Syntheses and Properties of Enantiomerically Pure Higher \((n \geq 7) \)

\([n-2]\text{Triangulanedimethanols and } \sigma-[n]\text{Helicenes}\)

Armin de Meijere*, Alexander F. Khlebnikov, Sergei I. Kozhushkov, Dmitrii S. Yufit,
Olga V. Chetina, Judith A. K. Howard, Takuya Kurahashi, Kazutoshi Miyazawa, Daniel
Frank, Peter R. Schreiner, B. Christopher Rinderspacher, Mari Fujisawa, Chiyo
Yamamoto, and Yoshio Okamoto
I. Synthesis of (1S,3R,4S,5S,6S,7S,8R,9S)-[9-(hydroxymethyl)hexaspiro-
[2.0.0.0.0.1.1.1.1]pentadec-1-yl]methanol [(1S,3R,4S,5S,6S,7S,8R,9S)-22]

2-[(1S,3R,4S)-5,5-Dibromodispiro[2.0.2.1]hept-1-ylmethoxy]tetrahydro-2H-pyran
[(1S,3R,4S)-20]: The crude compound (1S,3R,4S)-20 (30.4 g, 97%) was obtained from
[(1S,3R,4S)-5,5-dibromo[2.0.2.1]hept-1-yl]methanol [(1S,3R,4S)-19] (24.0 g, 85 mmol),
DHP (12.9 g, 153 mmol) and PPTS (1.3 g, 5.2 mmol) in CH₂Cl₂ (150 mL) according to
GP 2 (20 °C, 2 h) and used without further purification. ¹H NMR (250 MHz, CDCl₃):
δ = 4.82–4.61 (m, 1 H; CHO₂), 3.96–3.74 (m, 2 H; CH₂O), 3.72–3.54 (m, 2 H; CH₂O),
2.13–1.40 (m, 11 H), 1.35–0.98 (m, 1 H; cPr-H), 0.91–0.84 (m, 1 H; cPr-H).

(E)-(3S,3'S,4R,4'R,5S,5'S)-(5'-Hydroxymethyl-[1,1']bi[dispiro[2.0.2.1]heptylidene]-
5-yl)methanol [(E)-(3S,3'S,4R,4'R,5S,5'S)-21]: Compound (1S,3R,4S)-20 (30.4 g, 83.1
mmol) was treated with nBuLi (99.6 mmol, 41.2 mL of a 2.42 M solution in hexane) and
CuCl₂ (2.20 g, 16.4 mmol) in THF/Et₂O 15:1 (256 mL) and the oily residue (19.1 g) was
worked up with MeOH (1000 mL) and PPTS (1.30 g, 5.2 mmol) according to GP 3 (60 °C,
2 h). Column chromatography of the residue (300 g of silica gel, 8 × 50 cm column,
hexane/Et₂O 2:1, Rᵢ = 0.25) followed by recrystallization from hexane/Et₂O furnished
(E)-(3S,3'S,4R,4'R,5S,5'S)-21 (5.20 g, 25% over three steps) as a colorless solid, m.p.
122–127 °C; [α]ᵢ²⁰ = +33.4 (c = 0.500 in CHCl₃); ¹H NMR (250 MHz, CDCl₃): δ = 3.75
(dd, J = 6.4, 11.2 Hz, 2 H; 2 CH₂O), 3.57 (dd, J = 7.2, 11.2 Hz, 2 H; 2 CH₂O), 1.66 (br s,
2 H; 2 OH), 1.53 (d, J = 5.6 Hz, 2 H; cPr-H), 1.52 (m, 2 H; cPr-H), 1.39 (m, 4 H; cPr-H), 1.30 (d, J = 5.6 Hz, 2 H; cPr-H), 1.10 (dd, J = 7.8, 4.6 Hz, 2 H; cPr-H), 0.81 (dd, J = 4.6, 4.5 Hz, 2 H; cPr-H); 13C NMR (62.9 MHz, CDCl3): δ = 122.4 (2 C), 66.1 (2 CH2), 21.8 (2 C), 19.8 (2 C), 16.3 (2 C), 13.7 (2 CH2), 10.1 (2 CH2), 9.8 (2 CH2); IR (KBr): ν (tilde) = 3244, 3059, 2992, 2963, 2888, 1419, 1330, 1123, 1047, 987, 838 cm⁻¹; MS (Cl): m/z (%): 507/506 (1/4) (2M + NH₄⁺) 264/263/262 (2/16/100) (M + NH₄⁺); elemental analysis calcd (%) for C₁₆H₂₀O₂: C 78.65, H 8.25; found C 78.35, H 7.94. Its structure was also confirmed by X-ray crystal structure analysis.[10]

Scheme 10. Synthesis of (1S,3R,4S,5S,6S,7S,8R,9S)-[9-(hydroxymethyl)hexaspiro[2.0.0.0.0.0.2.1.1.1.1]pentadec-1-yl]methanol [(1S,3R,4S,5S,6S,7S,8R,9S)-22].

Reagents and conditions: a) DHP, PPTS, CH₂Cl₂, 20 °C, 2 h; b) nBuLi, CuCl₂, THF/Et₂O 15:1, −105 to −95 °C, 1 h, then −78 to 20 °C, 2 h; c) MeOH, PPTS, 60 °C, 2 h; d) CH₂N₂ (134 equiv.), CuCl (2.67 equiv.), 20 °C, 3 h.
pentadec-1-yl)methanol [(1S,3R,4S,5S,6S,7S,8R,9S)-22]: Each of three equal portions of the diol (E)-(3S,3'S,4R',5S,5'S)-21 (70 mg, 0.29 mmol) in diethyl ether (50 mL) was treated with CH₂N₂ (29.1 mmol, 10 mL of a 2.9 M solution in Et₂O) in the presence of CuCl (57 mg, 0.58 mmol) according to GP 4, and the combined reaction mixtures were treated with CH₂N₂ (29.1 mmol, 10 mL of a 2.9 M solution in Et₂O) in the presence of CuCl (57 mg, 0.58 mmol) according to GP 4 again. Column chromatography of the residue (20 g of silica gel, 2 × 30 cm column, pentane/Et₂O 1:2, Rᵣ = 0.24) afforded (1S,3R,4S,5S,6S,7S,8R,9S)-22 (40 mg, 18%) as a colorless solid, m.p. 132–135 °C, [α]D²⁰ = −190.8 (c = 0.50 in CHCl₃); ¹H NMR (250 MHz, CDCl₃): δ = 3.70 (dd, J = 6.3, 11.2 Hz, 2 H; 2 CH₂O), 3.51 (dd, J = 7.5, 11.2 Hz, 2 H; 2 CH₂O), 1.66 (br, 2 H; 2 OH), 1.44 (m, 2 H; cPr-H), 1.18 (m, 4 H, cPr-H), 1.11 (d, J = 3.9 Hz, 2 H; cPr-H), 1.02 (s, 2 H; cPr-H), 0.99 (d, J = 3.9 Hz, 2 H; cPr-H), 0.92 (dd, J = 4.4, 7.7 Hz, 2 H; cPr-H), 0.75 (dd, J = 4.4, 4.5 Hz, 2 H; cPr-H); ¹³C NMR (62.9 MHz, CDCl₃): δ = 66.2 (2 CH₂), 29.6 (2 C), 20.8 (2 CH), 17.9 (2 C), 17.4 (2 C), 13.0 (CH₂), 10.2 (2 CH₂), 9.6 (2 CH₂), 8.7 (2 CH₂); IR (KBr): ν (tilde) = 3244, 3028, 2963, 2887, 1718, 1457, 1419, 1333, 1271, 1152, 1104, 1023, 762, 703 cm⁻¹; MS (Cl): m/z (%): 536/535/534 (1/4/7) (2M + NH₄⁺), 278/277/276 (2/16/100) (M + NH₄⁺); elemental analysis calcd (%) for C₁₇H₂₂O₂: C 79.03, H 8.58; found C 79.05, H 8.53.

