}_2$: C, 55.12%; H, 4.37%, Found: C, 55.13%; H, 4.38%.

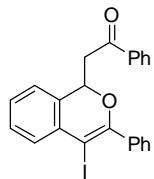
4-Iodo-3-phenyl-1-(2-propynyl)-1H-isochromene (2c)


Yellow oil. R_f = 0.57 (Hexane: EtOAc, 3:1). $^1\text{H-NMR}$ (CDCl_3 , 300 MHz): 7.68-7.65 (m, 3H), 7.55-7.48 (m, 4H), 7.38 (td, J = 7.4, 1.2 Hz, 1H), 7.28 (dd, J = 6.2, 1.2 Hz, 1H), 6.43 (s, 1H), 4.59 (dd, J = 15.9, 2.5 Hz, 1H), 4.5 (dd, J = 15.9, 2.5 Hz, 1H), 2.6 (t, J = 2.5 Hz, 1H) ppm. $^{13}\text{C-NMR}$ (CDCl_3 , 75 MHz): 151.3 (C), 137.1 (C), 131.3 (C), 129.9 (CH), 129.8 (CH), 129.6 (CH), 129.2 (CH), 127.8 (2 x CH), 126.5 (C), 125.5 (CH), 96.4 (CH), 78.7 (C), 75.4 (CH), 74.1 (C-I), 54.7 (CH₂) ppm. IR (CH_2Cl_2 , cm^{-1}) 3297, 3063, 2150, 1044. HRMS (FAB+) Calcd for $\text{C}_{18}\text{H}_{13}\text{IO}_2$ 387.9960, Found 387.9966. Anal. Calcd for $\text{C}_{18}\text{H}_{13}\text{IO}_2$: C, 55.69%; H, 3.38%, Found: C, 55.91%; H, 3.33%.

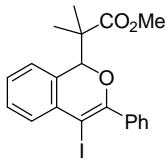
3-Butyl-4-iodo-1-methoxy-1H-isochromene (2d)


Pale yellow oil. R_f = 0.44 (Hexane: EtOAc, 10:1). $^1\text{H-NMR}$ (CDCl_3 , 200 MHz): 7.50 (d, J = 7.9 Hz, 1H), 7.40 (td, J = 7.9, 1.3 Hz, 1H), 7.26 (td, J = 7.1, 1.3 Hz, 1H), 7.16 (d, J = 7.1 Hz, 1H), 5.94 (s, 1H), 3.61 (s, 3H), 2.95-2.64 (m, 2H), 1.78-1.66 (m, 2H), 1.61-1.43 (m, 2H), 1.01 (t, J = 7.2 Hz, 3H) ppm. $^{13}\text{C-NMR}$ (CDCl_3 , 50 MHz): 154.5 (C), 130.8 (C), 129.5 (CH), 128.4 (CH), 126.8 (CH), 126.6 (C), 125.2 (CH), 99.1 (CH), 73.3 (C-I), 55.4 (CH₃), 36.9 (CH₂), 29.3 (CH₂), 22.1 (CH₂), 13.9 (CH₃) ppm. IR (CH_2Cl_2 , cm^{-1}) 3029, 2956, 1078. HRMS (FAB+) Calcd for $\text{C}_{14}\text{H}_{17}\text{IO}_2$ 344.0273, Found 344.0288. Anal. Calcd for $\text{C}_{14}\text{H}_{17}\text{IO}_2$: C, 48.85%; H, 4.98%, Found: C, 48.05%; H, 5.06%.

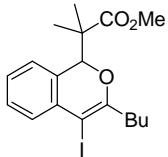
3-(Cyclohex-1-enyl)-4-iodo-1-methoxy-1*H*-isochromene (2f)


Yellow oil. R_f = 0.43 (Hexane: EtOAc, 10:1). $^1\text{H-NMR}$ (CDCl_3 , 200 MHz): 7.55 (dd, J = 7.7, 1.0 Hz, 1H), 7.45 (td, J = 7.7, 1.5 Hz, 1H), 7.26 (td, J = 7.2, 1.3 Hz, 1H), 7.17 (dd, J = 7.2, 1.3 Hz, 1H), 6.10 (broad s, 1H), 5.93 (s, 1H), 3.59 (s, 3H), 2.43-2.20 (m, 4H), 1.83-1.71 (m, 4H) ppm. $^{13}\text{C-NMR}$ (CDCl_3 , 75 MHz): 153.8 (C), 135.2 (C), 132.9 (CH), 131.3 (C), 129.6 (CH), 129.4 (CH), 127.2 (CH), 127.0 (C), 125.2 (CH), 99.4 (CH), 71.9 (C-I), 55.6 (CH₃), 26.7 (CH₂), 24.9 (CH₂), 22.3 (CH₂), 21.6 (CH₂) ppm. IR (CH_2Cl_2 , cm^{-1}) 3034, 2926, 1024. HRMS (FAB+) Calcd for $\text{C}_{16}\text{H}_{17}\text{IO}_2$ 368.0273, Found 368.0273.

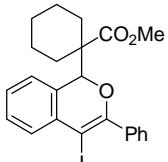
1-Allyl-4-iodo-3-phenyl-1*H*-isochromene (6a)


Pale yellow solid (mp = 46°C, dec). R_f = 0.52 (Hexane: EtOAc, 10:1). $^1\text{H-NMR}$ (CDCl_3 , 300 MHz): 7.75-7.64 (m, 2H), 7.56 (dd, J = 7.7, 1.0 Hz, 1H), 7.50-7.45 (m, 3H), 7.43 (td, J = 7.7, 1.3 Hz, 1H), 7.29 (td, J = 7.5, 1.3 Hz, 1H), 7.04 (d, J = 7.5 Hz, 1H), 6.07-5.91 (m, 1H), 5.35 (dd, J = 7.9, 5.3 Hz, 1H), 5.30-5.23 (m, 2H), 3.02-2.92 (m, 1H), 2.78-2.66 (m, 1H) ppm. $^{13}\text{C-NMR}$ (CDCl_3 , 75 MHz): 153.8 (C), 136.7 (C), 133.5 (CH), 132.3 (C), 131.1 (C), 130.3 (CH), 129.4 (CH), 129.1 (CH), 128.3 (CH), 127.7 (CH), 127.5 (CH), 123.6 (CH), 118.1 (CH₂), 78.0 (CH), 72.4 (C-I), 38.2 (CH₂) ppm. IR (CH_2Cl_2 , cm^{-1}) 3060, 1082. HRMS (FAB+) Calcd for $\text{C}_{18}\text{H}_{16}\text{IO}$ ($\text{M}+\text{H}$) 375.0246, Found 375.0247. Anal. Calcd for $\text{C}_{18}\text{H}_{15}\text{IO}$: C, 57.77%; H, 4.04%, Found: C, 56.37%; H, 4.06%.

1-Phenyl-2-(4-iodo-3-phenyl-1*H*-isochromen-1-yl)ethanone (6b)

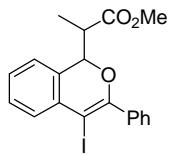

White solid (mp = 68°C, dec). R_f = 0.25 (Hexane: EtOAc, 10:1). $^1\text{H-NMR}$ (CDCl_3 , 200 MHz): 8.00 (d, J = 7.4 Hz, 2H), 7.70-7.25 (m, 11H), 7.10 (d, J = 7.2 Hz, 1H), 6.05 (dd, J = 7.7, 5.0 Hz, 1H), 3.90 (dd, J = 16.7, 7.7 Hz, 1H), 3.50 (dd, J = 16.7, 5.0 Hz, 1H) ppm. $^{13}\text{C-NMR}$ (CDCl_3 , 75 MHz): 196.5 (C=O), 153.9 (C), 136.7 (C), 136.2 (C), 133.3 (CH), 132.6 (C), 130.9 (C), 130.4 (CH), 129.5 (CH), 129.3 (CH), 128.6 (2 x CH), 128.1 (CH), 127.9 (CH), 127.6 (CH), 123.2 (CH), 74.4 (CH), 72.4 (C-I), 42.0 (CH₂) ppm. IR (CH_2Cl_2 , cm^{-1}) 3057, 1685, 1087. HRMS (EI) Calcd for $\text{C}_{23}\text{H}_{17}\text{IO}_2$ 452.0273, Found 452.0272.

Methyl 2-(4-*iodo*-3-phenyl-1*H*-isochromen-1-yl)-2-methylpropanoate (6c)


Yellow oil. R_f = 0.35 (Hexane: EtOAc, 10:1). $^1\text{H-NMR}$ (CDCl_3 , 300 MHz): 7.70-7.65 (m, 2H), 7.53 (dd, J = 7.7, 1.3 Hz, 1H), 7.48-7.37 (m, 4H), 7.25 (td, J = 7.5, 1.3 Hz, 1H), 6.95 (d, J = 7.5 Hz, 1H), 5.65 (s, 1H), 3.75 (s, 3H), 1.36 (s, 3H), 1.32 (s, 3H) ppm. $^{13}\text{C-NMR}$ (CDCl_3 , 75 MHz): 175.9 (C=O), 154.7 (C), 136.8 (C), 133.2 (C), 130.0 (CH), 129.4 (CH), 129.2 (CH), 128.8 (CH), 127.7 (CH), 127.1 (CH), 126.1 (C), 125.6 (CH), 82.9 (CH), 72.5 (C-I), 52.2 (CH₃), 49.6 (C), 22.0 (CH₃), 20.3 (CH₃) ppm. IR (CH_2Cl_2 , cm^{-1}) 3056, 2947, 1727, 1083. HRMS (EI) Calcd for $\text{C}_{20}\text{H}_{19}\text{IO}_3$ 434.0379, Found 434.0378. Anal. Calcd for $\text{C}_{20}\text{H}_{19}\text{IO}_3$: C, 55.31%; H, 4.41%, Found: C, 56.41%; H, 4.39%.

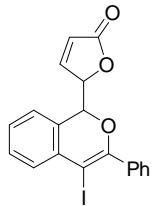
Methyl 2-(4-*iodo*-3-butyl-1*H*-isochromen-1-yl)-2-methylpropanoate (6d)

Pale yellow oil. R_f = 0.34 (Hexane: EtOAc, 10:1). $^1\text{H-NMR}$ (CDCl_3 , 300 MHz): 7.40-7.17 (m, 2H), 7.15 (t, J = 7.2 Hz, 1H), 6.85 (d, J = 7.4 Hz, 1H), 5.46 (s, 1H), 3.73 (s, 3H), 2.71-2.49 (m, 2H), 1.66-1.55 (m, 2H), 1.48-1.35 (m, 2H), 1.22 (s, 3H), 1.21 (s, 3H), 0.97 (t, J = 7.3 Hz, 3H) ppm. $^{13}\text{C-NMR}$ (CDCl_3 , 75 MHz): 175.9 (C=O), 157.7 (C), 132.6 (C), 128.6 (CH), 128.0 (CH), 126.4 (CH), 125.9 (C), 125.3 (CH), 82.1 (CH), 72.6 (C-I), 52.1 (CH₃), 49.6 (C), 37.1 (CH₂), 28.5 (CH₂), 22.4 (CH₂), 21.6 (CH₃), 20.3 (CH₃), 13.8 (CH₃) ppm. IR (CH_2Cl_2 , cm^{-1}) 2960, 1728, 1032. HRMS (EI) Calcd for $\text{C}_{18}\text{H}_{23}\text{IO}_3$ 414.0692, Found 414.0694.

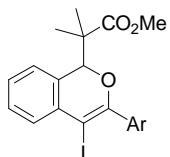

Methyl 1-(4-*iodo*-3-phenyl-1*H*-isochromen-1-yl)cyclohexanecarboxilate (6e)

Colorless crystals. (mp = 103-104°C). R_f = 0.39 (Hexane: EtOAc, 10:1). $^1\text{H-NMR}$ (CDCl_3 , 200 MHz): 7.78-7.68 (m, 2H), 7.57-7.36 (m, 5H), 7.25 (td, J = 7.2, 1.0 Hz, 1H), 6.96 (d, J = 7.2 Hz, 1H), 5.39 (s, 1H), 3.68 (s, 3H), 2.51-2.46 (m, 1H), 2.33-2.26 (m, 1H), 1.75-1.63 (m, 3H), 1.48-1.07 (m, 5H) ppm. $^{13}\text{C-NMR}$ (CDCl_3 , 75 MHz): 173.9 (C=O), 154.9 (C), 136.9 (C), 132.9 (C), 130.1 (CH), 129.3 (CH), 128.8 (CH), 128.7 (CH), 127.7 (CH), 126.8 (CH), 126.2 (CH), 125.5 (C), 84.5 (CH), 72.5 (C-I), 54.3 (C), 51.9 (CH₃), 31.2 (CH₂), 29.4 (CH₂), 25.3 (CH₂), 23.0 (CH₂), 22.8 (CH₂) ppm. IR (CH_2Cl_2 , cm^{-1}) 2938,

1723, 1220. HRMS (EI) Calcd for $C_{23}H_{23}IO_3$ 474.0692, Found 474.0687. Anal. Calcd for $C_{23}H_{23}IO_3$: C, 58.24%; H, 4.89%, Found: C, 58.27%; H, 4.91%.


Methyl 2-(4-*iodo*-3-phenyl-1*H*-isochromen-1-yl)propanoate (6f)

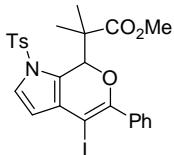
(1:1 mixture of diastereoisomers)


Pale yellow oil. R_f = 0.25 (Hexane: EtOAc, 10:1). ^1H -NMR (CDCl_3 , 300 MHz): 7.72-7.18 (m, 16H), 7.01-6.95 (m, 2H), 5.60 (d, J = 6.8 Hz, 1H), 5.49 (d, J = 9.8 Hz, 1H), 3.74 (s, 3H), 3.65 (s, 3H), 3.39-3.24 (m, 2H), 1.43 (d, J = 6.9 Hz, 3H), 1.09 (d, J = 7.2 Hz, 3H) ppm. ^{13}C -NMR (CDCl_3 , 75 MHz): 174.7 (C=O), 173.7 (C=O), 154.1 (C), 153.3 (C), 136.8 (C), 136.7 (C), 135.6 (C), 132.4 (C), 131.9 (C), 131.4 (C), 130.0 (2 x CH), 129.45 (CH), 129.4 (CH), 129.3 (CH), 129.2 (CH), 128.9 (CH), 128.7 (CH), 127.8 (CH), 127.7 (CH), 127.6 (CH), 127.2 (CH), 125.6 (CH), 123.9 (CH), 80.2 (CH), 79.3 (CH), 72.9 (C-I), 72.3 (C-I), 51.85 (CH₃), 51.84 (CH₃), 43.8 (CH), 42.1 (CH), 14.0 (CH₃), 12.6 (CH₃) ppm. HRMS (EI) Calcd for $\text{C}_{19}\text{H}_{17}\text{IO}_3$ 420.0222, Found 420.0229.

