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Abbreviations. NOE: Nuclear Overhauser Effect, NOESY: Nuclear Overhauser Effect Spectroscopy, ROESY: 

Rotating frame Overhauser Enhancement Spectroscopy, MD-tar: molecular dynamics with time-averaged restraints, 

ff99’: modified ff99 force field1 

Experimental procedures for new compounds and a full listing of 1H and 13C NMR 
data. 

General Procedures. Solvents were purified according to standard procedures. Analytical TLC 

was performed using Polychrom SI F254 plates. Column chromatography was performed using 

Silica gel 60 (230–400 mesh). 1H and 13C NMR spectra were recorded on a Bruker ARX 300 and 

Bruker Avance 400 spectrometer. 1H and 13C NMR spectra were recorded in CDCl3 with TMS as 

the internal standard and in D2O with TMS as the external standard using a coaxial microtube 

(chemical shifts are reported in ppm on the δ scale, coupling constants in Hz). Melting points were 

determined on a Büchi B-545 melting point apparatus and are uncorrected. Optical rotations were 

measured on a Perkin-Elmer 341 polarimeter. Microanalyses were carried out on a CE Instruments 

EA-1110 analyser and are in good agreement with the calculated values.  

Synthesis of Ser diamide 1 

HO
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Ac-L-Ser(OBn)-NHMe (4). To a suspension of L-Ser(OBn)-NHMe hydrochloride (3) (2.12 g, 

8.7 mmol) in CH2Cl2 (100 mL), at 0 ºC under an inert atmosphere, triethylamine (TEA) (2.4 mL, 

15.9 mmol) and acetyl chloride (1.1 mL, 13.7 mmol) were added. The mixture was allowed to 

warm up to rt and was stirred for 12 h. The reaction mixture was washed with saturated NaHCO3 (2 

× 15 mL). The organic layer was dried over anhydrous Na2SO4, filtered and evaporated to give a 

residue that was purified by silica gel column chromatography eluting with methanol/ethyl acetate 

1:9 to yield 1.51 g (70%) of Ac-L-Ser(OBn)-NHMe (4) as a white solid. Mp: 137-139 ºC. [α]24.8
D (c 

= 1.1, CH3OH): +10.7. Anal. calcd. for C13H18N2O3: C, 62.38; H, 7.25; N, 11.19. Found: C, 62.42; 

H, 7.32; N, 11.02. 1H NMR (400 MHz, CD3OD) δ: 2.00 (s, 3H), 2.74 (d, 3H, J=9.2 Hz), 3.66 (dd, 

1H, J=9.6 Hz, J=4.8 Hz), 3.74 (dd, 1H, J=5.6 Hz, J=9.6 Hz), 4.46-4.57 (m, 3H), 7.23-7.34 (m, 5H). 
13C NMR (100 MHz, CD3OD) δ: 22.5, 26.4, 55.0, 70.7, 74.1, 128.7, 128.8, 129.4, 139.2, 172.8, 

173.4. 
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Ac-L-Ser-NHMe (1). A solution of Ac-L-Ser(OBn)-NHMe (4) (1.51 g, 6.0 mmol) in methanol 

(20 mL) was hydrogenated, using 30 mg of 10% palladium-carbon as a catalyst, at rt for 16 h. The 

catalyst and solvent were removed, and the residue was purified by silica gel column 

chromatography, eluting with methanol/ethyl acetate (15:85) to give 978 mg (95%) of Ac-L-Ser-

NHMe (1) as a white solid. Mp: 113-115 ºC. [α]23.5
D (c = 1.16, CH3OH): -15.3. Anal. calcd. for 

C6H12N2O3: C, 44.99; H, 7.55; N, 17.49. Found: C, 44.89; H, 7.49; N, 17.52. 1H NMR (400 MHz, 

CD3OD) δ : 2.02 (s, 3H), 2.74 (s, 3H), 3.72-3.80 (m, 2H), 4.36-4.38 (m, 1H). 13C NMR (100 MHz, 

CD3OD) δ : 22.7, 26.4, 57.0, 63.0, 173.1, 173.5. 