II. Esterification of diols (P)-(+)→14, (1S,3R,4S,5S,6S,7S,8R,9S)-22 and (P)-(+)→22

General procedure GP 10: To a solution of the respective diol, the respective acid and DMAP in anhydrous CH₂Cl₂ (2 mL) was added DCC at 0 °C. The reaction mixture was
stirred at ambient temp. for an additional 12 h and then concentrated under reduced pressure. The product was purified by column chromatography on silica gel (12.5 g of silica gel, 2 × 30 cm column, hexane/Et₂O 20:1).

(1S,3R,4R,5R,6R,7S)-{7-[(4-n-Pentylbenzoyl)oxymethyl]tetraspiro[2.0.0.0.2.1.1.1]-undec-1-yl)methyl} 4-n-pentylbenzoate (43a): Column chromatography (R₁ = 0.25) of the reaction mixture obtained from diol (P)-(+)−14 (31 mg, 0.15 mmol), 4-n-pentylbenzoic acid (88 mg, 0.46 mmol), DMAP (2.4 mg, 0.02 mmol) and DCC (103 mg, 0.50 mmol) according to GP 10 gave 43a (39 mg, 47%) as a colorless powder, m.p. 49.0–52.9 °C, [α]D²⁰ = +190.3 (c = 0.3 in CHCl₃); ¹H NMR (250 MHz, CDCl₃): δ = 7.96 (d, J = 8.1 Hz, 4 H; Ar -H), 7.24 (d, J = 8.1 Hz, 4 H; Ar-H), 4.32 (d, J = 7.0 Hz, 4 H; 2 CH₂O), 2.66 (t, J = 7.4 Hz, 4 H; 2 CH₃), 1.63 (m, 4 H), 1.52 (m, 2 H; cPr-H), 1.34–1.07 (m, 16 H), 0.89 (t, J = 5.2 Hz, 6 H; 2 CH₃), 0.83 (t, J = 4.4 Hz, 2 H; cPr-H); ¹³C NMR (62.9 MHz, CDCl₃): δ = 166.8 (2 C), 148.4 (2 C), 129.6 (4 CH), 128.4 (2 C), 127.9 (4 CH), 68.4 (2 CH₂), 35.9 (2 CH₂), 31.4 (2 CH₂), 30.8 (2 CH₂), 22.5 (2 CH₂), 18.5 (2 CH), 18.2 (2 C), 15.0 (2 C), 14.0 (2 CH₃), 11.5 (CH₂), 9.8 (2 CH₂), 8.7 (2 CH₂); IR (KBr): ν(tilde) = 3041, 2930, 2857, 1720, 1611, 1462, 1445, 1415, 1383, 1309, 1271, 1177, 1106, 963, 857, 764 cm⁻¹; MS (EI): m/z (%): 554 (1) (M⁺), 363 (8), 175 (100), 171 (21), 155 (14), 91 (17), 41 (6); HRMS (CI): calcd for C₃₇H₅₉NO₄: M⁺ + NH₄ 572.3734; found 572.3735.

(1S,3R,4R,5R,6R,7S)-{7-[(4-trans-n-Pentylcyclohexanecarbonyl)oxymethyl]tetraspiro[2.0.0.0.2.1.1.1]-undec-1-yl)methyl} (4-trans-n-pentyl)cyclohexanecarboxylate
(43b): Column chromatography (Rf = 0.24) of the reaction mixture obtained from diol (P)-(+)−14 (31 mg, 0.15 mmol), 4-trans-n-pentylcyclohexanecarboxylic acid (89 mg, 0.45 mmol), DMAP (2.4 mg, 0.02 mmol) and DCC (103 mg, 0.50 mmol) according to GP 10 gave 43b (54 mg, 63%) as a colorless powder, m.p. 77.3–78.8 °C, [α]20D = +180.0 (c = 0.50 in CHCl3); 1H NMR (250 MHz, CDCl3): δ = 4.06 (d, J = 7.2 Hz, 4 H; 2 CH2O), 2.22 (tt, J = 3.4, 12.1 Hz, 2 H; cHex-H), 1.94 (d, J = 11.7 Hz, 4 H; 2 CH2), 1.79 (d, J = 12.0 Hz, 4 H; 2 CH2), 1.51–0.99 (m, 36 H), 0.87 (t, J = 7.0 Hz, 6 H; 2 CH3), 0.70 (t, J = 4.5 Hz, 2 H; cPr-H); 13C NMR (CDCl3, 62.9 MHz): δ = 176.4 (2 C), 67.7 (2 CH2), 43.6 (2 CH2), 37.2 (2 CH2), 36.9 (2 CH), 32.3 (2 CH2), 32.1 (2 CH2), 29.1 (4 CH2), 26.5 (2 CH2), 22.7 (4 CH2), 18.4 (2 CH), 18.2 (2 C), 14.9 (2 C), 14.1 (2 CH3), 11.4 (CH2), 9.6 (2 CH2), 8.6 (2 CH2); IR (KBr): ν (tilde) = 3046, 2953, 2923, 2852, 1729, 1450, 1371, 1272, 1180, 1141, 1035, 997, 900, 866, 763 cm−1; MS (EI): m/z (%): 566 (1) (M+), 222 (32), 99 (100), 55 (64), 41 (6); HRMS (CI): calcd for C37H62NO4: M+ + NH4 584.4673; found 584.4674.