3-(4-Iodo-3-phenyl-1*H*-isocromen-1-yl)-3*H*-furan-2-one (6g)

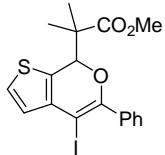
Colorless crystals (mp = 72°C, dec). R_f = 0.24 (Hexane: EtOAc, 3:1). ^1H -RMN (CDCl_3 , 300 MHz): 7.82-7.78 (m, 2H), 7.57 (d, J = 7.7 Hz, 1H), 7.51-7.42 (m, 4H), 7.32 (td, J = 7.4, 1.4 Hz, 1H), 7.25 (dd, J = 5.7, 1.7 Hz, 1H), 6.97 (dd, J = 7.4, 0.6 Hz, 1H), 6.17 (dd, J = 5.7, 2 Hz, 1H), 5.57 (dt, J = 7.7, 1.7 Hz, 1H), 5.35 (d, J = 7.7 Hz, 1H) ppm. ^{13}C -RMN (CDCl_3 , 75 MHz): 172.2(C=O), 152.8 (C), 151.9 (CH), 135.6 (C), 132.7 (C), 130.6 (CH), 130.0 (CH), 129.9 (CH), 129.8 (CH), 128.1 (CH), 127.8 (CH), 125.2 (C), 124.9 (CH), 123.3 (CH), 81.3 (CH), 79.1 (CH), 72.2 (C-I) ppm. IR (CH_2Cl_2 , cm^{-1}): 3021, 1785, 1755. HRMS (IE): Calcd. for $\text{C}_{19}\text{H}_{13}\text{IO}_3$: 415.9904, Found: 415.9909. Anal. calcd. for $\text{C}_{19}\text{H}_{13}\text{IO}_3$: C, 54.83%; H, 3.15%. Found: C, 54.60%; H, 3.25%.

Methyl 2-[4-*iodo*-3-(4-nitrophenyl)-1*H*-isochromen-1-yl]-2-methylpropanoate (6h)

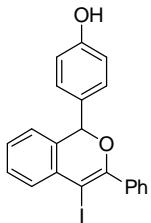


Ar = 4-NO₂C₆H₄

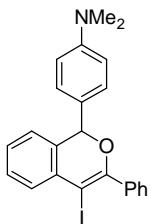
Yellow syrup. R_f = 0.56 (Hexane: EtOAc, 3:1). ^1H -NMR (CDCl_3 , 300 MHz): 8.25 (d, J = 9.1 Hz, 2H), 7.84 (d, J = 9.1 Hz, 2H), 7.52 (d, J = 7.7 Hz, 1H), 7.41 (t, J = 7.7 Hz, 1H),


7.31 (t, $J = 7.4$ Hz, 1H), 6.95 (d, $J = 7.4$ Hz, 1H), 5.61 (s, 1H), 3.71 (s, 3H), 1.27 (s, 6H) ppm. ^{13}C -NMR (CDCl_3 , 75 MHz): 175.8 (C=O), 152.3 (C), 147.9 (C), 143.0 (C), 132.3 (C), 131.1 (CH), 129.5 (CH), 129.1 (CH), 127.9 (CH), 126.0 (C), 125.9 (CH), 123.1 (CH), 83.3 (CH), 74.5 (C-I), 52.3 (CH₃), 49.6 (C), 22.3 (CH₃), 20.0 (CH₃) ppm. IR (CH_2Cl_2 , cm⁻¹): 3076, 2949, 1732. HRMS (FAB+) calcd for $\text{C}_{20}\text{H}_{19}\text{INO}_5$ (M+H) 480.0308, Found 480.0305. Anal. calcd for $\text{C}_{20}\text{H}_{18}\text{INO}_5$: C, 50.12%; H, 3.79%; N, 2.92%, Found: C, 50.29%; H, 3.80%; N, 3.15%.

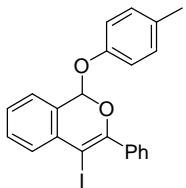
Methyl 2-(1,7-dihydro-4-iodo-5-phenyl-1-p-tosylpyrano[3,4-b]pyrrol-7-yl)-2-methylpropanoate (9a)


Orange solid (mp 148-150°C). R_f = 0.41 (Hexane: EtOAc, 3:1). ^1H -NMR (CDCl_3 , 300 MHz): 7.71 (d, $J = 7.8$ Hz, 2H), 7.67-7.65 (m, 2H), 7.40-7.38 (m, 3H), 7.27 (d, $J = 7.8$ Hz, 2H), 7.14 (d, $J = 2.3$ Hz, 1H), 6.35 (s, 1H), 6.28 (d, $J = 2.3$ Hz, 1H), 3.76 (s, 3H), 2.39 (s, 3H), 1.43 (s, 3H), 1.35 (s, 3H) ppm. ^{13}C -NMR (CDCl_3 , 75 MHz): 175.6 (CO₂Me), 150.9 (C), 145.2 (C), 135.1 (C), 134.7 (C), 129.9 (CH), 129.7 (CH), 129.4 (CH), 128.8 (C), 127.5 (CH), 126.5 (CH), 123.8 (CH), 117.5 (C), 115.0 (CH), 79.7 (CH), 60.7 (C-I), 52.4 (CH₃), 50.9 (C), 24.1 (CH₃), 21.5 (CH₃), 19.6 (CH₃) ppm. IR (CH_2Cl_2 , cm⁻¹): 1722. HRMS (FAB) Calcd for $\text{C}_{25}\text{H}_{24}\text{INO}_5\text{S}$ 577.0420, Found 577.0407. Anal. Calcd. for $\text{C}_{25}\text{H}_{24}\text{INO}_5\text{S}$: C, 52.00%; H, 4.19%; N, 2.43%; found C, 51.59%; H, 4.26%; N, 2.11%.

Methyl 2-(4-iodo-5-phenyl-7H-thieno[2,3-c]pyran-7-yl)-2-methylpropanoate (9b)

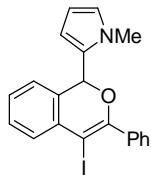

Orange oil. R_f = 0.48 (Hexane: EtOAc, 10:1). ^1H -NMR (CDCl_3 , 300 MHz): 7.70-7.64 (m, 2H), 7.44-7.36 (m, 3H), 7.21 (d, $J = 5.1$ Hz, 1H), 7.11 (d, $J = 5.1$ Hz, 1H), 5.95 (s, 1H), 3.76 (s, 3H), 1.45 (s, 3H), 1.40 (s, 3H) ppm. ^{13}C -NMR (CDCl_3 , 75 MHz): 175.6 (C=O), 151.4 (C), 137.1 (C), 135.5 (C), 129.7 (CH), 129.2 (CH), 128.8 (CH), 127.6 (CH), 123.0 (CH), 122.8 (C), 81.5 (CH), 62.6 (C-I), 52.1 (CH₃), 49.4 (C), 20.7 (CH₃), 20.5 (CH₃) ppm. IR (CH_2Cl_2 , cm⁻¹) 3053, 1734. HRMS (EI) Calcd for $\text{C}_{18}\text{H}_{17}\text{IO}_3\text{S}$ 439.9943, Found 439.9939.

4-(4-Iodo-3-phenyl-1*H*-isochromen-1-yl)phenol (11a)

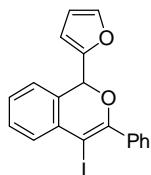

Orange syrup. R_f = 0.29 (Hexane: EtOAc, 3:1). $^1\text{H-NMR}$ (CDCl_3 , 300 MHz): 7.61 (d, J = 7.7 Hz, 1H), 7.53-7.46 (m, 2H), 7.41-7.35 (m, 4H), 7.31-7.24 (m, 3H), 6.88 (d, J = 8.7 Hz, 2H), 6.78 (d, J = 7.5 Hz, 1H), 6.24 (s, 1H), 5.49 (broad s, 1H, OH) ppm. $^{13}\text{C-NMR}$ (CDCl_3 , 75 MHz): 155.9 (C), 154.5 (C), 136.6 (C), 133.3 (C), 131.1 (C), 130.9 (C), 130.2 (CH), 129.9 (CH), 129.3 (CH), 129.0 (CH), 128.5 (CH), 127.7 (CH), 127.6 (CH), 124.8 (CH), 115.3 (CH), 80.2 (CH), 73.2 (C-I) ppm. IR (CH_2Cl_2 , cm^{-1}) 3569, 3044, 1174. HRMS (EI) calcd for $\text{C}_{21}\text{H}_{15}\text{IO}_2$ 426.0117, Found 426.0119.

4-(4-Iodo-3-phenyl-1*H*-isochromen-1-yl)-*N,N*-dimethylaniline (11b)

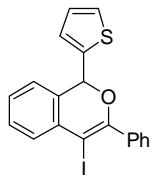
White solid (mp = 51°C, dec). R_f = 0.34 (Hexane: EtOAc, 10:1). $^1\text{H-NMR}$ (CDCl_3 , 300 MHz): 7.61-7.50 (m, 3H), 7.40-7.18 (m, 7H), 6.81-6.73 (m, 3H), 6.22 (s, 1H), 2.98 (s, 6H) ppm. $^{13}\text{C-NMR}$ (CDCl_3 , 75 MHz): 154.6 (C), 150.6 (C), 136.7 (C), 133.4 (C), 131.5 (C), 130.4 (CH), 129.4 (CH), 129.2 (CH), 128.9 (CH), 128.3 (CH), 127.5 (2 x CH), 126.2 (C), 124.8 (CH), 112.1 (CH), 80.6 (CH), 72.9 (C-I), 40.4 (2 x CH3) ppm. IR (CH_2Cl_2 , cm^{-1}) 3046, 1612, 1524. HRMS (FAB+) Calcd for $\text{C}_{23}\text{H}_{21}\text{INO}$ ($\text{M}+\text{H}$) 454.0668, Found 454.0660. Anal. Calcd for $\text{C}_{23}\text{H}_{20}\text{INO}$: C, 60.94%; H, 4.45%; N, 3.09%, Found: C, 60.40%; H, 4.38%; N, 2.74%.


4-Iodo-1-(4-methylphenoxy)-3-phenyl-1*H*-isochromene (11c)

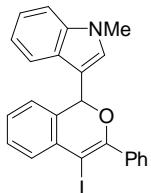
Orange oil. R_f = 0.59 (Hexane:EtOAc, 3:1). $^1\text{H-RMN}$ (CDCl_3 , 300 MHz): 7.70 (d, J = 7.9 Hz, 1H), 7.55 (dd, J = 7.7, 1.4 Hz, 1H), 7.54-7.51 (m, 2H), 7.44-7.37 (m, 4H), 7.27 (dd, J = 7.7, 1.4 Hz, 1H), 7.19-7.16 (m, 4H), 6.80 (s, 1H), 2.38 (s, 3H) ppm. $^{13}\text{C-RMN}$ (CDCl_3 , 75 MHz): 154.7 (C), 151.3 (C), 136.6 (C), 131.9 (C), 131.6 (C), 130.4 (CH), 130.1 (CH), 130.0 (CH), 129.9 (CH), 129.2 (CH), 127.9 (CH), 127.6 (CH), 126.3 (C),


125.5 (CH), 116.7 (CH), 96.7 (CH), 73.6 (C-I), 20.6 (CH₃) ppm. HRMS (FAB+): Calcd. for C₂₂H₁₈IO₂ (M+H): 441.0352. Found: 441.0350.

2-(4-Iodo-3-phenyl-1*H*-isochromen-1-yl)-1-methyl-1*H*-pyrrol (13a)

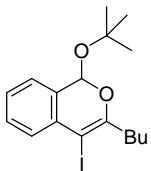

Yellow oil. *R*_f = 0.37 (Hexane:EtOAc, 3:1). ¹H-RMN (CDCl₃, 300 MHz): 7.62-7.51 (m, 3H), 7.44-7.20 (m, 5H), 7.01 (d, *J* = 7.2 Hz, 1H), 6.62 (t, *J* = 2.4 Hz, 1H), 6.43-6.41 (m, 1H), 6.27 (broad s, 2H), 3.62 (s, 3H) ppm. ¹³C-RMN (CDCl₃, 75 MHz): 154.3 (C), 137.0 (C), 133.0 (C), 132.0 (C), 130.4 (CH), 129.1 (CH), 128.9 (CH), 128.1 (CH), 127.5 (CH), 127.4 (CH), 124.4 (CH), 122.3 (CH), 122.2 (C), 121.8 (CH), 108.3 (CH), 75.3 (CH), 72.9 (C-I), 36.1 (CH₃) ppm. HRMS (EI): Calcd. for C₂₀H₁₆INO: 413.0277. Found: 413.0281.

1-(Furan-2-yl)-4-iodo-3-phenyl-1*H*-isochromene (13b)


Orange oil. *R*_f = 0.38 (Hexane: EtOAc, 10:1). ¹H-NMR (CDCl₃, 300 MHz): 7.68-7.52 (m, 4H), 7.49-7.38 (m, 4H), 7.35-7.29 (m, 1H), 7.05 (d, *J* = 7.0 Hz, 1H), 6.42 (s, 1H), 6.40 (s, 1H), 6.12 (d, *J* = 2.9 Hz, 1H) ppm. ¹³C-NMR (CDCl₃, 75 MHz): 154.0 (C), 152.6 (C), 143.9 (CH), 137.1 (C), 133.6 (C), 130.9 (CH), 130.1 (CH), 129.9 (CH), 129.6 (CH), 129.2 (C), 128.3 (CH), 128.2 (CH), 125.1 (CH), 111.4 (CH), 111.0 (CH), 73.7 (CH), 73.7 (C-I) ppm. HRMS (EI) Calcd for C₁₉H₁₃IO₂: 399.9955, Found 399.9957.

4-Iodo-3-phenyl-1-(thien-2-yl)-1*H*-isochromene (13c)

Reddish oil. *R*_f = 0.39 (Hexane: EtOAc, 10:1). ¹H-NMR (CDCl₃, 300 MHz): 7.64-7.56 (m, 3H), 7.49-7.37 (m, 5H), 7.33 (td, *J* = 7.5, 1.1 Hz, 1H), 7.05-7.00 (m, 2H), 6.96-6.94 (m, 1H), 6.58 (s, 1H) ppm. ¹³C-NMR (CDCl₃, 75 MHz): 153.3 (C), 142.3 (C), 136.3 (C), 132.4 (C), 130.4 (C), 130.3 (CH), 129.4 (CH), 129.4 (CH), 128.9 (CH), 127.8 (CH), 127.6 (CH), 127.4 (CH), 126.8 (CH), 126.4 (CH), 124.5 (CH), 75.3 (CH), 73.4 (C-I) ppm. HRMS (EI) Calcd for C₁₉H₁₃IOS: 415.9726, Found 415.9729.


3-(4-Iodo-3-phenyl-1*H*-isochromen-1-yl)-1-methyl-1*H*-indole (13d)

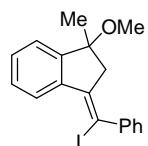
Brown solid (mp = 77°C, dec). R_f = 0.45 (Hexane: EtOAc, 5:1). $^1\text{H-NMR}$ (CDCl_3 , 300 MHz): 7.88 (dd, J = 7.9, 0.8 Hz, 1H), 7.68 (d, J = 7.9 Hz, 1H), 7.51-7.19 (m, 10H), 7.04 (d, J = 7.5 Hz, 1H), 6.75 (d, J = 10.9 Hz, 2H), 3.76 (s, 3H) ppm. $^{13}\text{C-NMR}$ (CDCl_3 , 75 MHz): 154.5 (C), 137.4 (C), 136.8 (C), 133.4 (C), 131.0 (C), 130.6 (CH), 129.7 (CH), 129.1 (CH), 128.9 (CH), 128.4 (CH), 127.5 (CH), 127.4 (CH), 126.7 (C), 124.5 (CH), 122.1 (CH), 119.9 (CH), 119.7 (CH), 112.8 (C), 109.4 (CH), 74.2 (CH), 72.5 (C-I), 32.8 (CH₃) ppm. HRMS (EI) Calcd for $\text{C}_{24}\text{H}_{18}\text{INO}$: 463.0433, Found: 463.0443.

Reaction of *o*-alkynylbenzaldehyde **1b with IPy_2BF_4 and *tert*-butyl alcohol:** *o*-(1-hexynyl)benzaldehyde **1b** (0.19 g, 1 mmol, 1 equiv) was added to a solution of IPy_2BF_4 (0.37 g, 1 mmol, 1 equiv) in dry dichloromethane (10 mL) and the resultant solution was stirred at room temperature for 1 hour. After this time, the *tert*-butyl alcohol (115 μL , 1.2 mmol, 1.2 equiv) was added and the solution was stirred until disappearance of starting benzaldehyde (6 hours). The reaction mixture was quenched with saturated aqueous NaHCO_3 and vigorously stirred. The organic layer was washed with a 5% aqueous solution of $\text{Na}_2\text{S}_2\text{O}_3$ (50 mL) and water (50 mL); dried over sodium sulfate and concentrated. The crude was purified by flash column chromatography (neutral aluminium oxide, hexane/EtOAc) to afford pure compound **2d** (275 mg, 68%).

3-Butyl-1-*tert*-butyl-4-iodo-1*H*-isochromene (2d)

Pale yellow oil. R_f = 0.58 (Hexane: EtOAc, 10:1). $^1\text{H-NMR}$ (CDCl_3 , 300 MHz): 7.42 (d, J = 7.1 Hz, 1H), 7.36 (td, J = 7.1, 1.1 Hz, 1H), 7.25 (td, J = 7.1, 1.1 Hz, 1H), 7.06 (d, J = 7.1 Hz, 1H), 6.24 (s, 1H), 2.71 (t, J = 7.4 Hz, 2H), 1.70-1.59 (m, 2H), 1.51-1.28 (m with singlet at 1.38, 11H), 0.99 (t, J = 7.4 Hz, 3H) ppm. $^{13}\text{C-NMR}$ (CDCl_3 , 75 MHz): 155.1 (C), 131.2 (C), 128.7 (CH), 128.1 (CH), 128.0 (C), 126.7 (CH), 124.3 (CH), 92.9 (CH), 75.6 (C), 72.8 (C-I), 36.8 (CH₂), 28.8 (CH₂), 28.7 (CH₃), 21.9 (CH₂), 13.8 (CH₃) ppm. HRMS (EI) Calcd for $\text{C}_{17}\text{H}_{23}\text{IO}_2$: 386.0743, Found 386.0744.

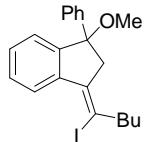
General procedure for the synthesis of 4-*ido*-1-methoxy-1*H*-isochromenes


2a-c using IPy₂BF₄ and trimethylborate: Trimethylborate (0.22 mL, 2 mmol, 2 equiv) was added to a solution of IPy₂BF₄ (0.37g, 1 mmol, 1 equiv) in CH₂Cl₂ (10 mL) at 0°C. After 10 min., the corresponding 2-alkynylbenzaldehyde **1a-c** (1 mmol, 1 equiv) was added and the solution was stirred at room temperature until disappearance of starting aldehyde. The reaction mixture was quenched with saturated aqueous NaHCO₃. The organic layer was washed with a 5% aqueous solution of Na₂S₂O₃ (50 mL) and water (50 mL); dried over sodium sulfate and concentrated. The crude was purified by flash column chromatography (neutral aluminium oxide, hexane/EtOAc) to afford pure compounds **2a,d,f**.

Reaction of *o*-(alkynyl)ketones **3a-b** with IPy₂BF₄ and alcohols:

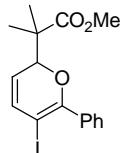
a) Using the system IPy₂BF₄/HBF₄: To a stirred solution of IPy₂BF₄ (0.37 g, 1 mmol, 1 equiv) in CH₂Cl₂ (10 mL) at -60°C was added tetrafluoroboric acid, 54% solution in diethyl ether (0.15 mL, 1.1 mmol, 1.1 equiv). After 10 min., the corresponding *o*-(alkynyl)ketone **3a-b** (1 mmol, 1 equiv) was added. After the mixture was stirred for 30 min., methanol (48 μ L, 1.2 mmol, 1.2 equiv) was added and the resulting solution was stirred at -60°C for 24h. The reaction mixture was quenched with saturated aqueous NaHCO₃. The organic layer was washed with a 5% aqueous solution of Na₂S₂O₃ (50 mL) and water (50 mL), dried over sodium sulfate and concentrated. The crude was purified by flash column chromatography (neutral aluminium oxide, hexane/EtOAc) to afford pure compounds **4a-b**.

b) Reaction of 3a using the system IPy₂BF₄/B(OMe)₃: Trimethylborate (0.22 mL, 2 mmol, 2 equiv) was added to a solution of IPy₂BF₄ (0.37g, 1 mmol, 1 equiv) in CH₂Cl₂ (10 mL) at -60°C. After 10 min., 2-(phenylethynyl)acetophenone **3a** was added (0.22 g, 1 mmol, 1 equiv) and the resultant solution was allowed to reach 0°C for 24h. Then, the reaction mixture was quenched with saturated aqueous NaHCO₃; washed with a 5% aqueous solution of Na₂S₂O₃ (50 mL) and water (50 mL), dried over sodium sulfate and concentrated. Flash column chromatography (neutral aluminium oxide, hexane/EtOAc) gave the pure compound **4a** (182 mg, 48%).


1,3-dihydro-3-[(*E*)-1-*ido*-1-phenylmethylene]-1-methoxy-1-methylisobenzofuran (**4a**)

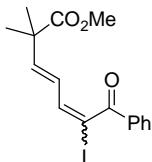
Pale yellow solid (*unstable*). R_f = 0.43 (Hexane: EtOAc, 10:1). ¹H-NMR (CDCl₃, 200 MHz): 8.84 (d, J = 6.7 Hz, 1H), 7.68-7.50 (m, 4H), 7.47-7.33 (m, 3H), 7.24 (d, J = 7.2 Hz, 1H), 3.02 (s, 3H), 1.73 (s, 3H) ppm. ¹³C-NMR (CDCl₃, 75 MHz): 150.9 (C), 142.6

(C), 141.7 (C), 133.8 (C), 130.3 (CH), 130.0 (CH), 128.9 (CH), 127.7 (2 x CH), 127.3 (CH), 125.5 (CH), 122.1 (CH), 110.1 (C), 65.9 (C-I), 50.5 (CH₃), 25.6 (CH₃) ppm. LRMS (EI) *m/z* (%) 378(M⁺, 29), 347(14), 281(24), 251(M⁺ - I, 100), 207(90), 191(35).


1,3-dihydro-3-[(*E*)-1-iodo-1-phenylmethylen]-1-methoxy-1-phenylisobenzofurane (4b)

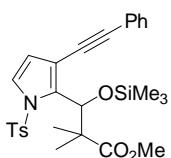
Pale yellow oil (*unstable*). *R*_f = 0.55 (Hexane: EtOAc, 10:1). ¹H-NMR (CDCl₃, 200 MHz): 8.67 (d, *J* = 7.8 Hz, 1H), 7.59-7.48 (m, 2H), 7.45-7.24 (m, 5H), 7.24 (d, *J* = 7.5 Hz, 1H), 3.21 (s, 3H), 3.09-2.87 (m, 2H), 1.71-1.61 (m, 2H), 1.50-1.38 (m, 2H), 0.97 (t, *J* = 7.4 Hz, 3H) ppm. ¹³C-NMR (CDCl₃, 75 MHz): 150.5 (C), 142.7 (C), 140.5 (C), 133.0 (C), 129.4 (CH), 128.7 (CH), 128.4 (CH), 128.2 (CH), 125.6 (CH), 124.5 (CH), 123.2 (CH), 109.7 (C), 74.6 (C-I), 50.8 (CH₃), 38.8 (CH₂), 31.2 (CH₂), 21.5 (CH₂), 14.0 (CH₃) ppm. HRMS (EI) Calcd for C₂₁H₂₃IO: 418.0794, Found 418.0785.

Reaction of eninal 14 with IPy₂BF₄ and silylketeneacetal 5c: IPy₂BF₄ (0.37 g, 1 mmol, 1 equiv) was dissolved in dry CH₂Cl₂ (10 mL). The solution was cooled at 0°C and tetrafluoroboric acid, 54% solution in diethyl ether (0.15 mL, 1.1 mmol, 1.1 equiv) was added. After 10 min., the eninal **14** (0.16 g, 1 mmol, 1 equiv) was added and the solution was stirred during 30 min. at room temperature. After this time, the silylketeneacetal **5c** (243 μ L, 1.2 mmol, 1.2 equiv) was added and the solution was further stirred until disappearance of starting aldehyde (1 hour). The reaction mixture was quenched with saturated aqueous NaHCO₃ and vigorously stirred. The organic layer was washed with a 5% aqueous solution of Na₂S₂O₃ (50 mL) and water (50 mL); dried over sodium sulfate and concentrated. The crude was purified by flash column chromatography (neutral aluminium oxide, hexane/EtOAc) to afford pure compounds **15a** (23%, 90 mg) and **15b** (31%, 120 mg).


Methyl 2-(5-iodo-6-phenyl-2*H*-piran-2-yl)-2-methylpropanoate (15a)

Yellow oil. *R*_f = 0.55 (Hexane: EtOAc, 5:1). ¹H-NMR (CDCl₃, 300 MHz): 7.52-7.48 (m, 2H), 7.40-7.24 (m, 3H), 6.74 (d, *J* = 5.7 Hz, 1H), 4.73 (t, *J* = 5.7 Hz, 1H), 3.75 (broad s, 3H + 1H), 1.37 (s, 3H), 1.24 (s, 3H) ppm. ¹³C-NMR (CDCl₃, 75 MHz): 177.3 (CO₂Me),

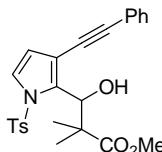
153.5 (C), 142.5 (CH), 136.7 (C), 129.6 (CH), 129.3 (CH), 127.9 (CH), 100.8 (CH), 68.8 (C-I), 52.1 (CH₃), 49.5 (CH), 48.1 (C), 22.5 (CH₃), 20.5 (CH₃) ppm. HRMS (EI) Calcd for C₁₆H₁₇IO₃: 384.0217, Found: 384.0229.


(3*E*,5*E*)-Methyl 2,2-dimethyl-6-iodo-7-oxo-7-phenylhepta-3,5-dienoate (15b)

Yellow oil. R_f = 0.45 (Hexane: EtOAc, 5:1). ¹H-NMR (CDCl₃, 300 MHz): 7.95 (d, J = 7.1 Hz, 2H), 7.64-7.59 (m, 1H), 7.51-7.46 (m, 2H), 7.20 (d, J = 10.8 Hz, 1H), 6.09 (d, J = 15.4 Hz, 1H), 5.90 (dd, J = 15.4, 10.8 Hz, 1H), 3.61 (s, 3H), 1.10 (s, 6H) ppm. ¹³C-NMR (CDCl₃, 75 MHz): 192.5 (C=O), 175.6 (CO₂Me), 145.0 (CH), 143.3 (CH), 134.1 (C), 133.8 (CH), 129.9 (CH), 128.7 (CH), 124.8 (CH), 92.4 (C-I), 52.1 (CH₃), 44.4 (C), 24.5 (2 x CH₃) ppm. IR (CH₂Cl₂, cm⁻¹): 2358, 1733, 1661. HRMS (EI) Calcd for C₁₆H₁₇IO₃: 384.0221, Found 384.0217.

Reaction of 3-phenylethynyl-N-tosylpyrrole-2-carboxaldehyde 7a with I₂ and silylketeneacetal 5c:⁵ Reaction of 3-phenylethynyl-N-tosylpyrrole-2-carboxaldehyde **7a** (87 mg, 0.25 mmol, 1 equiv), K₂CO₃ (34 mg, 0.25 mmol, 1 equiv), methyl trimethylsilyl dimethylketene acetal **5c** (61 μ L, 0.3 mmol, 1.2 equiv), I₂ (76 mg, 0.3 mmol, 1.2 equiv) in 5 mL of CH₂Cl₂ at room temperature until disappearance of the starting material. The reaction mixture was quenched with saturated aqueous Na₂S₂O₃ and water. The solution was extracted with CH₂Cl₂, dried over sodium sulfate and concentrated. The crude was purified by flash column chromatography (silica gel, hexane/EtOAc) to afford the pure compounds **a** (20 mg, 15%) and **b** (50 mg, 45%).

Methyl 2,2-dimethyl-3-{3-(2-phenylethynyl)-1-p-tosyl-1H-pyrrol-2-yl}-3-trimethylsilyloxypropanoate (a):

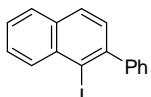


Light brown solid (mp 130-133°C). R_f = 0.56 (Hexane: EtOAc, 3:1). ¹H-NMR (CDCl₃, 300 MHz): 7.71 (d, J = 12.7 Hz, 2H), 7.44-7.42 (m, 2H), 7.34-7.29 (m, 6H), 6.44 (d, J = 5.0 Hz, 1H), 5.82 (s, 1H), 3.74 (s, 3H), 2.42 (s, 3H), 1.37 (s, 3H), 1.18 (s, 3H), -0.24 (s, 9H). ¹³C-NMR (CDCl₃, 75 MHz): 176.7 (CO₂Me), 145.4 (C), 137.2 (C), 136.2 (C), 131.0 (CH), 130.1 (CH), 128.2 (CH), 127.7 (CH), 127.0 (CH), 123.8 (C), 123.4 (CH), 116.5

⁵ Yue, D.; Cà, N. D.; Larock, R. C. *Org. Lett.* **2004**, 6, 1581.

(CH), 112.2 (C), 92.4 (C), 84.8 (C), 71.6 (CH), 51.8 (C), 51.8 (CH₃), 23.2 (CH₃), 21.5 (CH₃), 19.5 (CH₃), -0.7 (3 x CH₃). IR (CH₂Cl₂, cm⁻¹): 2215, 1726. HRMS (FAB) Calcd for C₂₈H₃₃NO₅SSi 523.1849, Found 523.1853.

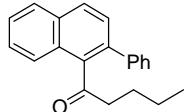
Methyl 3-hydroxy-2,2-dimethyl-3-{3-(2-phenylethynyl)-1-p-tosyl-1H-pyrrol-2-yl}propanoate (b):



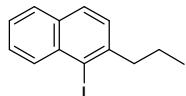
Yellow oil. R_f = 0.32 (Hexane: EtOAc, 3:1). ¹H-NMR (CDCl₃, 300 MHz): 7.72 (d, J = 8.3 Hz, 2H), 7.51-7.25 (m, 8H), 6.42 (d, J = 3.5 Hz, 1H), 5.77 (broad d, J = 7.4 Hz, 1H), 3.91 (broad s, 1H, OH), 3.77 (s, 3H), 2.43 (s, 3H), 1.41 (s, 3H), 1.37 (s, 3H).