(1S,3R,4R,5R,6R,7S)-7-[(4-n-Propylbenzoyl)oxymethyl]tetraspiro[2.0.0.0.2.1.1.1]-undec-1-yl)methyl] 4-n-propylbenzoate (43c): Column chromatography (Rf = 0.23) of the reaction mixture obtained from diol (P)-(+)−14 (31 mg, 0.15 mmol), 4-n-propylbenzoic acid (74 mg, 0.45 mmol), DMAP (2.4 mg, 0.02 mmol) and DCC (103 mg, 0.50 mmol) according to GP 10 gave 43c (30 mg, 40%) as a colorless powder, m.p. 73–77 °C, [α]20D = +213.8 (c = 0.50 in CHCl3); 1H NMR (250 MHz, CDCl3): δ = 7.97 (d, J = 8.1 Hz, 4 H; Ar-H), 7.24 (d, J = 8.1 Hz, 4 H; Ar-H), 4.33 (d, J = 7.0 Hz, 4 H; 2 CH2O), 2.64 (t, J = 8.0 Hz, 4 H; 2 CH2), 1.73–1.50 (m, 6 H), 1.25–1.07 (m, 8 H), 0.94 (t, J = 7.3
Hz, 6 H; 2 CH3), 0.82 (t, J = 4.5 Hz, 2 H; cPr-H); 13C NMR (62.9 MHz, CDCl3): δ = 166.8 (2 C), 148.1 (2 C), 129.6 (4 CH), 128.4 (2 C), 128.0 (4 CH), 68.4 (2 CH2), 38.0 (2 CH2), 24.3 (2 CH2), 18.5 (2 CH), 18.3 (2 C), 15.0 (2 C), 13.7 (2 CH3), 11.5 (CH2), 9.8 (2 CH2), 8.7 (2 CH2); IR (KBr): nu(tilde) = 3042, 2961, 2963, 2872, 1717, 1610, 1559, 1457, 1309, 1271, 1178, 1057, 1019, 851, 761, 703 cm⁻¹; MS (EI): m/z (%): 498 (1) (M⁺), 147 (100), 91 (19), 57 (46), 41 (16); HRMS (CI): calcd for C33H42NO4: M⁺ + NH₄ 516.3108; found 516.3108.

(1S,3R,4R,5R,6R,7S)-{7-[(4-trans-n-Propylcyclohexanecarbonyl)oxymethyl]tetraspiro[2.0.0.0.2.1.1.1]undec-1-yl)methyl} (4-trans-n-propyl)cyclohexanecarboxylate (43d): Column chromatography (Rf = 0.26) of the reaction mixture obtained from diol (P)-(+)–14 (31 mg, 0.15 mmol), 4-trans-n-propylecyclohexanecarboxylic acid (77 mg, 0.45 mmol), DMAP (2.4 mg, 0.02 mmol) and DCC (103 mg, 0.50 mmol) according to GP 10 gave 43d (53 mg, 69%) as a colorless powder, m.p. 90–95 ºC, [α]D₀ = +197.4 (c = 0.50 in CHCl3); 1H NMR (250 MHz, CDCl3): δ = 4.06 (d, J = 7.2 Hz, 4 H; 2 CH2O), 2.22 (tt, J = 12.2, 3.6 Hz, 2 H; cHex-H), 1.94 (d, J = 11.0 Hz, 4 H; 2 CH2), 1.78 (d, J = 11.0 Hz, 4 H; 2 CH2), 1.51–0.85 (m, 28 H), 0.86 (t, J = 7.2 Hz, 6 H; 2 CH3), 0.70 (t, J = 4.5 Hz, 2 H; cPr-H); 13C NMR (62.9 MHz, CDCl3): δ = 176.4 (2 C), 67.7 (2 CH2), 43.6 (2 CH2), 39.5 (2 CH2), 36.6 (2 CH), 32.3 (4 CH2), 29.1 (4 CH2), 19.9 (2 CH2), 18.4 (2 CH), 18.2 (2 C), 14.9 (2 C), 14.3 (2 CH3), 11.4 (CH2), 9.6 (2 CH2), 8.6 (2 CH2); IR (KBr): nu(tilde) = 3048, 2915, 2856, 1722, 1559, 1457, 1374, 1315, 1253, 1223, 1186, 1143, 1092, 1037, 996, 948, 737 cm⁻¹; MS (EI): m/z (%): 510 (1) (M⁺), 239 (14), 222 (23), 207 (35), 125 (37), 69 (100),
(1S,3R,4R,5R,6R,7S)-7-[4-n-Pentyloxybenzoyl]oxymethyl]tetraspiro[2.0.0.0.2.1.1.1.undec-1-yl]methyl) 4-n-pentyloxybenzoate (43e): Column chromatography (RF = 0.09) of the reaction mixture obtained from diol (P)-(+) \textbf{14} (31 mg, 0.15 mmol), 4-n-pentyloxybenzoic acid (94 mg, 0.45 mmol), DMAP (2.4 mg, 0.02 mmol) and DCC (103 mg, 0.50 mmol) according to GP 10 gave 43e (30 mg, 34%) as a colorless powder, m.p. 86.3–88.7 °C, [α]D20 = +178.8 (c = 0.50 in CHCl3); ¹H NMR (250 MHz, CDCl3): δ = 8.00 (d, J = 8.9 Hz, 4 H; Ar-H), 6.91 (d, J = 8.9 Hz, 4 H; Ar-H), 4.28 (dd, J = 7.3, 2.2 Hz, 4 H; 2 CH₂O), 4.00 (t, J = 6.6 Hz, 4 H; 2 CH₂O), 1.80 (m, 4 H), 1.54–1.06 (m, 18 H), 0.93 (t, J = 7.3 Hz, 6 H; 2 CH₃), 0.81 (t, J = 4.5 Hz, 2 H; cPr-H); ¹³C NMR (62.9 MHz, CDCl3): δ = 166.6 (2 C), 162.8 (2 C), 131.5 (4 CH), 122.6 (2 C), 114.0 (4 CH), 68.21 (2 CH₂), 68.19 (2 CH₂), 28.8 (2 CH₂), 28.1 (2 CH₂), 22.4 (2 CH₂), 18.5 (2 CH), 18.2 (2 C), 15.0 (2 C), 14.0 (2 CH₃), 11.5 (CH₂), 9.8 (2 CH₂), 8.7 (2 CH₂); IR (KBr): ν(tilde) = 3048, 2955, 2933, 2871, 1717, 1606, 1507, 1457, 1419, 1387, 1313, 1272, 1254, 1167, 1102, 1052, 846, 770, 696, 649 cm⁻¹; MS (EI): m/z (%): 586 (1) (M⁺), 363 (8), 175 (100), 171 (21), 155 (14), 91 (17); HRMS (CI): calcd for C₃₇H₅₀NO₆: M⁺ + NH₄ 604.3633; found 604.3632.

(1S,3R,4R,5R,6R,7S)-7-[(n-Hexanoyl)oxymethyl]tetraspiro[2.0.0.0.2.1.1.1.undec-1-yl]methyl) n-hexanoate (43f): Column chromatography (RF = 0.36) of the reaction mixture obtained from diol (P)-(+) \textbf{14} (31 mg, 0.15 mmol), n-hexanoic acid (52 mg, 0.45...
mmol), DMAP (2.4 mg, 0.02 mmol) and DCC (103 mg, 0.50 mmol) according to GP 10 gave 45f (24 mg, 40%) as a colorless oil, $[\alpha]_{D}^{20} = +244.0 (c = 0.3 \text{ in CHCl}_3)$; 1H NMR (250 MHz, CDCl$_3$): $\delta = 4.07$ (dd, $J = 4.2$, 7.0 Hz, 4 H; 2 CH$_2$O), 2.31 (t, $J = 7.6$ Hz, 4 H; 2 CH$_2$), 1.63 (m, 4 H), 1.41–1.25 (m, 10 H), 0.90 (t, $J = 6.8$ Hz, 6 H; 2 CH$_3$), 0.70 (t, $J = 4.5$ Hz, 2 H; cPr-H); 13C NMR (62.9 MHz, CDCl$_3$): $\delta = 174.1$ (2 C), 67.9 (2 CH$_2$), 34.4 (2 CH$_2$), 31.3 (2 CH$_2$), 24.7 (2 CH$_2$), 22.3 (2 CH$_2$), 18.5 (2 CH), 18.2 (2 C), 14.9 (2 C), 13.9 (2 CH$_3$), 11.5 (CH$_2$), 9.6 (2 CH$_2$), 8.6 (2 CH$_2$); IR (Film): ν(tilde) = 3048, 2957, 2937, 2860, 1734, 1653, 1540, 1457, 1362, 1275, 1243, 1172, 1095, 1026, 991, 889, 734 cm$^{-1}$; MS (EI): m/z (%): 402 (1) (M^+), 303 (8), 115 (23), 99 (100); HRMS (CI): calcd for C$_{25}$H$_{42}$NO$_4$: M^+ + NH$_4$ 420.3108; found 420.3109.

(1S,3R,4S,5S,6S,7S,8R,9S)-9-[(4-n-Pentylbenzoyl)oxymethyl]hexaspiro-
[2.0.0.0.0.2.1.1.1.1]pentadec-1-yl)methyl] 4-n-pentylbenzoate (44a): Column chromatography ($R_f = 0.41$) of the reaction mixture obtained from diol (1S,3R,4S,5S,6S,7S,8R,9S)-22 (50 mg, 0.2 mmol), 4-n-pentylbenzoic acid (115 mg, 0.6 mmol), DMAP (2.4 mg, 0.02 mmol) and DCC (136 mg, 0.66 mmol) according to GP 10 gave 44a (37 mg, 31%) as a colorless powder, m.p. 68.3–70.8 °C, $[\alpha]_{D}^{20} = -139.7 (c = 0.35 \text{ in CHCl}_3)$; 1H NMR (250 MHz, CDCl$_3$): $\delta = 7.92$ (d, $J = 8.3$ Hz, 4 H; Ar-H), 7.22 (d, $J = 8.3$ Hz, 4 H; Ar-H), 4.48 (dd, $J = 8.2$, 11.1 Hz, 2 H; CH$_2$O), 4.12 (dd, $J = 8.2$, 11.1 Hz, 2 H; CH$_2$O), 2.65 (t, $J = 8.0$ Hz, 4 H; 2 CH$_2$), 1.64 (m, 6 H), 1.39–1.25 (m, 8 H), 1.22 (d, $J = 3.7$ Hz, 2 H; cPr-H), 1.15 (d, $J = 3.7$ Hz, 2 H; cPr-H), 1.06–0.86 (m, 16 H); 13C NMR (62.9 MHz, CDCl$_3$): $\delta = 166.7$ (2 C), 148.4 (2 C), 129.5 (4 CH), 128.3 (2 C), 127.9 (4 CH),
68.6 (2 CH₂), 35.9 (2 CH₂), 31.4 (2 CH₂), 30.9 (2 CH₂), 22.5 (2 CH₂), 18.5 (2 CH), 17.9 (2 C), 17.4 (2 C), 14.1 (2 CH₃), 14.0 (2 CH₂), 10.3 (2 CH₂), 10.1 (2 CH₂), 8.7 (2 CH₂), 8.6 (CH₂); IR (KBr): ν̃ = 3041, 2957, 2930, 2857, 1716, 1611, 1510, 1462, 1415, 1329, 1353, 1309, 1272, 1177, 1105, 1019, 985, 939, 857, 763, 703, 637 cm⁻¹; MS (EI): m/z (\%): 606 (1) (M⁺), 207 (18), 175 (100), 91 (21), 41 (6); HRMS (CI): calcd for C₄₁H₅₄NO₄: M⁺ + NH₄ 624.4047; found 624.4045.

(1S,3R,4S,5S,6S,7S,8R,9S)-[9-[(4-trans-n-Pentylcyclohexanecarbonyl)oxymethyl]-hexaspiro[2.0.0.0.0.1.1.1.1]pentadec-1-yl)methyl] (4-trans-n-pentyl)cyclohexanecarboxylate (44b): Column chromatography (Rf = 0.41) of the reaction mixture obtained from diol (1S,3R,4S,5S,6S,7S,8R,9S)-22 (50 mg, 0.2 mmol), 4-trans-n-pentylcyclohexanecarboxylic acid (119 mg, 0.6 mmol), DMAP (2.4 mg, 0.02 mmol) and DCC (136 mg, 0.66 mmol) according to GP 10 gave 44b (47 mg, 39%) as a colorless powder, m.p. 63–70 °C, [α]₂₀^D = −146.4 (c = 0.50 in CHCl₃); ¹H NMR (250 MHz, CDCl₃): δ = 4.21 (dd, J = 8.1, 11.2 Hz, 2 H; CH₂O), 3.89 (dd, J = 8.1, 11.2 Hz, 2 H; CH₂O), 2.18 (tt, J = 3.4, 12.1 Hz, 2 H; cHex-H), 1.92 (d, J = 12.5 Hz, 4 H; 2 CH₂), 1.77 (d, J = 12.5 Hz, 4 H; 2 CH₂), 1.53–1.11 (m, 30 H), 1.00–0.80 (m, 18 H); ¹³C NMR (CDCl₃, 62.9 MHz): δ = 176.2 (2 C), 67.8 (2 CH₂), 43.7 (2 CH₂), 37.1 (2 CH₂), 36.9 (2 CH), 32.3 (2 CH₂), 32.1 (2 CH₂), 29.0 (4 CH₂), 26.5 (2 CH₂), 22.7 (4 CH₂), 18.5 (2 CH), 17.9 (2 C), 17.4 (2 C), 14.2 (2 CH₃), 14.1 (2 C), 10.02 (2 CH₂), 9.96 (2 CH₂), 8.8 (2 CH₂), 8.6 (CH₂); IR (KBr): ν̃ = 3042, 2921, 2853, 1725, 1448, 1316, 1279, 1171, 1135, 1035, 993, 904 cm⁻¹; MS (EI): m/z (\%): 618 (1) (M⁺), 239 (43), 207 (53), 99 (100), 55 (54); HRMS (CI): calcd
for C\textsubscript{43}H\textsubscript{66}NO\textsubscript{4}: \(M^+\)+NH\textsubscript{4} 636.4986; found 636.4985.