¹³C-NMR (CDCl₃, 50 MHz): 177.1 (CO₂Me), 145.4 (C), 136.9 (C), 135.7 (C), 131.2 (CH), 130.1 (CH), 128.4 (CH), 128.3 (CH), 126.6 (CH), 123.9 (CH), 122.8 (C), 116.4 (CH), 110.9 (C), 94.1 (C), 83.0 (C), 72.6 (CH), 52.4 (CH₃), 49.9 (C), 24.2 (CH₃), 21.6 (CH₃), 20.2 (CH₃). IR (CH₂Cl₂, cm⁻¹): 3544, 2217, 1731. HRMS (FAB) Calcd for C₂₅H₂₅NO₅S 451.1453, Found 451.1458.

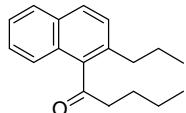
General procedure for the reaction of *o*-(1-hexynyl)benzaldehyde **1b and alkynes **16** using IPy₂BF₄ and HBF₄:** IPy₂BF₄ (0.37 g, 1 mmol, 1 equiv) was dissolved in dry CH₂Cl₂ (10 mL). The solution was cooled at 0°C and tetrafluoroboric acid, 54% solution in diethyl ether (0.30 mL, 2.2 mmol, 2.2 equiv) was added. After 10 min., the *o*-(1-hexynyl)benzaldehyde **1b** (0.19 g, 1 mmol, 1 equiv) was added and the solution was stirred during 30 min. at room temperature. After this time, the corresponding alkyne **16** (1.2 mmol, 1.2 equiv) was added and the solution was further stirred at room temperature (reaction times are given in Table 3). The reaction mixture was quenched with saturated aqueous NaHCO₃ and vigorously stirred. The organic layer was washed with a 5% aqueous solution of Na₂S₂O₃ (50 mL) and water (50 mL); dried over sodium sulfate and concentrated. The crude were purified by flash column chromatography (silica gel, hexane/EtOAc) to afford pure 1-iodonaphthalenes **17** with variable amounts of the corresponding naphthyl ketones **18** as minor products.


1-Iodo-2-phenylnaphthalene (17a)

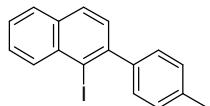
Pale yellow oil. R_f = 0.57 (Hexane: EtOAc, 10:1). ¹H-NMR (CDCl₃, 200 MHz): 8.48 (d, J = 8.2 Hz, 1H), 7.96-7.84 (m, 2H), 7.75-7.40 (m, 8H) ppm. ¹³C-NMR (CDCl₃, 75 MHz): 146.0 (C), 145.9 (C), 134.8 (C), 133.3 (CH), 132.8 (C), 129.4 (CH), 128.3 (CH), 128.1


(CH), 128.0 (CH), 127.8 (CH), 127.5 (CH), 126.4 (CH), 104.0 (C-I) ppm. HRMS (EI) Calcd for C₁₆H₁₁I: 329.9905, Found 329.9906.

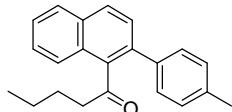
1-(2-Phenylnaphthalen-1-yl)-pentan-1-one: Minor product


Yellow oil. R_f = 0.37 (Hexane: EtOAc, 10:1). ¹H-NMR (CDCl₃, 200 MHz): 8.02-7.80 (m, 3H), 7.64-7.46 (m, 8H), 2.34 (t, J = 7.2 Hz, 2H), 1.53-1.45 (m, 2H), 1.22-1.08 (m, 2H), 0.76 (t, J = 7.2 Hz, 3H) ppm. ¹³C-NMR (CDCl₃, 75 MHz): 209.9 (C=O), 140.3 (C), 138.4 (C), 135.8 (C), 135.1 (C), 132.4 (C), 129.4 (CH), 129.2 (CH), 128.6 (CH), 128.1 (CH), 127.8 (CH), 127.4 (CH), 127.3 (CH), 126.2 (CH), 124.8 (CH), 44.8 (CH₂), 25.6 (CH₂), 21.9 (CH₂), 13.6 (CH₃) ppm. IR (CH₂Cl₂, cm⁻¹): 3030, 1692. HRMS (EI) Calcd for C₂₁H₂₀O: 288.1514, Found: 288.1518.

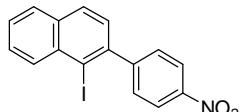
1-Iodo-2-propynaphthalene (17b)


Yellow oil. R_f = 0.52 (Hexane: EtOAc, 10:1). ¹H-NMR (CDCl₃, 300 MHz): 8.30 (d, J = 8.5 Hz, 1H), 7.80-7.75 (m, 2H), 7.61-7.44 (m, 2H), 7.35 (d, J = 8.3 Hz, 1H), 3.06-2.98 (m, 2H), 1.82-1.67 (m, 2H), 1.08 (t, J = 7.3 Hz, 3H) ppm. ¹³C-NMR (CDCl₃, 75 MHz): 144.5 (C), 135.1 (C), 132.6 (CH), 132.5 (C), 128.4 (CH), 128.0 (CH), 127.5 (CH), 127.4 (CH), 125.6 (CH), 105.1 (C-I), 44.7 (CH₂), 23.7 (CH₂), 13.9 (CH₃) ppm. HRMS (EI) Calcd for C₁₃H₁₃I: 296.0062, Found: 296.0067.

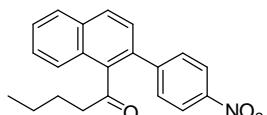
1-(2-Propynaphthalen-1-yl)pentan-1-one: Minor product


Yellow oil. R_f = 0.32 (Hexane: EtOAc, 10:1). ¹H-NMR (CDCl₃, 300 MHz): 7.84-7.79 (m, 2H), 7.58-7.42 (m, 3H), 7.38 (d, J = 8.5 Hz, 1H), 2.92 (t, J = 7.5 Hz, 2H), 2.65 (t, J = 7.7 Hz, 2H), 1.88-1.67 (m, 4H), 1.53-1.40 (m, 2H), 1.03-0.92 (m, 6H) ppm. ¹³C-NMR (CDCl₃, 75 MHz): 210.5 (C=O), 138.6 (C), 134.9 (C), 131.7 (C), 129.2 (C), 128.6 (CH), 128.1 (CH), 127.3 (CH), 126.6 (CH), 125.4 (CH), 124.1 (CH), 45.7 (CH₂), 35.5 (CH₂), 25.6 (CH₂), 24.7 (CH₂), 22.4 (CH₂), 14.1 (CH₃), 13.9 (CH₃) ppm. HRMS (EI) Calcd for C₁₈H₂₂O: 254.1671, Found: 254.1668.

1-Iodo-2-p-tolylnaphthalene (17c)

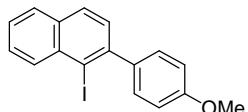

Yellow solid (mp = 84-87°C). R_f = 0.55 (Hexane: EtOAc, 10:1). $^1\text{H-NMR}$ (CDCl_3 , 200 MHz): 8.47 (d, J = 8.5 Hz, 1H), 7.91 (d, J = 7.9 Hz, 2H), 7.73-7.38 (m, 7H), 2.54 (s, 3H) ppm. $^{13}\text{C-NMR}$ (CDCl_3 , 75 MHz): 146.0 (C), 143.1 (C), 137.2 (C), 134.8 (C), 133.3 (CH), 132.7 (C), 129.3 (CH), 128.5 (CH), 128.3 (CH), 128.1 (CH), 127.9 (CH), 127.6 (CH), 126.3 (CH), 104.1 (C-I), 21.3 (CH₃) ppm. HRMS (EI) Calcd for $\text{C}_{17}\text{H}_{13}\text{I}$: 344.0062, Found: 344.0078.

1-(2-p-Tolylnaphthalen-1-yl)pentan-1-one Minor product

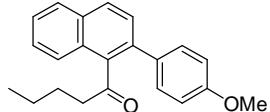

Yellow solid (mp = 98-101°C). R_f = 0.51 (Hexane: EtOAc, 10:1). $^1\text{H-NMR}$ (CDCl_3 , 200 MHz): 8.01-7.81 (m, 3H), 7.56-7.47 (m, 2H), 7.39-7.20 (m, 5H), 2.44 (s, 3H), 2.31 (t, J = 7.2 Hz, 2H), 1.52-1.43 (m, 2H), 1.22-1.02 (m, 2H), 0.73 (t, J = 7.4 Hz, 3H) ppm. $^{13}\text{C-NMR}$ (CDCl_3 , 75 MHz): 210.1 (C=O), 138.1 (C), 137.7 (C), 137.3 (C), 135.8 (C), 132.3 (C), 129.3 (CH), 129.2 (CH), 129.1 (CH), 128.8 (C), 128.1 (CH), 127.5 (CH), 127.2 (CH), 126.0 (CH), 124.7 (CH), 44.7 (CH₂), 25.7 (CH₂), 21.9 (CH₂), 21.1 (CH₃), 13.5 (CH₃) ppm. HRMS (EI) Calcd for $\text{C}_{22}\text{H}_{22}\text{O}$: 302.1671, Found 302.1671.

1-Iodo-2-(4-nitrophenyl)naphthalene (17d)

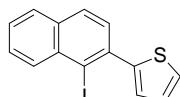
Yellow solid (mp = 152-154°C). R_f = 0.24 (Hexane: EtOAc, 20:1). $^1\text{H-NMR}$ (CDCl_3 , 200 MHz): 8.36 (d, J = 8.6 Hz, 3H), 7.93 (d, J = 8.2 Hz, 1H), 7.89 (d, J = 7.6 Hz, 1H), 7.71-7.52 (m, 4H), 7.39 (d, J = 8.2 Hz, 1H) ppm. $^{13}\text{C-NMR}$ (CDCl_3 , 75 MHz): 152.1 (C), 147.1 (C), 143.7 (C), 134.7 (C), 133.2 (CH), 133.1 (C), 130.6 (CH), 128.9 (CH), 128.5 (CH), 128.3 (CH), 127.1 (CH), 126.5 (CH), 123.2 (CH), 103.2 (C-I) ppm. HRMS (EI) Calcd for $\text{C}_{16}\text{H}_{10}\text{INO}_2$: 374.9756, Found 374.9755.


1-[2-(4-Nitrophenyl)naphthalen-1-yl]pentan-1-one: Minor product

Yellow solid (mp = 157-160°C). R_f = 0.20 (Hexane: EtOAc, 20:1). $^1\text{H-NMR}$ (CDCl_3 , 200 MHz): 8.13 (d, J = 8.6 Hz, 2H), 7.86-7.53 (m, 7H), 7.32 (d, J = 8.2 Hz, 1H), 2.37 (t, J =

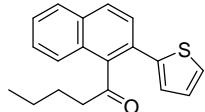

7.4 Hz, 2H), 1.52-1.44 (m, 2H), 1.31-1.10 (m, 2H), 0.91 (t, J = 7.4 Hz, 3H) ppm. ^{13}C -NMR (CDCl_3 , 75 MHz): 209.1 (C=O), 149.8 (C), 137.4 (C), 136.2 (C), 134.8 (C), 132.5 (CH), 131.1 (C), 129.7 (C), 129.5 (CH), 128.2 (CH), 127.6 (CH), 127.1 (CH), 126.0 (CH), 125.3 (CH), 122.8 (CH), 42.1 (CH_2), 26.1 (CH_2), 23.2 (CH_2), 13.1 (CH_3) ppm. HRMS (EI) Calcd for $\text{C}_{21}\text{H}_{19}\text{NO}_3$: 333.1365, Found 333.1361.

1-Iodo-2-(4-methoxyphenyl)naphthalene (17e)

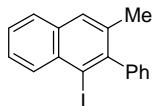

Yellow solid (mp = 85-88°C). R_f = 0.62 (Hexane: EtOAc, 3:1). ^1H -NMR (CDCl_3 , 300 MHz): 8.40 (d, J = 7.9 Hz, 1H), 7.85 (d, J = 8.3 Hz, 2H), 7.69-7.62 (m, 1H), 7.60-7.53 (m, 1H), 7.47 (d, J = 8.3 Hz, 1H), 7.40 (d, J = 8.8 Hz, 2H), 7.06 (d, J = 8.8 Hz, 2H), 3.93 (s, 3H) ppm. ^{13}C -NMR (CDCl_3 , 75 MHz): 158.9 (C), 145.7 (C), 138.5 (C), 134.9 (C), 133.4 (CH), 132.7 (C), 130.6 (CH), 128.3 (CH), 128.1 (CH), 127.9 (CH), 127.8 (CH), 126.3 (CH), 113.2 (CH), 104.5 (C-I), 55.2 (CH_3) ppm. HRMS (EI) Calcd for $\text{C}_{17}\text{H}_{13}\text{IO}$: 360.0011, Found 360.0015. Anal. Calcd for $\text{C}_{17}\text{H}_{13}\text{IO}$: C, 56.69%; H, 3.64%; Found: C, 57.03%; H, 3.11%.

1-[2-(4-Methoxyphenyl)naphthalen-1-yl]-pentan-1-one: Minor product

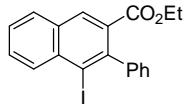
Yellow solid (mp = 96-99°C). R_f = 0.57 (Hexane: EtOAc, 3:1). ^1H -NMR (CDCl_3 , 300 MHz): 8.01-7.80 (m, 3H), 7.61-7.45 (m, 3H), 7.42 (d, J = 8.8 Hz, 2H), 7.02 (d, J = 8.8 Hz, 2H), 3.90 (s, 3H), 2.35 (t, J = 7.4 Hz, 2H), 1.54-1.42 (m, 2H), 1.19-1.10 (m, 2H), 0.75 (t, J = 7.3 Hz, 3H) ppm. ^{13}C -NMR (CDCl_3 , 75 MHz): 210.2 (C=O), 159.4 (C), 138.0 (C), 135.5 (C), 132.6 (C), 132.2 (C), 130.5 (CH), 129.2 (C), 129.1 (CH), 128.1 (CH), 127.5 (CH), 127.2 (CH), 126.0 (CH), 124.6 (CH), 114.1 (CH), 55.3 (CH_3), 44.7 (CH_2), 25.7 (CH_2), 22.0 (CH_2), 13.6 (CH_3) ppm. HRMS (EI) Calcd for $\text{C}_{22}\text{H}_{22}\text{O}_2$: 318.1620, Found 318.1617.


2-(1-Iodonaphthalen-2-yl)thiophene (17f)

Yellow solid (mp = 514-56°C). R_f = 0.52 (Hexane: EtOAc, 10:1). ^1H -NMR (CDCl_3 , 300 MHz): 8.39 (d, J = 8.5 Hz, 1H), 7.86 (d, J = 8.2 Hz, 2H), 7.69-7.54 (m, 3H), 7.48 (dd, J = 5.1, 1.1 Hz, 1H), 7.26-7.23 (m, 1H), 7.19 (dd, J = 5.1, 3.7 Hz, 1H) ppm. ^{13}C -NMR (CDCl_3 , 75 MHz): 146.8 (C), 138.9 (C), 135.7 (C), 133.8 (CH), 133.2 (C), 128.4 (CH),


128.3 (CH), 128.2 (2 x CH), 128.1 (CH), 126.8 (CH), 126.6 (CH), 125.9 (CH), 105.9 (C-I) ppm. HRMS (EI) Calcd for C₁₄H₉IS: 335.9470, Found 335.9464.