\([1S,3R,4S,5S,6S,7S,8R,9S]-\{9-[(4-n-Propylbenzoyl)oxy\textsubscript{methyl}]\text{hexaspiro-}\[2.0.0.0.0.2.1.1.1.1.1]\text{pentadec-1-yl}methyl\} 4-n-propy\textsubscript{b}eno\text{zoate} (44c): Column chromatography (\(R_f = 0.36\)) of the reaction mixture obtained from diol \([1S,3R,4S,5S,6S,7S,8R,9S]-22\) (40 mg, 0.155 mmol), 4-\(n\)-propy\text{b}eno\text{z}ic acid (77 mg, 0.47 mmol), DMAP (2.4 mg, 0.02 mmol) and DCC (103 mg, 0.50 mmol) according to GP 10 gave 44c (24 mg, 28%) as a colorless powder, m.p. 74–93 °C. \([\alpha]_D^{20} = -151.4\) (c = 0.35 in CHCl\textsubscript{3}); \(\text{1H NMR (250 MHz, CDCl\textsubscript{3})}: \delta = 7.92\) (d, \(J = 8.2\) Hz, 4 H; Ar-H), 7.22 (d, \(J = 8.2\) Hz, 4 H; Ar-H), 4.47 (dd, \(J = 8.0, 11.5\) Hz, 2 H; CH\textsubscript{2}O), 4.11 (dd, \(J = 8.0, 11.5\) Hz, 2 H; CH\textsubscript{2}O), 2.64 (t, \(J = 8.0\) Hz, 4 H; 2 CH\textsubscript{2}), 1.73–1.55 (m, 6 H), 1.29 (d, \(J = 3.7\) Hz, 2 H; cPr-H), 1.22 (d, \(J = 4.0\) Hz, 2 H; cPr-H), 1.15 (d, \(J = 3.7\) Hz, 2 H; cPr-H), 0.98–0.92 (m, 8 H), 0.94 (t, \(J = 7.4\) Hz, 6 H; 2 CH\textsubscript{3}); \(\text{13C NMR (62.9 MHz, CDCl\textsubscript{3})}: \delta = 166.7\) (2 C), 148.1 (2 C), 129.5 (4 CH), 128.4 (2 C), 127.9 (4 CH), 68.6 (2 CH\textsubscript{2}), 38.0 (2 CH\textsubscript{2}), 24.3 (2 CH\textsubscript{2}), 18.5 (2 CH), 17.9 (2 C), 17.4 (2 C), 14.1 (2 C), 13.7 (2 CH\textsubscript{3}), 10.3 (2 CH\textsubscript{2}), 10.1 (2 CH\textsubscript{2}), 8.7 (2 CH\textsubscript{2}), 8.6 (CH\textsubscript{2}); IR (KBr): nu(\text{tilde}) = 3041, 2966, 2930, 2871, 1717, 1653, 1559, 1506, 1457, 1419, 1308, 1271, 1178, 1104, 1074, 1019, 761, 703 cm-1; MS (EI): \(m/z\) (%): 550 (1) (\(M^+\)), 207 (13), 147 (100), 119 (15), 91 (19), 57 (12), 41 (17); HRMS (CI): calcd for C\textsubscript{37}H\textsubscript{46}NO\textsubscript{4}: \(M^+\) + NH\textsubscript{4} 568.3421; found 568.3421.

\([1S,3R,4S,5S,6S,7S,8R,9S]-\{9-[(4-trans-\text{n-Propylcyclohexanecarbonyl)oxy\text{methyl}]\text{hexaspiro-}\[2.0.0.0.0.2.1.1.1.1.1]\text{pentadec-1-yl}methyl\} 4-trans-\text{n-propy\text{c}lohexa-}
necarboxylate (44d): Column chromatography ($R_f = 0.36$) of the reaction mixture obtained from diol (1S,3R,4S,5S,6S,7S,8R,9S)-22 (40 mg, 0.15 mmol), 4-trans-n-propylcyclohexanecarboxylic acid (94 mg, 0.55 mmol), DMAP (2.4 mg, 0.02 mmol) and DCC (103 mg, 0.50 mmol) according to GP 10 gave 44d (30 mg, 34%) as a colorless powder, m.p. 79–87 °C, $[\alpha]_D^{20} = -151.4$ ($c = 0.50$ in CHCl$_3$); 1H NMR (250 MHz, CDCl$_3$): $\delta = 4.21$ (dd, $J = 6.5, 11.3$ Hz, 2 H; CH$_2$O), 3.88 (dd, $J = 8.1, 11.3$ Hz, 2 H; CH$_2$O), 2.18 (tt, $J = 3.5, 12.2$ Hz, 2 H; cHex-H), 1.92 (d, $J = 12.2$ Hz, 4 H; 2 CH$_2$), 1.77 (d, $J = 12.2$ Hz, 4 H; 2 CH$_2$), 1.50–1.11 (m, 24 H), 1.02–0.94 (m, 6 H), 0.89 (t, $J = 7.0$ Hz, 6 H; 2 CH$_3$), 0.89–0.78 (m, 4 H); 13C NMR (62.9 MHz, CDCl$_3$): $\delta = 176.2$ (2 C), 67.8 (2 CH$_2$), 43.6 (2 CH$_2$), 39.4 (2 CH$_2$), 36.6 (2 CH), 32.2 (4 CH$_2$), 29.0 (4 CH$_2$), 19.8 (2 CH$_2$), 18.4 (2 C), 17.9 (2 C), 17.4 (2 C), 14.3 (2 CH$_3$), 14.2 (2 C), 10.1 (2 CH$_2$), 10.0 (2 CH$_2$), 8.7 (2 CH$_2$), 8.5 (CH$_2$); IR (KBr): ν (tilde) = 3048, 1743, 1653, 1617, 1559, 1506, 1457, 1419, 1393, 1176, 1038, 908, 668 cm$^{-1}$; MS (EI): m/z (%): 562 (1) (M^+), 222 (31), 207 (35), 125 (42), 69 (100), 55 (14); HRMS (CI): calcd for C$_{37}$H$_{58}$NO$_5$: M^+ + NH$_4$ 580.4360; found 580.4360.