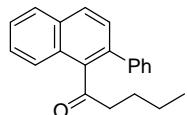
1-[2-(Thiophen-2-yl)naphthalen-1-yl]pentan-1-one: Minor product


Pale brown solid (mp = 61-64°C). R_f = 0.37 (Hexane: EtOAc, 10:1). ¹H-NMR (CDCl₃, 300 MHz): 7.95-7.90 (m, 2H), 7.81-7.78 (m, 1H), 7.64-7.54 (m, 3H), 7.46 (dd, J = 4.5, 1.8 Hz, 1H), 7.15-7.12 (m, 2H), 2.49 (t, J = 7.4 Hz, 2H), 1.64-1.54 (m, 2H), 1.30-1.18 (m, 2H), 0.83 (t, J = 7.3 Hz, 3H) ppm. ¹³C-NMR (CDCl₃, 75 MHz): 209.8 (C=O), 152.2 (C), 141.4 (C), 138.3 (C), 132.6 (C), 129.2 (CH), 128.3 (CH), 128.2 (CH), 127.9 (CH), 127.5 (CH), 127.4 (CH), 127.0 (CH), 126.4 (CH), 124.8 (CH), 44.4 (CH₂), 25.8 (CH₂), 22.0 (CH₂), 13.7 (CH₃) ppm. HRMS (EI) Calcd for C₁₉H₁₈OS: 294.1078, Found 294.1089.

1-Iodo-3-methyl-2-phenylnaphthalene (17g)

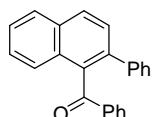
White solid (mp = 89-92°C). R_f = 0.71 (Hexane: EtOAc, 10:1). ¹H-NMR (CDCl₃, 300 MHz): 8.28 (d, J = 7.4 Hz, 1H), 7.79-7.62 (m, 2H), 7.59-7.43 (m, 5H), 7.22 (dd, J = 7.9, 1.4 Hz, 2H), 2.25 (s, 3H) ppm. ¹³C-NMR (CDCl₃, 50 MHz): 146.9 (C), 145.8 (C), 134.9 (C), 133.5 (2 x C), 133.2 (CH), 128.9 (CH), 128.6 (CH), 128.3 (CH), 127.4 (CH), 127.3 (CH), 127.0 (CH), 126.5 (CH), 106.0 (C-I), 22.8 (CH₃) ppm. HRMS (EI) Calcd for C₁₇H₁₃I: 344.0062, Found 344.0068. Anal. Calcd for C₁₇H₁₃I: C, 59.32%; H, 3.81%; Found: C, 59.42%; H, 3.96%.

4-Iodo-3-phenylnaphthalene-2-carboxylic acid ethyl ester (17h)

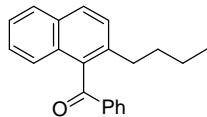


Pale yellow solid (mp = 93-96°C). R_f = 0.38 (Hexane: EtOAc, 10:1). ¹H-NMR (CDCl₃, 300 MHz): 8.37 (s, 1H), 8.36 (d, J = 8.8 Hz, 1H), 7.91 (d, J = 8.0 Hz, 1H) 7.71-7.64 (m, 1H), 7.61-7.55 (m, 1H), 7.52-7.41 (m, 3H), 7.31-7.25 (m, 2H), 4.05 (q, J = 7.1 Hz, 2H), 1.00 (t, J = 7.1 Hz, 3H) ppm. ¹³C-NMR (CDCl₃, 75 MHz): 167.1 (C=O), 145.2 (C), 143.7 (C), 135.8 (C), 133.4 (CH), 131.8 (C), 130.7 (CH), 130.3 (C), 129.7 (CH), 129.3 (CH), 129.0 (CH), 127.5 (CH), 127.4 (CH), 127.2 (CH), 107.8 (C-I), 61.0 (CH₂), 13.5 (CH₃). IR (CH₂Cl₂, cm⁻¹): 3020, 1715. HRMS (EI) Calcd for C₁₉H₁₅IO₂: 402.0117, Found

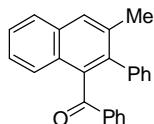
402.0125. Anal. Calcd for $C_{19}H_{15}IO_2$: C, 56.74%; H, 3.76%; Found: C, 56.54%; H, 4.05%.


General procedure for the reaction of *o*-alkynylbenzaldehyde **1 and alkenes **19-20** using IPy_2BF_4 and HBF_4 :** To a stirred solution of IPy_2BF_4 (0.37 g, 1 mmol, 1 equiv) in CH_2Cl_2 (10 mL) at $0^\circ C$ was added tetrafluoroboric acid, 54% solution in diethyl ether (0.15 mL, 1.1 mmol, 1.1 equiv). After 10 min., the corresponding *o*- (alkynyl)benzaldehyde **1** (1 mmol, 1 equiv) was added. After the mixture was stirred for 30 min. at room temperature, the corresponding alkene **19-20** (1.2 mmol, 1.2 equiv) was added and the resulting solution was stirred at room temperature until disappearance of starting benzaldehyde (reactions times are given in Tables 4 and 5). The reaction mixture was quenched with saturated aqueous $NaHCO_3$. The organic layer was washed with a 5% aqueous solution of $Na_2S_2O_3$ (50 mL) and water (50 mL), dried over sodium sulfate and concentrated. The crude was purified by flash column chromatography (silica gel, hexane/EtOAc) to afford pure compounds **18**.

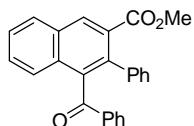
1-(2-Phenylnaphthalen-1-yl)pentan-1-one (18a).


Yellow oil. R_f = 0.37 (Hexane: EtOAc, 10:1). 1H -NMR ($CDCl_3$, 200 MHz): 8.02-7.80 (m, 3H), 7.64-7.46 (m, 8H), 2.34 (t, J = 7.2 Hz, 2H), 1.53-1.45 (m, 2H), 1.22-1.08 (m, 2H), 0.76 (t, J = 7.2 Hz, 3H) ppm. ^{13}C -NMR ($CDCl_3$, 75 MHz): 209.9 (C=O), 140.3 (C), 138.4 (C), 135.8 (C), 135.1 (C), 132.4 (C), 129.4 (CH), 129.2 (CH), 128.6 (CH), 128.1 (CH), 127.8 (CH), 127.4 (CH), 127.3 (CH), 126.2 (CH), 124.8 (CH), 44.8 (CH₂), 25.6 (CH₂), 21.9 (CH₂), 13.6 (CH₃) ppm. IR (CH_2Cl_2 , cm^{-1}): 3030, 1692. HRMS (EI) Calcd for $C_{21}H_{20}O$: 288.1514, Found: 288.1518.

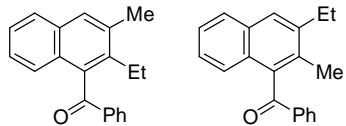
Phenyl-(2-phenylnaphthalen-1-yl)methanone (18b)


Yellow solid (mp = 117-120°C). R_f = 0.42 (Hexane: EtOAc, 10:1). 1H -NMR ($CDCl_3$, 300 MHz): 8.07 (d, J = 8.6 Hz, 1H), 8.00 (d, J = 8.5 Hz, 1H), 7.82 (d, J = 8.4 Hz, 1H), 7.72-7.67 (m, 2H), 7.65 (d, J = 8.5 Hz, 1H), 7.60-7.39 (m, 5H), 7.32-7.21 (m, 5H) ppm. ^{13}C -NMR ($CDCl_3$, 75 MHz): 199.5 (C=O)), 140.1 (C), 137.8 (C), 137.3 (C), 137.6 (C), 133.1 (CH), 132.3 (C), 130.5 (C), 129.4 (CH), 129.35 (CH), 129.3 (CH), 128.1 (CH), 18.05 (CH), 128.0 (CH), 127.4 (CH), 127.3 (CH), 127.1 (CH), 126.2 (CH), 125.4 (CH). IR (CH_2Cl_2 , cm^{-1}): 3050, 1664. HRMS (EI) Calcd. for $C_{23}H_{16}O$: 308.1201, Found: 308.1208.

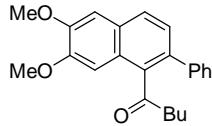
Phenyl-(2-butylnaphthalen-1-yl)methanone (18c)


Yellow oil. $R_f = 0.41$ (Hexane: EtOAc, 10:1). $^1\text{H-NMR}$ (CDCl_3 , 200 MHz): 7.98-7.81 (m, 4H), 7.61-7.37 (m, 7H), 2.63 (t, $J = 7.8$ Hz, 2H), 1.75-1.54 (m, 2H), 1.41-1.19 (m, 2H), 0.85 (t, $J = 7.3$ Hz, 3H) ppm. $^{13}\text{C-NMR}$ (CDCl_3 , 50 MHz): 200.2 (C=O), 137.8 (C), 137.2 (C), 135.5 (C), 133.6 (CH), 131.6 (C), 130.6 (C), 129.7 (CH), 128.9 (CH), 128.6 (CH), 127.9 (CH), 127.3 (CH), 126.5 (CH), 125.4 (CH), 33.35 (CH₂), 33.3 (CH₂), 22.5 (CH₂), 13.7 (CH₃) ppm. HRMS (EI) Calcd for $\text{C}_{21}\text{H}_{20}\text{O}$: 288.1514, Found: 288.1512.

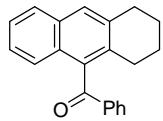
(3-Methyl-2-phenylnaphthalen-1-yl)-phenylmethanone (18d)


White solid (mp = 152-155°C). $R_f = 0.35$ (Hexane: EtOAc, 10:1). $^1\text{H-NMR}$ (CDCl_3 , 200 MHz): 7.96-7.88 (m, 2H), 7.75-7.59 (m, 3H), 7.56-7.32 (m, 4H), 7.29-7.04 (m, 6H), 2.35 (s, 3H) ppm. $^{13}\text{C-NMR}$ (CDCl_3 , 75 MHz): 199.4 (C=O), 138.1 (2 x C), 137.9 (C), 136.8 (C), 134.0 (C), 132.9 (CH), 132.6 (C), 129.2 (CH), 129.0 (CH), 128.9 (C), 128.0 (2 x CH), 127.6 (CH), 127.3 (CH), 127.0 (CH), 126.2 (CH), 126.1 (CH), 125.2 (CH), 20.9 (CH₃) ppm. IR (CH_2Cl_2 , cm^{-1}): 3052, 1667. HRMS (EI) Calcd for $\text{C}_{24}\text{H}_{18}\text{O}$: 322.1358, Found 322.1360. Anal. Calcd for $\text{C}_{24}\text{H}_{18}\text{O}$: C, 89.41%; H, 5.63%; Found: C, 89.78%; H, 5.35%.

4-Benzoyl-3-phenylnaphthalene-2-carboxylic acid methyl ester (18e)

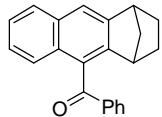

Yellow solid (mp = 151-153°C). $R_f = 0.52$ (Hexane: EtOAc, 3:1). $^1\text{H-NMR}$ (CDCl_3 , 300 MHz): 8.56 (s, 1H), 8.07 (dd, $J = 7.1, 1.4$ Hz, 1H), 7.72-7.67 (m, 1H), 7.65-7.50 (m, 5H), 7.46-7.41 (m, 1H), 7.31-6.82 (m, 6H), 3.64 (s, 3H) ppm. $^{13}\text{C-NMR}$ (CDCl_3 , 75 MHz): 198.3 (C=O), 167.9 (CO_2Me), 138.0 (C), 137.9 (C), 137.5 (C), 135.6 (C), 133.1 (CH), 131.5 (CH), 131.3 (C), 131.2 (C), 129.3 (C), 129.1 (2 x CH), 128.9 (CH), 128.1 (2 x CH), 127.3 (CH), 127.1 (CH), 126.9 (CH), 125.2 (CH), 51.9 (CH₃). IR (CH_2Cl_2 , cm^{-1}): 3028, 1728. HRMS (EI) Calcd for $\text{C}_{25}\text{H}_{18}\text{O}_3$: 366.1256, Found 366.1256. Anal. Calcd for $\text{C}_{25}\text{H}_{18}\text{O}_3$: C, 81.95%; H, 4.95%; Found: C, 82.15%; H, 4.67%.

Mixture of regioisomers: (2-Ethyl-3-methylnaphthalen-1-yl)(phenyl)methanone (major product) and (2-Ethyl-3-methylnaphthalen-4-yl)(phenyl)methanone (minor product) (18f)

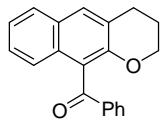

Yellow oil. $R_f = 0.42$ (Hexane: EtOAc, 10:1). $^1\text{H-NMR}$ (CDCl_3 , 300 MHz): 7.93-7.76 (m, 7H), 7.63-7.55 (m, 2), 7.51-7.39 (m, 7H), 7.36-7.28 (m, 2H), 2.86 (c, $J = 7.5$ Hz, 2H, *major*), 2.59 (s, 3H, *minor*), 2.31 (s, 3H, *major*), 1.40 (t, $J = 7.5$ Hz, 3H, *major*), 1.16 (t, $J = 7.5$ Hz, 3H, *minor*) ppm. $^{13}\text{C-NMR}$ (CDCl_3 , 75 MHz): 200.8 (C=O), 200.4 (C=O), 140.7 (C), 137.7 (C), 137.5 (C), 136.4 (C), 135.9 (C), 134.5 (C), 133.6 (2 x CH), 131.9 (C), 131.8 (C), 131.1 (C), 129.7 (CH), 129.6 (CH), 129.4 (C), 129.3 (CH), 129.1 (C), 128.7 (CH), 128.6 (CH), 127.4 (CH), 127.1 (CH), 126.8 (CH), 125.7 (CH), 125.6 (CH), 125.4 (CH), 125.3 (CH), 124.7 (CH), 124.5 (CH), 26.2 (CH₂), 24.2 (CH₂), 19.5 (CH₃), 16.4 (CH₃), 14.5 (CH₃), 14.1 (CH₃) ppm. HRMS (EI) Calcd for $\text{C}_{20}\text{H}_{18}\text{O}$: 274.1358, Found 274.1354.

1-(2,3-Dimethoxy-6-phenylnaphthalen-5-yl)pentan-1-one (18g)

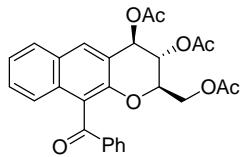
Orange oil. $R_f = 0.40$ (Hexane: EtOAc, 3:1). $^1\text{H-NMR}$ (CDCl_3 , 300 MHz): 7.80 (d, $J = 8.3$ Hz, 1H), 7.50-7.37 (m, 6H), 7.19 (t, $J = 6.6$ Hz, 2H), 4.04 (s, 3H), 3.99 (s, 3H), 2.30 (t, $J = 7.4$ Hz, 2H), 1.51-1.40 (m, 2H), 1.18-1.05 (m, 2H), 0.73 (t, $J = 7.3$ Hz, 3H) ppm. $^{13}\text{C-NMR}$ (CDCl_3 , 75 MHz): 210.4 (C=O), 150.3 (C), 149.5 (C), 140.6 (C), 136.7 (C), 134.6 (C), 129.2 (CH), 128.4 (CH), 127.5 (CH), 127.4 (CH), 125.6 (CH), 124.7 (C), 106.3 (CH), 103.3 (CH), 55.7 (2 x CH₃), 44.6 (CH₂), 25.8 (CH₂), 21.8 (CH₂), 13.5 (CH₂) ppm. HRMS (EI) Calcd for $\text{C}_{23}\text{H}_{24}\text{O}_3$: 348.1725, Found 348.1725.


Phenyl-(1,2,3,4-tetrahydroanthracen-9-yl)-methanone (18h)

Pale yellow solid (mp = 157-160°C). $R_f = 0.45$ (Hexane: EtOAc, 10:1). $^1\text{H-NMR}$ (CDCl_3 , 300 MHz): 7.85 (d, $J = 7.2$ Hz, 1H), 7.81 (d, $J = 8.2$ Hz, 1H), 7.69 (s, 1H), 7.63 (t, $J = 7.4$ Hz, 1H), 7.50-7.28 (m, 5H), 3.10-2.80 (m, 2H), 2.76-2.50 (m, 2H), 1.96-1.75 (m, 4H) ppm. $^{13}\text{C-NMR}$ (CDCl_3 , 75 MHz): 200.6 (C=O), 137.3 (C), 135.7 (2 x C), 133.6 (CH), 132.6 (C), 131.6 (C), 129.5 (CH), 129.0 (C), 128.7 (CH), 127.9 (CH), 127.3 (CH), 125.5 (CH), 125.2 (CH), 124.5 (CH), 30.0 (CH₂), 27.1 (CH₂), 22.75 (CH₂), 22.7 (CH₂) ppm. IR

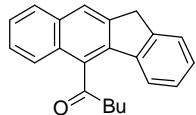

(CH₂Cl₂, cm⁻¹): 3060, 1657. HRMS (EI) Calcd for C₂₁H₁₈O: 286.1358, Found 286.1358. Anal. Calcd for C₂₅H₁₈O: C, 88.08%; H, 6.34%; Found: C, 88.58%; H, 6.09%.

3-Benzoyltetracycle[10.2.1.0^{2,11}.0^{4,9}]pentadeca-2,4,6,8,10-pentaene (18i)

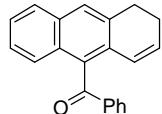

Yellow solid (mp = 126-128°C). *R*_f = 0.47 (Hexane: EtOAc, 10:1). ¹H-NMR (CDCl₃, 300 MHz): 7.92-7.88 (m, 2H), 7.85 (d, *J* = 8.1 Hz, 1H), 7.71 (s, 1H), 7.66-7.57 (m, 2H), 7.50-7.40 (m, 3H), 7.37-7.31 (m, 1H), 3.56 (s, 1H), 3.29 (s, 1H), 2.02-1.96 (m, 1H), 1.89-1.85 (m, 2H), 1.63-1.60 (m, 1H), 1.38-1.29 (m, 2H) ppm. ¹³C-NMR (CDCl₃, 75 MHz): 198.7 (C=O), 146.5 (C), 145.2 (C), 138.1 (C), 133.5 (CH), 132.5 (C), 129.8 (CH), 129.6 (C), 128.5 (CH), 127.9 (CH), 125.5 (CH), 125.2 (CH), 125.1 (CH), 119.9 (CH), 47.9 (CH₂), 43.1 (CH), 42.0 (CH), 27.5 (CH₂), 26.7 (CH₂) ppm. HRMS (EI) Calcd for C₂₂H₁₈O: 298.1358, Found 298.1362.

(3,4-Dihydro-2H-benzo[g]chromen-10-yl)(phenyl)methanone (18j)

Orange solid (mp = 125-127°C, dec). *R*_f = 0.32 (Hexane: EtOAc, 5:1). ¹H-NMR (CDCl₃, 300 MHz): 7.92-7.85 (m, 2H), 7.85 (m, 1H), 7.69 (s, 1H), 7.65-7.44 (m, 4H), 7.36-7.30 (m, 2H), 4.19 (t, *J* = 5.4 Hz, 2H), 3.10 (t, *J* = 6.4 Hz, 2H), 2.13-2.05 (m, 2H) ppm. ¹³C-NMR (CDCl₃, 75 MHz): 198.0 (C=O), 150.4 (C), 137.8 (C), 133.3 (CH), 133.1 (C), 130.7 (C), 130.3 (C), 129.6 (2 x CH), 128.5 (CH), 127.3 (CH), 126.3 (CH), 123.9 (C), 123.7 (CH), 123.6 (CH), 66.9 (CH₂), 25.6 (CH₂), 22.1 (CH₂) ppm. HRMS (EI) Calcd for C₂₀H₁₆O₂: 288.1150, Found 288.1154.


(2*S*,3*S*,4*R*)-(3,4-Diacetoxi-2-acetoximethyl-3,4-dihydro-2*H*-benzo[g]chromen-10-yl)(phenyl)methanone (18k)

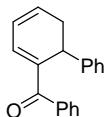
Pale yellow solid (mp = 119-122°C). *R*_f = 0.45 (Hexane: EtOAc, 1:1). ¹H-NMR (CDCl₃, 300 MHz): 7.87-7.79 (m, 4H), 7.59-7.52 (m, 2H), 7.46-7.35 (m, 4H), 6.32 (d, *J* = 6.2 Hz, 1H), 5.37 (t, *J* = 6.5 Hz, 1H), 4.44-4.38 (m, 1H), 4.27 (dd, *J* = 12.2, 5.9 Hz, 1H), 4.09 (dd, *J* = 12.2, 3.4 Hz, 1H), 2.19 (s, 3H), 2.06 (s, 3H), 1.80 (s, 3H) ppm. ¹³C-NMR (CDCl₃, 75 MHz): 196.3 (C=O), 170.3 (CO₂R), 170.2 (CO₂R), 169.4 (CO₂R), 147.6 (C), 137.7 (C), 133.5 (CH), 131.7 (C), 130.7 (CH), 129.3 (CH), 128.8 (C), 128.5 (CH), 128.2


(CH), 128.1 (CH), 124.8 (CH), 123.9 (CH), 122.2 (C), 120.4 (C), 74.5 (CH), 68.4 (CH), 67.2 (CH), 61.7 (CH₂), 20.9 (CH₃), 20.6 (CH₃), 20.3 (CH₃) ppm. IR (CH₂Cl₂, cm⁻¹) 3064, 2962, 1745, 1669, 1370, 1232. HRMS (EI) Calcd for C₂₇H₂₄O₈: 476.1471, Found 476.1463. Anal. Calcd for C₂₇H₂₄O₈: C, 68.06%; H, 5.08%; Found: C, 67.71%; H, 4.67%.

1-(11H-Benzo[b]fluoren-5-yl)pentan-1-one (18l)

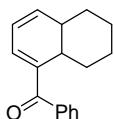
Pale yellow solid (mp = 200°C, dec). *R*_f = 0.45 (Hexane: EtOAc, 10:1). ¹H-NMR (CDCl₃, 300 MHz): 8.01 (s, 1H), 7.93-7.86 (m, 1H), 7.75-7.70 (m, 1H), 7.64-7.58 (m, 2H), 7.55-7.51 (m, 2H), 7.41 (dd, *J* = 5.7, 3.1 Hz, 2H), 4.13 (s, 2H), 3.07 (t, *J* = 7.4 Hz, 2H), 1.99-1.89 (m, 2H), 1.57-1.45 (m, 2H), 1.00 (t, *J* = 7.4 Hz, 3H) ppm. ¹³C-NMR (CDCl₃, 75 MHz): 210.3 (C=O), 144.2 (C), 140.9 (C), 139.2 (C), 134.8 (C), 132.9 (C), 132.5 (C), 128.6 (C), 128.2 (CH), 127.9 (CH), 127.1 (CH), 126.2 (CH), 125.7 (CH), 125.3 (CH), 124.2 (CH), 124.0 (CH), 122.6 (CH), 45.2 (CH₂), 36.1 (CH₂), 25.5 (CH₂), 22.3 (CH₂), 13.9 (CH₃) ppm. HRMS (EI) Calcd for C₂₂H₂₀O: 300.1514, Found 300.1515.

(7,8-Dihydroantracen-10-yl)(phenyl)methanone (18m)



Pale yellow solid (mp = 133-135°C). *R*_f = 0.5 (Hexane: EtOAc, 10:1). ¹H-NMR (CDCl₃, 300 MHz): 7.91-7.87 (m, 2H), 7.82 (d, *J* = 7.9 Hz, 1H), 7.68 (s, 1H), 7.62 (t, *J* = 7.4 Hz, 1H), 7.52-7.40 (m, 4H), 7.36-7.29 (m, 1H), 6.45 (d, *J* = 9.7 Hz, 1H), 6.19-6.12 (m, 1H), 3.07 (t, *J* = 7.4 Hz, 2H), 2.48-2.40 (m, 2H) ppm. ¹³C-NMR (CDCl₃, 75 MHz): 199.9 (C=O), 137.6 (C), 133.8 (C), 133.7 (CH), 132.3 (2 x C), 131.9 (CH), 129.7 (CH), 129.4 (C), 128.6 (CH), 127.4 (CH), 126.6 (CH), 125.8 (CH), 125.7 (CH), 125.1 (CH), 124.7 (CH), 28.1 (CH₂), 23.1 (CH₂) ppm. HRMS (EI) Calcd for C₂₁H₁₆O: 284.1195, Found 284.1195.

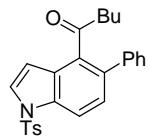
Reaction of eninal 14 with alkenes using IPy₂BF₄ and HBF₄: IPy₂BF₄ (0.37g, 1 mmol, 1 equiv) was dissolved in dry CH₂Cl₂ (10 mL). The solution was cooled at 0°C and tetrafluoroboric acid, 54% solution in diethyl ether (0.15 mL, 1.1 mmol, 1.1 equiv) was added. After 10 min., the eninal **14** (0.16 g, 1 mmol, 1 equiv) was added and the solution was stirred during 30 min. at room temperature. After this time, the corresponding alkene **19a/20a** (1.2 mmol, 1.2 equiv) was added and the solution was further stirred until disappearance of starting aldehyde. The reaction mixture was quenched with saturated aqueous NaHCO₃ and vigorously stirred. The organic layer


was washed with a 5% aqueous solution of $\text{Na}_2\text{S}_2\text{O}_3$ (50 mL) and water (50 mL); dried over sodium sulfate and concentrated. The crude were purified by flash column chromatography (silica gel, hexane/EtOAc) to afford the corresponding diene **21** or **22**.

Phenyl-(6-phenylcyclohexa-1,3-dien-1-yl)methanone (21)

Pale yellow oil. R_f = 0.48 (Hexane: EtOAc, 5:1). $^1\text{H-NMR}$ (CDCl_3 , 300 MHz): 7.65 (d, J = 7.1 Hz, 2H), 7.55-7.18 (m, 8H), 6.85 (d, J = 5.1 Hz, 1H), 6.24-6.11 (m, 2H), 4.37 (dd, J = 10.2, 2.9 Hz, 1H), 3.01 (dd, J = 18.5, 10.2 Hz, 1H), 2.74 (dt, J = 18.5, 4.5 Hz, 1H) ppm. $^{13}\text{C-NMR}$ (CDCl_3 , 75 MHz): 196.7 (C=O), 143.0 (C), 138.6 (C), 136.9 (CH), 132.9 (CH), 131.3 (CH), 128.9 (CH), 128.5 (C), 128.3 (CH), 128.0 (CH), 127.1 (CH), 126.5 (CH), 123.7 (CH), 35.2 (CH), 31.9 (CH₂) ppm. IR (CH_2Cl_2 , cm^{-1}) 3064, 1658. HRMS (EI) Calcd for $\text{C}_{19}\text{H}_{16}\text{O}$: 260.1201, Found 260.1203.

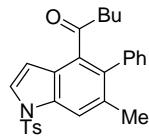
Phenyl-(1,2,3,4,4a,8a-hexahydronaphthalen-8-yl)methanone (22)



Pale yellow oil. R_f = 0.56 (Hexane: EtOAc, 5:1). $^1\text{H-NMR}$ (CDCl_3 , 300 MHz): 7.65-7.60 (m, 2H), 7.56-7.38 (m, 3H), 6.59 (d, J = 5.5 Hz, 1H), 6.18-6.00 (m, 2H), 2.94-2.67 (m, 2H), 1.91-1.56 (m, 4H), 1.51-1.26 (m, 2H) ppm. $^{13}\text{C-NMR}$ (CDCl_3 , 75 MHz): 197.3 (C=O), 140.4 (CH), 140.3 (C), 139.0 (C), 136.6 (CH), 131.1 (CH), 128.8 (CH), 127.9 (CH), 124.2 (CH), 35.6 (CH), 33.4 (CH), 29.7 (CH₂), 24.7 (CH₂), 24.1 (CH₂), 22.6 (CH₂) ppm. HRMS (EI) Calcd for $\text{C}_{17}\text{H}_{18}\text{O}$: 238.1358, Found 238.1356.

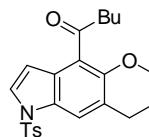
General procedure for the synthesis of benzoheterocycles 23, 27 and 28 using IPy_2BF_4 and HBF_4 : IPy_2BF_4 (112 mg, 0.3 mmol, 1 equiv) was dissolved in dry CH_2Cl_2 (5 mL). The solution was cooled at 0°C and tetrafluoroboric acid, 54% solution in diethyl ether (45 μL , 0.33 mmol, 1.1 equiv) was added. After 10 min., the corresponding *N*-tosyl protected 3-alkynylpyrrole-2-carboxaldehyde **7a-b**, 3-phenylethynylfuran-2-carboxaldehyde **26** or 3-alkynylthiophene-2-carboxaldehyde **8a-b** (0.3 mmol, 1 equiv) was added and the solution was stirred during 30 min. at room temperature. After this time, the alkene **19/20** was added and the solution was further stirred until disappearance of starting material as determined by TLC analysis (reaction times are given in Tables 6 and 7). The reaction mixture was quenched with saturated aqueous NaHCO_3 and vigorously stirred. The organic layer was washed with a 5% aqueous solution of $\text{Na}_2\text{S}_2\text{O}_3$ (20 mL) and water (20 mL); dried over sodium

sulfate and concentrated. The crude was purified by flash column chromatography (silica gel, hexane/EtOAc) to afford the pure compounds.


1-(5-Phenyl-1-*p*-tosyl-1*H*-indol-4-yl)-1-pentanone (23a):

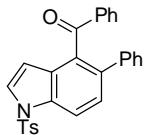
Brown oil. R_f = 0.38 (Hexane: EtOAc, 3:1). $^1\text{H-NMR}$ (CDCl_3 , 300 MHz): 8.12 (d, J = 8.6 Hz, 1H), 7.82 (d, J = 8.3 Hz, 2H), 7.68 (d, J = 3.7 Hz, 1H), 7.46-7.39 (m, 6H), 7.30-7.27 (m, 2H), 6.76 (d, J = 3.7 Hz, 1H), 2.40 (s, 3H), 2.17 (t, J = 7.6 Hz, 2H), 1.45-1.35 (m, 2H), 1.10-1.00 (m, 2H), 0.70 (t, J = 7.3 Hz, 3H).

$^{13}\text{C-NMR}$ (CDCl_3 , 75 MHz): 207.9 (C=O), 145.2 (C), 140.3 (C), 135.0 (C), 134.9 (C), 134.1 (C), 133.3 (C), 129.9 (CH), 129.1 (CH), 128.6 (CH), 128.4 (CH), 127.8 (CH), 127.7 (CH), 126.8 (CH), 126.5 (CH), 114.7 (CH), 108.0 (CH), 43.3 (CH₂), 26.4 (CH₂), 21.9 (CH₂), 21.5 (CH₃), 13.5 (CH₃). IR (CH_2Cl_2 , cm⁻¹): 1682. HRMS (EI) Calcd for $\text{C}_{26}\text{H}_{25}\text{NO}_3\text{S}$ 431.1555, Found 431.1561.