(1S,3R,4S,5S,6S,7S,8R,9S)-[9-[(4-n-Pentyloxybenzoyl)oxymethyl]hexaspiro-
[2.0.0.0.0.2.1.1.1.1]pentadec-1-yl)methyl] 4-n-pentyloxybenzoate (44e): Column chromatography ($R_f = 0.20$) of the reaction mixture obtained from diol (1S,3R,4S,5S,6S,7S,8R,9S)-22 (40 mg, 0.15 mmol), 4-n-pentyloxybenzoic acid (94 mg, 0.45 mmol), DMAP (2.4 mg, 0.02 mmol) and DCC (103 mg, 0.50 mmol) according to GP 10 gave 44e (57 mg, 58%) as a colorless powder, m.p. 69–85 °C, $[\alpha]_D^{20} = -162.0$ ($c = 0.50$)
in CHCl₃; ¹H NMR (250 MHz, CDCl₃): δ = 7.94 (d, J = 8.8 Hz, 4 H; Ar-H), 6.88 (d, J = 8.8 Hz, 4 H; Ar-H), 4.45 (dd, J = 6.7, 11.2 Hz, 2 H; CH₂O), 4.10 (dd, J = 6.7, 11.2 Hz, 2 H; CH₂O), 4.00 (t, J = 6.6 Hz, 4 H; 2 CH₂O), 1.80 (m, 4 H), 1.60–1.14 (m, 14 H), 1.09–1.04 (m, 4 H), 0.99–0.85 (m, 6 H), 0.93 (t, J = 6.9 Hz, 6 H; 2 CH₃); ¹³C NMR (62.9 MHz, CDCl₃): δ = 166.4 (2 C), 162.8 (2 C), 131.4 (4 CH), 122.6 (2 C), 113.9 (4 CH), 68.4 (2 CH₂), 68.1 (2 CH₂), 28.8 (2 CH₂), 28.1 (2 CH₂), 22.4 (2 CH₂), 18.4 (2 CH), 17.9 (2 C), 17.4 (2C), 14.1 (2 CH₃), 14.0 (2 C), 10.3 (2 CH₂), 10.1 (2 CH₂), 8.7 (2 CH₂), 8.6 (CH₂); IR (KBr): ν(tilde) = 3044, 2957, 2936, 2872, 1714, 1607, 1559, 1511, 1457, 1313, 1273, 1254, 1168, 1101, 1020, 989, 846, 770, 697, 646 cm⁻¹; MS (EI): m/z (%): 638 (1) (M⁺), 363 (32), 175 (100), 171 (21), 155 (14), 91 (17); HRMS (CI): calcd for C₄₁H₅₄NO₆: M⁺ + NH₄ 656.3946; found 656.3945.

(1S,3R,4S,5S,6S,7S,8R,9S)-{9-[(n-Hexanoyl)oxy)methyl]hexaspiro[2.0.0.0.0.0.2.1.1.1.1.-pentadec-1-yl)methyl} n-hexanoate (44f): Column chromatography (Rₛ = 0.43) of the reaction mixture obtained from diol (1S,3R,4S,5S,6S,7S,8R,9S)-22 (60 mg, 0.23 mmol), n-hexanoic acid (80 mg, 0.69 mmol), DMAP (2.4 mg, 0.02 mmol) and DCC (156 mg, 0.76 mmol) according to GP 10 gave 44f (68 mg, 65%) as a colorless oil, [α]₂⁰⁰ = –151.0 (c = 0.50 in CHCl₃); ¹H NMR (250 MHz, CDCl₃): δ = 4.03 (dd, J = 4.2, 7.2 Hz, 4 H; 2 CH₂O), 2.26 (t, J = 7.4 Hz, 4 H; 2 CH₂), 1.53 (m, 4 H), 1.41–1.11 (m, 14 H), 0.99 (m, 6 H), 0.90–0.79 (m, 10 H); ¹³C NMR (62.9 MHz, CDCl₃): δ = 173.8 (2 C), 67.9 (2 CH₂), 34.3 (2 CH₂), 31.3 (2 CH₂), 24.6 (2 CH₂), 22.2 (2 CH₂), 18.3 (2 CH), 17.9 (2 C), 17.4 (2 C), 14.2 (2 CH₃), 13.9 (2 C), 10.11 (2 CH₂), 10.09 (2 CH₂), 8.62 (2 CH₂), 8.58 (CH₂); IR
(Film): ν(tilde) = 3043, 2959, 2933, 2872, 2864, 1735, 1457, 1363, 1276, 1243, 1173, 1096, 1007, 996, 907, 865, 734 cm$^{-1}$; MS (EI): m/z (%): 454 (1) (M^+), 303 (12), 115 (21), 99 (100); HRMS (CI): calcd for C$_{29}$H$_{46}$NO$_4$: M^+ + NH$_4$ 472.3421; found 472.3421.

(1S,3R,4R,5R,6R,7R,8R,9S)-(9-[(4-n-Pentylbenzoyl)oxymethyl]hexaspiro-
[2.0.0.0.0.2.1.1.1.1]pentadec-1-yl)methyl] 4-n-pentylbenzoate (45a): Column chromatography ($R_f= 0.28$) of the reaction mixture obtained from diol (P)-(+)–22 (50 mg, 0.2 mmol), 4-n-pentylbenzoic acid (115 mg, 0.6 mmol), DMAP (2.4 mg, 0.02 mmol) and DCC (136 mg, 0.66 mmol) according to GP 10 gave 45a (61 mg, 52%) as a colorless powder, m.p. 71–76 °C, $[\alpha]_D^{20} = +270.0$ ($c = 0.50$ in CHCl$_3$); 1H NMR (250 MHz, CDCl$_3$): $\delta = 7.97$ (d, $J = 8.3$ Hz, 4 H; Ar-H), 7.25 (d, $J = 8.3$ Hz, 4 H; Ar-H), 4.34 (d, $J = 6.9$ Hz, 4 H; 2 CH$_2$O), 2.66 (t, $J = 7.4$ Hz, 4 H; 2 CH$_2$), 1.63 (t, $J = 7.4$ Hz, 4 H), 1.54 (m, 2 H; cPr-H), 1.32 (m, 8 H), 1.25 (d, $J = 3.9$ Hz, 4 H; cPr-H), 1.10 (m, 8 H), 0.89 (t, $J = 6.7$ Hz, 6 H; 2 CH$_3$), 0.83 (t, $J = 4.5$ Hz, 2 H; cPr-H); 13C NMR (62.9 MHz, CDCl$_3$): $\delta = 166.8$ (2 C), 148.3 (2 C), 130.0 (4 CH), 128.4 (2 C), 128.0 (4 CH), 68.4 (2 CH$_2$), 35.9 (2 CH$_2$), 31.4 (2 CH$_2$), 30.8 (2 CH$_2$), 22.5 (2 CH$_2$), 18.5 (2 CH), 18.1 (2 C), 17.6 (2 C), 15.0 (2 C), 14.0 (2 CH$_3$), 10.4 (2 CH$_2$), 9.8 (2 CH$_2$), 8.9 (CH$_2$), 8.8 (2 CH$_2$); IR (KBr): ν(tilde) = 3042, 2967, 2857, 1718, 1457, 1419, 1363, 1271, 1177, 1104, 1020, 762, 703 cm$^{-1}$; MS (EI): m/z (%): 606 (1) (M^+), 222 (11), 207 (13), 175 (100), 91 (19), 41 (7); HRMS (CI): calcd for C$_{41}$H$_{54}$NO$_4$: M^+ + NH$_4$ 624.4047; found 624.4047.

(1S,3R,4R,5R,6R,7R,8R,9S)-(9-[(4-$trans$-n-Pentylcyclohexanecarbonyl)oxymethyl]oxymethyl]-
hexaspiro[2.0.0.0.0.2.1.1.1.1]pentadec-1-yl)methyl} (4-trans-n-pentyl)cyclohexanecarboxylate (45b): Column chromatography ($R_f = 0.18$) of the reaction mixture obtained from diol (P)-(+)\textbf{-22} (50 mg, 0.2 mmol), 4\textit-trans-n\textit-pentylcyclohexanecarboxylic acid (119 mg, 0.6 mmol), DMAP (2.4 mg, 0.02 mmol) and DCC (136 mg, 0.66 mmol) according to GP 10 gave 45b (70 mg, 58%) as a colorless powder, m.p. 65–72 °C, α\textbf{-20} = +217.0 (c = 0.50 in CHCl$_3$); 1H NMR (250 MHz, CDCl$_3$): δ = 4.07 (d, $J = 7.1$ Hz, 4 H; 2 CH$_2$O), 2.23 (tt, $J = 3.4$, 12.1 Hz, 2 H; cHex-H), 1.95 (d, $J = 11.7$ Hz, 4 H; 2 CH$_2$), 1.79 (d, $J = 11.7$ Hz, 4 H; 2 CH$_2$), 1.22 (m, 38 H), 1.02 (m, 2 H), 0.87 (t, $J = 7.0$ Hz, 6 H; 2 CH$_3$), 0.72 (t, $J = 4.4$ Hz, 2 H; cPr-H); 13C NMR (CDCl$_3$, 62.9 MHz): δ = 176.4 (2 C), 67.8 (2 CH), 43.7 (2 CH$_2$), 37.2 (2 CH$_2$), 36.9 (2 CH), 32.3 (2 CH$_2$), 32.1 (2 CH$_2$), 29.1 (4 CH$_2$), 26.5 (2 CH$_2$), 22.7 (4 CH$_2$), 18.4 (2 CH), 18.1 (2 C), 17.5 (2 C), 14.9 (2 C), 14.1 (2 CH$_3$), 10.3 (2 CH$_2$), 9.7 (2 CH$_2$), 8.9 (CH$_2$), 8.8 (2 CH$_2$); IR (KBr): ν(tilde) = 3043, 2923, 2854, 1729, 1450, 1377, 1316, 1246, 1172, 1140, 1077, 1029, 1000, 900, 725 cm$^{-1}$; MS (EI): m/z (%): 618 (1) (M^+), 239 (12), 207 (53), 99 (100), 55 (62); HRMS (CI): calcd for C$_{41}$H$_{66}$NO$_4$: M^+ + NH$_4$ 636.4986; found 636.4986.

\vspace{2em}

(1S,3R,4R,5R,6R,7R,8R,9S)-(9-[(4-n-Propylbenzoyl)oxymethyl]hexaspiro-
[2.0.0.0.0.2.1.1.1.1]pentadec-1-yl)methyl} 4-n-propylbenzoate (45c): Column chromatography ($R_f = 0.21$) of the reaction mixture obtained from diol (P)-(+)\textbf{-22} (50 mg, 0.2 mmol), 4-n-propylbenzoic acid (99 mg, 0.6 mmol), DMAP (2.4 mg, 0.02 mmol) and DCC (136 mg, 0.66 mmol) according to GP 10 gave 45c (53 mg, 50%) as a colorless powder, m.p. 72–76 °C, α\textbf{-20} = +300.0 (c = 0.50 in CHCl$_3$); 1H NMR (250 MHz,
CDCl$_3$: $\delta = 7.97$ (d, $J = 8.1$ Hz, 4 H; Ar-H), 7.25 (d, $J = 8.1$ Hz, 4 H; Ar-H), 4.34 (d, $J = 7.4$ Hz, 4 H; 2 CH$_2$O), 2.64 (t, $J = 7.3$ Hz, 4 H; 2 CH$_2$), 1.66 (q, $J = 7.5$ Hz, 4 H; 2 CH$_2$), 1.54 (m, 2 H; cPr-H), 1.25 (d, $J = 4.0$ Hz, 4 H; cPr-H), 1.18 (d, $J = 4.0$ Hz, 2 H; cPr-H), 1.07 (m, 2 H; cPr-H), 0.94 (t, $J = 7.3$ Hz, 6 H; 2 CH$_3$), 0.83 (t, $J = 4.5$ Hz, 2 H; cPr-H); 13C NMR (62.9 MHz, CDCl$_3$): $\delta = 166.8$ (2 C), 148.1 (2 C), 130.0 (4 CH), 128.4 (2 C), 128.0 (4 CH), 68.4 (2 CH$_2$), 38.0 (2 CH$_2$), 24.3 (2 CH$_2$), 18.5 (2 CH), 18.1 (2 C), 17.6 (2 C), 15.0 (2 C), 13.7 (2 CH$_3$), 10.4 (2 CH$_2$), 9.8 (2 CH$_2$), 8.92 (CH$_2$), 8.88 (2 CH$_2$); IR (KBr): $\nu (\tilde{\nu}) = 3042, 2967, 2932, 2872, 1717, 1610, 1457, 1416, 1380, 1272, 1178, 1104, 1076, 1019, 961, 872, 853, 761, 703, 563$ cm$^{-1}$; MS (EI): m/z (%): 550 (1) (M^+), 222 (11), 207 (9), 147 (100), 119 (15), 91 (19), 41 (8); HRMS (CI): calcd for C$_{37}$H$_{46}$NO$_4$: M^+ + NH$_4$ 568.3421; found 568.3422.

$(1S,3R,4R,5R,6R,7R,8R,9S)$-9-[(4-trans-Propylcyclohexane-2-carboxylic acid)oxymethyl]-hexaspiro[2.0.0.0.0.2.1.1.1.1]pentadec-1-yilmethyl (4-trans-Propyl)cyclohexane-2-carboxylate (45d): Column chromatography ($R_f = 0.25$) of the reaction mixture obtained from diol (P)-(+-)22, (40 mg, 0.15 mmol), 4-trans-n-propylcyclohexanecarboxylic acid (77 mg, 0.45 mmol), DMAP (2.4 mg, 0.02 mmol) and DCC (103 mg, 0.50 mmol) according to GP 10 gave 45d (61 mg, 70%) as a colorless powder, m.p. 101–113 $^\circ$C, $[\alpha]_D^{20} = +267.4$ (c = 0.50 in CHCl$_3$); 1H NMR (250 MHz, CDCl$_3$): $\delta = 4.08$ (d, $J = 7.2$ Hz, 4 H; 2 CH$_2$O), 2.23 (tt, $J = 3.6$, 12.2 Hz, 2 H; cHex-H), 1.96 (d, $J = 11.0$ Hz, 4 H; 2 CH$_2$), 1.79 (d, $J = 11.0$ Hz, 4 H; 2 CH$_2$), 1.44–0.84 (m, 38 H), 0.72 (t, $J = 4.5$ Hz, 2 H; cPr-H); 13C NMR (62.9 MHz, CDCl$_3$): $\delta = 176.5$ (2 C), 67.8 (2 CH$_2$), 43.7 (2 CH$_2$), 25.5 (2 CH$_2$), 15.0 (2 C), 13.7 (2 CH$_3$), 10.4 (2 CH$_2$), 9.8 (2 CH$_2$), 8.92 (CH$_2$), 8.88 (2 CH$_2$).
39.5 (2 CH$_2$), 36.6 (2 CH), 32.3 (4 CH$_2$), 29.1 (4 CH$_2$), 19.9 (2 CH$_2$), 18.4 (2 CH), 18.1 (2 C), 17.5 (2 C), 14.9 (2 C), 14.3 (2 CH$_3$), 10.4 (2 CH$_2$), 9.7 (2 CH$_2$), 8.9 (CH$_2$), 8.8 (2 CH$_2$); IR (KBr): $\tilde{\nu} = 3044, 2956, 2935, 2872, 1714, 1607, 1511, 1472, 1400, 1394, 1313, 1273, 1254, 1168, 1101, 1075, 1050, 1019, 1010, 990, 963, 846, 770, 697, 649, 632, 614, 603$ cm$^{-1}$; MS (EI): m/ζ (%): 562 (1) (M^+), 239 (14), 222 (21), 207 (33), 125 (47), 83 (59), 69 (100), 55 (14); HRMS (CI): calcd for C$_{37}$H$_{58}$NO$_4$: M^+ + NH$_4$ 580.4360; found 580.4360.