1-(6-Methyl-5-phenyl-1-*p*-tosyl-1*H*-indol-4-yl)-1-pentanone (23b):

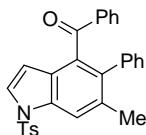
Pale yellow syrup. R_f = 0.52 (Hexane: EtOAc, 3:1). $^1\text{H-NMR}$ (CDCl_3 , 300 MHz): 7.98 (s, 1H), 7.82 (d, J = 8.2 Hz, 2H), 7.58 (d, J = 3.7 Hz, 1H), 7.43-7.30 (m, 5H), 7.25-7.22 (m, 2H), 6.62 (d, J = 3.7 Hz, 1H), 2.42 (s, 3H), 2.31 (s, 3H), 2.04 (t, J = 7.7 Hz, 2H), 1.35-1.25 (m, 2H), 1.06-0.94 (m, 2H), 0.68 (t, J = 7.4 Hz, 3H).

$^{13}\text{C-NMR}$ (CDCl_3 , 75 MHz): 207.9 (C=O), 145.0 (C), 139.1 (C), 135.2 (C), 134.3 (C), 134.1 (C), 133.1 (C), 130.1 (CH), 129.9 (CH), 129.6 (CH), 129.1 (C), 128.3 (CH), 127.6 (CH), 126.8 (CH), 126.3 (C), 115.5 (CH), 107.8 (CH), 43.4 (CH₂), 26.1 (CH₂), 22.0 (CH₂), 21.6 (CH₃), 21.5 (CH₃), 13.6 (CH₃). HRMS (EI) Calcd for $\text{C}_{27}\text{H}_{27}\text{NO}_3\text{S}$ 445.1712, Found 445.1716.


1-(1,6,7,8-Tetrahydro-1-*p*-tosylpyrano[2,3-*f*]indol-4-yl)-1-pentanone (23c):

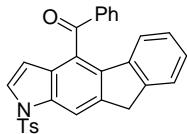
Orange syrup. R_f = 0.34 (Hexane: EtOAc, 3:1). $^1\text{H-NMR}$ (CDCl_3 , 300 MHz): 8.09 (s, 1H), 7.79-7.76 (m, 2H), 7.66 (d, J = 3.6 Hz, 1H), 7.46 (d, J = 3.6 Hz, 1H), 7.24 (d, J = 8.0 Hz, 2H), 3.94-3.83 (m, 1H), 3.58-3.45 (m, 1H), 3.06-3.01 (m, 2H), 2.98-2.93 (m, 2H), 2.37 (s, 3H), 2.04-1.99 (m, 2H), 1.80-1.70 (m, 2H), 1.48-1.40 (m, 2H), 0.96 (t, J = 7.4 Hz, 3H).

¹³C-NMR (CDCl₃, 75 MHz): 201.4 (C=O), 145.0 (C), 138.3 (C), 135.9 (C), 135.1 (C), 129.8 (CH), 129.6 (C), 128.1 (C), 127.6 (C), 126.7 (CH), 125.8 (CH), 117.6 (CH), 109.9 (CH), 66.4 (CH₂), 39.1 (CH₂), 26.4 (CH₂), 25.4 (CH₂), 22.4 (CH₂), 21.5 (CH₃), 19.7 (CH₃), 13.9 (CH₃). HRMS (EI) Calcd for C₂₃H₂₅NO₄S 411.1499, Found 411.1493.


Phenyl(5-phenyl-1-p-tosyl-1H-indol-4-yl)methanone (23d):

Pale yellow solid (mp 90-94°C). R_f = 0.34 (Hexane: EtOAc, 3:1). ¹H-NMR (CDCl₃, 200 MHz): 8.16 (d, J = 8.6 Hz, 1H), 7.81 (d, J = 8.6 Hz, 2H), 7.63-7.57 (m, 3H), 7.47-7.15 (m, 11H), 6.55 (d, J = 3.5 Hz, 1H), 2.40 (s, 3H).

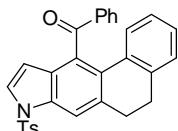
¹³C-NMR (CDCl₃, 75 MHz): 197.6 (C=O), 145.2 (C), 139.9 (C), 137.1 (C), 135.9 (C), 134.9 (C), 133.9 (C), 132.9 (CH), 130.9 (C), 129.9 (CH), 129.6 (C), 129.5 (CH), 129.2 (CH), 128.1 (CH), 128.0 (CH), 127.5 (CH), 127.1 (CH), 126.8 (CH), 126.4 (CH), 114.8 (CH), 107.9 (CH), 21.5 (CH₃). IR (CH₂Cl₂, cm⁻¹): 1660. HRMS (EI) Calcd for C₂₈H₃₁NO₃S 451.1237, Found 451.1241. Elemental analysis calcd (%) for C₂₈H₃₁NO₃S: C 74.48, H 4.69, N 3.10; found C 74.25, H 4.72, N 3.05.


(6-Methyl-5-phenyl-1-p-tosyl-1H-indol-4-yl)(phenyl)methanone (23e):

Yellow syrup. R_f = 0.30 (Hexane: EtOAc, 3:1). ¹H-NMR (CDCl₃, 300 MHz): 8.03 (s, 1H), 7.82 (d, J = 8.3 Hz, 2H), 7.54-7.51 (m, 3H), 7.44-7.38 (m, 1H), 7.32-7.24 (m, 5H), 7.22-7.15 (m, 2H), 7.13-7.04 (m, 2H), 6.39 (d, J = 3.7 Hz, 1H), 2.42 (s, 3H), 2.29 (s, 3H).

¹³C-NMR (CDCl₃, 75 MHz): 197.9 (C=O), 145.1 (C), 138.4 (C), 137.6 (C), 135.4 (C), 135.1 (C), 133.9 (C), 133.4 (2 x C), 132.9 (CH), 132.3 (C), 130.0 (CH), 129.9 (CH), 129.4 (CH), 127.9 (CH), 127.7 (CH), 126.9 (CH), 126.8 (CH), 126.7 (CH), 115.5 (CH), 107.7 (CH), 21.6 (CH₃), 21.4 (CH₃). HRMS (EI) Calcd for C₂₉H₂₃NO₃S 465.1399, Found 465.1398.

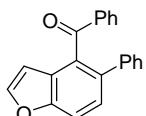
(1,9-Dihydro-1-p-tosylindeno[1,2-f]indol-4-yl)(phenyl)methanone (23g):



Yellow syrup. R_f = 0.37 (Hexane: EtOAc, 3:1). ¹H-NMR (CDCl₃, 300 MHz): 8.29 (s, 1H), 7.90 (d, J = 8.5 Hz, 2H), 7.79 (d, J = 8.5 Hz, 2H), 7.58 (t, J = 7.4 Hz, 1H), 7.55-7.53 (m,

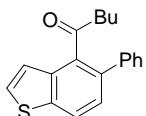
2H), 7.47-7.42 (m, 2H), 7.32-7.21 (m, 4H), 7.15-7.09 (m, 1H), 6.38 (d, J = 3.7 Hz, 1H), 4.08 (s, 2H), 2.38 (s, 3H).

^{13}C -NMR (CDCl₃, 75 MHz): 197.4 (C=O), 145.2 (C), 143.7 (C), 141.4 (C), 139.4 (C), 136.8 (C), 135.0 (C), 134.5 (C), 134.0 (CH), 133.9 (C), 130.1 (CH), 129.9 (2 x CH), 128.8 (CH), 128.3 (C), 126.9 (CH), 126.7 (2 x CH), 126.0 (C), 124.8 (CH), 122.7 (CH), 111.3 (CH), 107.9 (CH), 36.8 (CH₂), 21.5 (CH₃). HRMS (EI) Calcd for C₂₉H₂₁NO₃S 463.1242, Found 463.1232.

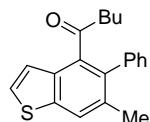

(6,8-Dihydro-8-p-tosyl-5H-naphtho[1,2-f]indol-11-yl)(phenyl)methanone (23h):

Yellow solid (mp 124-126°C). R_f = 0.41 (Hexane: EtOAc, 3:1). ^1H -NMR (CDCl₃, 300 MHz): 8.09 (s, 1H), 7.83 (d, J = 8.1 Hz, 2H), 7.68 (d, J = 7.9 Hz, 2H), 7.55 (d, J = 3.7 Hz, 1H), 7.46-7.26 (m, 6H), 7.18 (d, J = 7.4 Hz, 1H), 7.04 (t, J = 7.17 Hz, 1H), 6.92 (t, J = 7.5 Hz, 1H), 6.55 (d, J = 3.7 Hz, 1H), 3.06-3.01 (m, 2H), 2.92-2.88 (m, 2H), 2.41 (s, 3H).

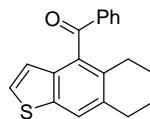
^{13}C -NMR (CDCl₃, 75 MHz): 198.5 (C=O), 145.1 (C), 138.5 (C), 137.0 (C), 136.7 (2 x C), 135.1 (C), 133.8 (C), 133.1 (CH), 131.6 (C), 129.9 (CH), 129.5 (CH), 129.3 (C), 129.0 (C), 128.5 (CH), 128.3 (CH), 127.4 (CH), 127.3 (CH), 126.8 (CH), 126.7 (CH), 126.3 (CH), 113.8 (CH), 108.2 (CH), 30.8 (CH₂), 29.6 (CH₂), 21.5 (CH₃). HRMS (EI) Calcd for C₃₀H₂₃NO₃S 477.1399, Found 477.1398. Elemental analysis calcd (%) for C₃₀H₂₃NO₃S: C 75.45, H 4.85, N 2.93; found C 75.12, H 4.96, N 3.11.


Phenyl(5-phenylbenzofuran-4-yl)methanone (27):

Light yellow oil. R_f = 0.62 (Hexane: EtOAc, 3:1). ^1H -NMR (CDCl₃, 300 MHz): 7.72-7.62 (m, 4H), 7.46-7.16 (m, 9H), 6.70 (s, 1H).


^{13}C -NMR (CDCl₃, 75 MHz): 197.5 (C=O), 154.1 (C), 146.3 (CH), 140.2 (C), 137.4 (C), 136.0 (C), 133.2 (C), 132.8 (CH), 130.9 (C), 129.6 (CH), 129.4 (CH), 128.1 (CH), 128.0 (CH), 127.0 (CH), 126.4 (CH), 113.0 (CH), 106.3 (CH). IR (CH₂Cl₂, cm⁻¹): 1657. HRMS (EI) Calcd for C₂₁H₁₄O₂ 298.0988, Found 298.0979.

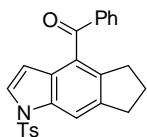
1-(5-Phenylbenzo[b]thiophen-4-yl)-1-pentanone (28a):


Brown solid (mp 60-62°C). R_f = 0.45 (Hexane: EtOAc, 10:1). $^1\text{H-NMR}$ (CDCl_3 , 300 MHz): 7.98 (d, J = 8.5 Hz, 1H), 7.56 (d, J = 5.7 Hz, 1H), 7.48-7.40 (m, 7H), 2.21 (t, J = 7.7 Hz, 2H), 1.49-1.39 (m, 2H), 1.16-1.04 (m, 2H), 0.70 (t, J = 7.4 Hz, 3H). $^{13}\text{C-NMR}$ (CDCl_3 , 75 MHz): 208.8 (C=O), 140.3 (C), 139.4 (C), 136.6 (C), 135.9 (C), 135.4 (C), 129.2 (CH), 128.6 (CH), 128.2 (CH), 127.7 (CH), 125.9 (CH), 123.5 (CH), 122.8 (CH), 43.8 (CH₂), 26.2 (CH₂), 21.9 (CH₂), 13.5 (CH₃). IR (CH_2Cl_2 , cm⁻¹): 1693. HRMS (EI) Calcd for $\text{C}_{19}\text{H}_{18}\text{OS}$ 294.1078, Found 294.1075.

1-(6-Methyl-5-phenylbenzo[b]thiophen-4-yl)pentan-1-one (28b)

Yellow oil. R_f = 0.42 (Hexane: EtOAc, 10:1). $^1\text{H-NMR}$ (CDCl_3 , 300 MHz): 7.87 (s, 1H), 7.52-7.40 (m, 4H), 7.34-7.26 (m, 3H), 2.32 (s, 3H), 2.21 (t, J = 7.7 Hz, 2H), 1.41-1.30 (m, 2H), 1.14-1.01 (m, 2H), 0.77 (t, J = 7.5 Hz, 3H) ppm. $^{13}\text{C-NMR}$ (CDCl_3 , 75 MHz): 208.6 (C=O), 139.6 (C), 138.9 (C), 137.2 (C), 134.8 (C), 134.5 (C), 132.5 (C), 130.2 (CH), 128.3 (CH), 127.6 (CH), 126.8 (CH), 124.1 (CH), 122.5 (CH), 43.9 (CH₂), 25.9 (CH₂), 22.0 (CH₂), 20.9 (CH₃), 13.6 (CH₃) ppm. HRMS (EI) Calcd for $\text{C}_{20}\text{H}_{20}\text{OS}$: 308.1235, Found 308.1231.

Phenyl-(5,6,7,8-tetrahydronaphtho[2,3-b]thiophen-4-yl)methanone (28c)

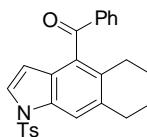

Yellow oil. R_f = 0.42 (Hexane: EtOAc, 10:1). $^1\text{H-NMR}$ (CDCl_3 , 300 MHz): 7.85 (d, J = 7.1 Hz, 2H), 7.71 (s, 1H), 7.64-7.57 (m, 1H), 7.50-7.41 (m, 3H), 6.90 (d, J = 5.7 Hz, 1H), 3.02-2.96 (m, 2H), 2.72-2.66 (m, 2H), 1.87-1.75 (m, 4H) ppm. $^{13}\text{C-NMR}$ (CDCl_3 , 75 MHz): 199.2 (C=O), 138.6 (C), 137.2 (C), 137.1 (C), 135.8 (C), 133.7 (CH), 133.2 (C), 132.5 (C), 129.7 (CH), 128.7 (CH), 126.2 (CH), 123.2 (CH), 121.8 (CH), 30.1 (CH₂), 27.0 (CH₂), 22.9 (CH₂), 22.7 (CH₂) ppm. HRMS (EI) Calcd for $\text{C}_{19}\text{H}_{16}\text{OS}$: 292.0916, Found 292.0910.

Procedure for the synthesis of the indole 23f using IPy_2BF_4 and HBF_4 :

IPy_2BF_4 (115 mg, 0.31 mmol, 1 equiv) was dissolved in dry 1,2-dichloroethane (5 mL) in a sealed tube. The solution was cooled at 0°C and tetrafluoroboric acid, 54% solution in diethyl ether (21 μL , 0.15 mmol, 0.5 equiv) was added. After 10 min., 3-phenylethynyl-*N*-tosylpyrrole-2-carboxaldehyde **7a** (108 mg, 0.31 mmol, 1 equiv) was added and the solution was stirred during 30 min. at room temperature. After this time, cyclopentene **20g** (110 μL , 1.24 mmol, 4 equiv) was added and the solution was

further stirred at 60°C for 2 hours. The reaction mixture was allowed to reach room temperature and then was quenched with saturated aqueous NaHCO₃ and vigorously stirred. The organic layer was washed with a 5% aqueous solution of Na₂S₂O₃ (25 mL) and water (25 mL); dried over sodium sulfate and concentrated. The crude was purified by flash column chromatography (silica gel, hexane/EtOAc) to afford 47 mg (37%) of the pure compound **23f**.