$(1S,3R,4R,5R,6R,7R,8R,9S)-[9-[(4-n-Pentyloxybenzoyl)oxymethyl]hexaspiro-
[2.0.0.0.0.0.1.1.1.1.1.1]pentadec-1-yl)methyl] 4-n-pentyloxybenzoate (45e): Column chromatography ($R_f = 0.09$) of the reaction mixture obtained from diol (P)-(+)22, (40 mg, 0.15 mmol), 4-n-pentyloxybenzoic acid (94 mg, 0.45 mmol), DMAP (2.4 mg, 0.02 mmol) and DCC (103 mg, 0.50 mmol) according to GP 10 gave 45e (60 mg, 61%) as a colorless powder, m.p. 82–85 °C, $[\alpha]^{20}_D = +263.0$ (c = 0.50 in CHCl$_3$); 1H NMR (250 MHz, CDCl$_3$): $\delta = 8.00$ (d, $J = 8.9$ Hz, 4 H; Ar-H), 6.90 (d, $J = 8.9$ Hz, 4 H; Ar-H), 4.31 (d, $J = 7.1$ Hz, 4 H; 2 CH$_2$O), 4.00 (t, $J = 6.5$ Hz, 4 H; 2 CH$_2$O), 1.80 (m, 4 H), 1.58–1.34 (m, 10 H), 1.24 (d, $J = 3.9$ Hz, 4 H; cPr-H), 1.17 (d, $J = 3.9$ Hz, 2 H; cPr-H), 1.13–1.01 (m, 6 H), 0.93 (t, $J = 7.1$ Hz, 6 H; 2 CH$_3$), 0.82 (t, $J = 4.5$ Hz, 2 H; cPr-H); 13C NMR (62.9 MHz, CDCl$_3$): $\delta = 166.5$ (2 C), 162.8 (2 C), 131.5 (4 CH), 122.6 (2 C), 114.0 (4 CH), 68.3 (2 CH$_2$), 68.1 (2 CH$_2$), 28.8 (2 CH$_2$), 28.0 (2 CH$_2$), 22.4 (2 CH$_2$), 18.4 (2 CH), 18.1 (2 C), 17.6 (2 C), 15.0 (2 C), 14.0 (2 CH$_3$), 10.4 (2 CH$_2$), 9.8 (2 CH$_2$), 8.9 (CH$_2$), 8.8 (2 CH$_2$); IR (KBr): $\tilde{\nu} = 3044, 2956, 2935, 2872, 1714, 1607, 1511, 1472, 1457, 1420, 1394, 1313, 1273, 1254, 1168, 1101, 1075, 1050, 1019, 1010, 990, 963, 846, 770, 697, 649, 632,
612 cm\(^{-1}\); MS (EI): \(m/z\) (%): 638 (1) (\(M^+\)), 363 (24), 175 (100), 171 (27), 155 (11), 91 (12); HRMS (CI): calcd for C\(_{41}\)H\(_{54}\)NO\(_6\): \(M^+ + \text{NH}_4\) 656.3946; found 656.3945.

\((1S,3R,4R,5R,6R,7R,8R,9S)-9-[(n\text{-hexanoyl})\text{oxymethyl}]\text{hexaspiro}[2.0.0.0.0.0.2.1.1.1.1]\text{pentadec}-1-\text{yl})\text{methyl} \text{n-hexanoate (45f)}\): Column chromatography (\(R_f = 0.43\)) of the reaction mixture obtained from diol \((P)-(+)\)-22 (46 mg, 0.18 mmol), \(n\)-hexanoic acid (63 mg, 0.54 mmol), DMAP (2.4 mg, 0.02 mmol) and DCC (122 mg, 0.59 mmol) according to GP 10 gave 45f (40 mg, 49\%) as a colorless oil, \(\alpha_{D}^{20} = +378.0\) (\(c = 0.50\) in CHCl\(_3\)); \(^1\)H NMR (250 MHz, CDCl\(_3\)): \(\delta = 4.08\) (dd, \(J = 4.2, 7.0\) Hz, 4 H; 2 CH\(_2\)), 2.31 (t, \(J = 7.4\) Hz, 4 H; 2 CH\(_2\)), 1.63 (m, 4 H), 1.41–1.21 (m, 12 H), 1.17 (d, \(J = 3.9\) Hz, 2 H; cPr-H), 1.12 (d, \(J = 3.9\) Hz, 2 H; cPr-H), 1.06–0.98 (m, 6 H), 0.89 (t, \(J = 6.7\) Hz, 6 H; 2 CH\(_3\)), 0.71 (t, \(J = 4.4\) Hz, 2 H; cPr-H); \(^{13}\)C NMR (62.9 MHz, CDCl\(_3\)): \(\delta = 174.1\) (2 C), 67.9 (2 CH\(_2\)), 34.4 (2 CH\(_2\)), 31.3 (2 CH\(_2\)), 24.7 (2 CH\(_2\)), 22.3 (2 CH\(_2\)), 18.4 (2 CH), 18.0 (2 C), 17.5 (2 C), 14.9 (2 C), 13.9 (2 CH\(_3\)), 10.3 (2 CH\(_2\)), 9.7 (2 CH\(_2\)), 8.9 (CH\(_2\)), 8.7 (2 CH\(_2\)); IR (Film): \(\nu(\text{tilde}) = 3043, 2958, 2932, 2872, 2861, 1753, 1653, 1559, 1540, 1506, 1457, 1363, 1315, 1276, 1243, 1173, 1109, 1098, 1076, 1032, 1007, 971, 874, 731, 874 cm\(^{-1}\); MS (EI): \(m/z\) (%): 454 (1) (\(M^+\)), 303 (17), 115 (32), 99 (100), 49 (23); HRMS (CI): calcd for C\(_{29}\)H\(_{46}\)NO\(_4\): \(M^+ + \text{NH}_4\) 472.3421; found 472.3422.