(1,5,6,7-Tetrahydro-1-p-tosylcyclopenta[f]indol-4-yl)(phenyl)methanone (23f):

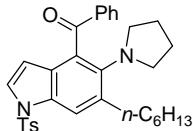


Brown solid (mp 98-100°C). R_f = 0.38 (Hexane: EtOAc, 3:1). ¹H-NMR (CDCl₃, 300 MHz): 7.99 (s, 1H), 7.78- 7.75 (m, 4H), 7.57 (t, J = 7.7 Hz, 1H), 7.48-7.42 (m, 3H), 7.28-7.24 (m, 2H), 6.36 (d, J = 3.7 Hz, 1H), 3.01 (t, J = 7.4 Hz, 2H), 2.74 (t, J = 7.1 Hz, 2H), 2.38 (s, 3H), 2.11-2.01 (m, 2H).

¹³C-NMR (CDCl₃, 75 MHz): 197.1 (C=O), 144.9 (C), 142.6 (C), 139.2 (C), 137.9 (C), 135.2 (C), 134.3 (C), 133.2 (CH), 129.9 (CH), 129.7 (CH), 128.5 (CH), 128.4 (C), 127.3 (C), 126.7 (CH), 126.4 (CH), 111.6 (CH), 108.2 (CH), 32.8 (CH₂), 31.9 (CH₂), 26.2 (CH₂), 21.5 (CH₃). HRMS (EI) Calcd for C₂₅H₂₁NO₃S 415.1242, Found 415.1248.

General procedure for the synthesis of the indoles 23i and 23j using IPy₂BF₄: IPy₂BF₄ (115 mg, 0.31 mmol, 1 equiv) was dissolved in dry CH₂Cl₂ (5 mL) and 3-phenylethynyl-N-tosylpyrrole-2-carboxaldehyde **7a** (108 mg, 0.31 mmol, 1 equiv) was added at room temperature. After stirring the solution for 30 min, the corresponding enamine was added: 199 μ L (1.24 mmol, 4 equiv) of 1-pyrrolidino-1-cyclohexene **24a** or 224 mg (1.24 mmol, 4 equiv) of 1-pyrrolidino-1-hexene **24b**; and the solution was further stirred at room temperature for 12 hours. The reaction mixture was quenched with saturated aqueous NaHCO₃ and vigorously stirred. The organic layer was washed with a 5% aqueous solution of Na₂S₂O₃ (25 mL) and water (25 mL); dried over sodium sulfate and concentrated. The crude was purified by flash column chromatography (silica gel, hexane/EtOAc) to afford 41 mg (31%) of the pure compound **23i** or 70 mg (43%) of the pure compound **23j**.

(5,6,7,8-Tetrahydro-1-p-tosyl-1H-benzo[f]indol-4-yl)(phenyl)methanone (23i):

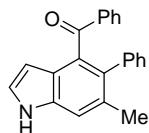


Light brown syrup. R_f = 0.36 (Hexane: EtOAc, 3:1). ¹H-NMR (CDCl₃, 300 MHz): 7.82 (s, 1H), 7.78-7.62 (m, 3H), 7.59-7.57 (m, 1H), 7.47-7.41 (m, 3H), 7.28-7.24 (m, 3H), 6.20

(d, $J = 3.7$ Hz, 1H), 3.01-2.97 (m, 2H), 2.65-2.60 (m, 2H), 2.38 (s, 3H), 1.82-1.71 (m, 4H).

^{13}C -NMR (CDCl₃, 75 MHz): 198.4 (C=O), 144.9 (C), 137.1 (C), 135.0 (C), 134.9 (C), 133.6 (CH), 133.1 (C), 131.2 (C), 129.9 (C), 129.8 (CH), 129.7 (CH), 128.6 (CH), 128.8 (C), 126.7 (CH), 126.4 (CH), 114.5 (CH), 107.4 (CH), 30.5 (CH₂), 26.9 (CH₂), 22.8 (CH₂), 22.6 (CH₂), 21.5 (CH₃). HRMS (EI) Calcd for C₂₆H₂₃NO₃S 429.1393, Found 429.1394.

{6-Hexyl-5-(pyrrolidin-1-yl)-1-p-tosyl-1H-indol-4-yl}(phenyl)methanone (23j):

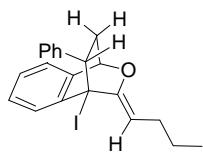

Orange syrup. $R_f = 0.54$ (Hexane: EtOAc, 3:1). ^1H -NMR (CDCl₃, 300 MHz): 7.93 (s, 1H), 7.77 (d, $J = 8.5$ Hz, 2H), 7.71-7.68 (m, 2H), 7.57-7.51 (m, 1H), 7.46 (d, $J = 3.7$ Hz, 1H), 7.43-7.38 (m, 2H), 7.28-7.24 (m, 2H), 6.36 (d, $J = 3.7$ Hz, 1H), 2.96-2.91 (m, 4H), 2.70-2.64 (m, 2H), 2.39 (s, 3H), 1.68-1.63 (m, 2H), 1.54-1.53 (m, 4H), 1.35-1.34 (m, 6H), 0.9 (t, $J = 7.1$ Hz, 3H).

^{13}C -NMR (CDCl₃, 75 MHz): 197.9 (C=O), 145.0 (C), 141.2 (C), 139.7 (C), 138.4 (C), 135.1 (C), 132.7 (CH), 132.1 (C), 131.8 (C), 129.8 (CH), 128.9 (CH), 128.1 (CH), 127.8 (C), 126.8 (CH), 126.7 (CH), 115.7 (CH), 107.4 (CH), 51.9 (CH₂), 32.0 (CH₂), 31.7 (CH₂), 31.0 (CH₂), 29.4 (CH₂), 25.7 (CH₂), 22.6 (CH₂), 21.5 (CH₃), 14.1 (CH₃). HRMS (EI) Calcd for C₃₂H₃₆N₂O₃S 528.2441, Found 528.2425.

Reaction of 3-phenylethynyl-N-tosylpyrrole-2-carboxaldehyde 7a with I₂ and styrene 19a: Reaction of 3-phenylethynyl-N-tosylpyrrole-2-carboxaldehyde **7a** (87 mg, 0.25 mmol, 1 equiv), K₂CO₃ (34 mg, 0.25 mmol, 1 equiv), styrene **19a** (34 μL , 0.3 mmol, 1.2 equiv), I₂ (76 mg, 0.3 mmol, 1.2 equiv) in 5 mL of CH₂Cl₂ at room temperature until disappearance of the starting material. The reaction mixture was quenched with saturated aqueous Na₂S₂O₃ and water. The solution was extracted with CH₂Cl₂, dried over sodium sulfate and concentrated. The crude was purified by flash column chromatography (silica gel, hexane/EtOAc) to afford pure compound **23d** (70 mg, 62%). This compound has been characterized above.

Procedure for the synthesis of the compound 25: A mixture of the N-tosyl protected indole **23e** (30 mg, 0.065 mmol, 1 equiv) in 5 mL of ethanol and 15% ethanolic NaOH (85 μL , 0.32 mmol, 5 equiv) was stirred at reflux temperature for 3h. The solution was concentrated in vacuo and the residue was dissolved in CH₂Cl₂ and washed with water. The organic phase was dried and concentrated to give 17 mg (85%) of the pure indole **25**.

(6-Methyl-5-phenyl-1H-indol-4-yl)(phenyl)methanone (25):

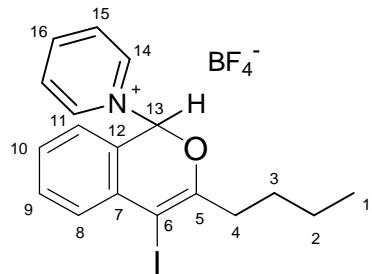

Brown solid (mp 164-166°C). R_f = 0.27 (Hexane: EtOAc, 3:1). $^1\text{H-NMR}$ (CDCl_3 , 300 MHz): 8.34 (broad s, 1H), 7.65-7.62 (m, 2H), 7.44-7.41 (m, 2H), 7.31-7.25 (m, 2H), 7.19-7.17 (m, 6H), 6.31 (s, 1H), 2.30 (s, 3H).

$^{13}\text{C-NMR}$ (CDCl_3 , 75 MHz): 199.1 (C=O), 139.6 (C), 138.4 (C), 135.3 (C), 132.4 (CH), 131.6 (C), 130.5 (CH), 130.3 (C), 129.5 (CH), 127.8 (CH), 127.5 (CH), 126.5 (CH), 124.7 (CH), 124.5 (C), 113.2 (CH), 101.9 (CH), 21.1 (CH₃). IR (CH_2Cl_2 , cm⁻¹): 3335, 1651. HRMS (EI) Calcd for $\text{C}_{22}\text{H}_{17}\text{NO}$ 311.1304, Found 311.1305. Elemental analysis calcd (%) for $\text{C}_{22}\text{H}_{17}\text{NO}$: C 84.86, H 5.50, N 4.50; found C 84.81, H 5.56, N 4.38.

Procedure for the synthesis of compound III:

IPy_2BF_4 (0.37 g, 1 mmol, 1 equiv) was dissolved in dry CH_2Cl_2 (4 mL) and *o*-(1-hexynyl)benzaldehyde **1b** (0.19 g, 1 mmol, 1 equiv) was added at room temperature. After stirring the solution for 6 hours, styrene **19a** was added (114 μL , 1 mmol, 1 equiv) and the solution was further stirred at room temperature for 3 days. Solvent was removed under pressure to afford the pure compound **III** as an orange solid in quantitative yield.

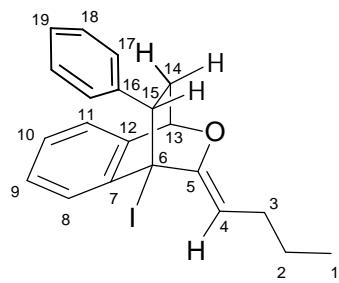
10-Butenilydene-1-iodo-9-oxa-11-phenyl-tricycle[6.2.2.0^{2,7}]dodeca-2,4,6-triene (III)



Orange solid (mp = 65°C, dec). $^1\text{H-NMR}$ (CDCl_3 , 400 MHz): 7.48 (td, J = 7.4, 1.3 Hz, 1H), 7.39 (td, J = 7.6, 1.3 Hz, 1H), 7.35 (m, 2H), 7.17 (t, J = 7.3 Hz, 1H), 7.09 (t, J = 8.0, 7.5 Hz, 2H), 6.34 (broad s, 1H), 5.47 (dd, J = 3.9, 1.2 Hz, 1H), 5.43 (t, J = 7.1 Hz, 1H), 3.65 (dd, J = 10.3, 4.3 Hz, 1H), 2.96 (ddd, J = 10.3, 7.2, 3.9 Hz, 1H), 2.03 (m, 3H), 1.40 (sextet, J = 7.3 Hz, 2H), 0.93 (t, J = 7.3 Hz, 3H) ppm.

$^{13}\text{C-NMR}$ (CDCl_3 , 100 MHz): 150.8 (C), 144.2 (C), 138.5 (C), 137.1 (C), 131.4 (CH), 129.0 (CH), 128.7 (CH), 128.4 (CH), 127.5 (CH), 127.0 (CH), 121.8 (CH), 104.0 (CH), 73.1 (CH), 56.6 (C), 52.1 (CH), 39.3 (CH₂), 27.7 (CH₂), 22.9 (CH₂), 13.7 (CH₃) ppm. HRMS (EI) Calcd for $\text{C}_{21}\text{H}_{21}\text{IO}$: 416.0637, Found 416.0634.

Structure elucidation of Intermediates I and III by 1D- and 2D-NMR:


Intermediate I

Site	¹³ C-NMR (ppm)	DEPT		¹ H-NMR (ppm)	COSY	HMBC
1	13.5	CH ₃		0.83 (3H, t, <i>J</i> = 7.3 Hz)	H-2	C-2, C-3
2	21.9	CH ₂		1.16 (2H, bs)	H-1	
3	28.6	CH ₂		1.31 (2H, quintet, <i>J</i> = 7.4 Hz)	H-2, H-4	C-1, C-2, C-4, C-5
4	36.1	CH ₂		2.67 (2H, bs)	H-3	C-3, C-5, C-6
5	153.8	C				
6	74.8	C				
7	118.6	C				
8	133.1	CH		7.72 (2H, m)	H-9	C-6
9	129.5	CH		7.54 (1H, ddd, <i>J</i> = 8.2, 6.9, 2.0 Hz)		C-7, C-11
10	128.3	CH		7.63 (1H, d, <i>J</i> = 7.5 Hz)	H-9	C-8, C-12
11	130.2	CH		7.72 (2H, m)	H-9	C-7, C-13
12	131.7	C				
13	93.0	CH		7.90 (1H, s)		C-5, C-7, C-10, C-11, C-12
14	142.7 ¹	CH	²			
15	138.0 ¹	CH	²			
16	124.5 ¹	CH	²			

¹ Broad signals. ² The pyridine protons appear as broad signals over the aromatic zone: 8.1 – 7.7 and 7.6 – 7.3 ppm.

Intermediate **III**

Site	¹³ C-NMR (ppm)	DEPT		¹ H-NMR (ppm)	COSY	HMBC
1	13.7	CH ₃		0.93 (3H, t, <i>J</i> = 7.3 Hz)	H-2	C-2, C-3
2	22.9	CH ₂		1.40 (2H, sextet, <i>J</i> = 7.3 Hz)	H-1, H-3	C-1, C-3, C-4
3	27.7	CH ₂		2.03 (3H, m)	H-2	C-1, C-2, C-4, C-5
4	104.0	CH		5.43 (1H, t, <i>J</i> = 7.1 Hz)	H-3	C-5, C-6
5	150.8	C				
6	56.6	C				
7	137.1	C				
8	121.8	CH		7.35 (2H, m)	H-9, H-10	C-6, C-7, C-9, C-10, C-15
9	128.4	CH		7.48 (1H, td, <i>J</i> = 7.4, 1.3 Hz)	H-10	C-11, C-12
10	128.7	CH		7.39 (1H, td, <i>J</i> = 7.6, 1.3 Hz)	H-8, H-11	C-7, C-8
11	131.4	CH		7.35 (2H, m)	H-9	C-7, C-8, C-9, C-10
12	138.5	C				
13	52.1	CH		3.65 (1H, dd, <i>J</i> = 10.3, 4.3 Hz)	H-14	C-6, C-7, C-10, C- 16
14	39.3	CH ₂		2.03 (3H, m)	H-13, H-15	
				2.96 (1H, ddd, <i>J</i> = 10.3, 7.2, 3.9 Hz)		C-12, C-15
15	73.1	CH		5.47 (1H, dd, <i>J</i> = 3.9, 1.2 Hz)	H-14	C-5, C-6, C-7, C-13
16	144.2	C				
17	129.0	CH		6.34 (bs, 2H)	H-18	
18	127.5	CH		7.09 (2H, t, <i>J</i> = 8.0, 7.5 Hz)	H-17, H-19	C-16, C-19
19	127.0	CH		7.17 (1H, t, <i>J</i> = 7.3 Hz)	H-18	C-16, C-17