Synthesis of Thr diamide 2 
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Boc-L-Thr(OBn)-NHMe (6). A solution of Boc-L-Thr(OBn)-OH (5) (1.00 g, 3.23 mmol) in 

acetonitrile (30 mL) was treated with diisopropilethylamine (DIEA) (2.24 mL, 12.93 mmol), 

methylamine hydrochloride (427 mg, 6.46 mmol) and benzotriazol-1-yl)-1,1,3,3-

tetramethyluronium tetrafluoroborate (TBTU) (1.21 g, 3.88 mmol) under an inert atmosphere. The 

reaction mixture was stirred at rt for 10 h, then partitioned between brine (20 mL) and ethyl acetate 

(12 mL). The organic layer was washed with 0.1 N HCl (2 × 15 mL) and 5% NaHCO3 (2 × 10 mL), 

dried over anhydrous Na2SO4, filtered and evaporated to give a residue that was purified by silica 

gel column chromatography, eluting with hexane/ethyl acetate (2:8) to yield 1.14 g (98%) of Boc-L-

Thr(OBn)-NHMe (6) as a white solid: Mp: 118-120 ºC. [α]29.4
D (c = 1.15, CH3OH): +16.3. Anal. 

calcd. for C17H26N2O4: C, 63.33; H, 8.13; N, 8.69. Found: C, 63.45; H, 8.19; N, 8.58. 1H NMR (400 

MHz, CDCl3) δ: 1.16 (d, 3H, J=6.1 Hz), 1.45 (s, 9H), 2.82 (d, 3H, J=4.8 Hz), 4.19-4.25 (m, 2H), 

4.53-4.62 (m, 2H), 5.50 (d, 1H, J=5.8 Hz), 6.50 (s, 1H), 7.27-7.37 (m, 5H). 13C NMR (100 MHz, 

CDCl3) δ : 15.6, 26.2, 28.3, 57.7, 71.6, 74.8, 80.1, 127.7, 127.8, 128.4, 138.0, 155.8, 170.4. 

Ac-L-Thr(OBn)-NHMe (7). Boc-L-Thr(OBn)-NHMe (6) (924 mg, 2.87 mmol) was dissolved in 

50 mL of 2 N HCl/THF (3:7) and the solution was stirred at 20 ºC for 24 h. The solvent was 

evaporated in vacuo to give 535 mg (72%) of L-Thr(OBn)-NHMe·HCl  as a white solid and was 

used without any purification. To a suspension of L-Thr(OBn)-NHMe·HCl  (189 mg, 0.73 mmol) in 

CH2Cl2 (15 mL), at 0 ºC under an inert atmosphere, TEA (0.2 mL, 1.3 mmol) and acetyl chloride 

(0.09 mL, 1.12 mmol) were added. The mixture was allowed to warm up to rt and was stirred for 24 
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h. The reaction mixture was washed with water (2 × 5 mL). The organic layer was dried over 

anhydrous Na2SO4, filtered and evaporated to give a residue that was purified by silica gel column 

chromatography, eluting with dichloromethane/methanol (9:1) to yield 128 mg (57%) of Ac-L-

Thr(OBn)-NHMe (7) as a white solid. Mp: 116-118 ºC. [α]29.4
D (c = 1.30, CH3OH): +10.6. Anal. 

calcd. for C14H20N2O3: C, 63.62; H, 7.63; N, 10.60. Found: C, 63.74; H, 7.55; N, 10.71. 1H NMR 

(400 MHz, CDCl3) δ : 1.11 (d, 3H, J=6.4 Hz), 2.04 (s, 3H), 2.81 (d, 3H, J=4.9 Hz), 4.09-4.12 (m, 

1H), 4.54-4.56 (m, 1H), 4.60-4.68 (dd, 2H, J=11.6 Hz, J=19.7 Hz), 6.50-6.60 (m, 1H), 6.64 (d, 1H, 

J=6.2 Hz), 7.31-7.38 (m, 5H). 13C NMR (100 MHz, CDCl3) δ : 15.2, 23.2, 26.2, 55.9, 71.5, 74.0, 

127.8, 128.4, 129.6, 137.8, 169.9, 170.3. 

Ac-L-Thr-NHMe (2). A solution of Ac-L-Thr(OBn)-NHMe (7) (306 mg, 1.2 mmol) in methanol 

(20 mL) was hydrogenated, using 61 mg of 10% palladium-carbon as a catalyst, at rt for 12 h. The 

catalyst and solvent were removed, and the residue was purified by silica gel column 

chromatography, eluting with dichloromethane/methanol (85:15) to give 186 mg (92%) of Ac-L-

Thr-NHMe (2) as a white solid Mp: 156-158 ºC. [α]26.7
D (c = 1.50, CH3OH): +10.9. Anal. calcd. for 

C7H14N2O3: C, 48.26; H, 8.10; N, 16.08. Found: C, 48.31; H, 8.02; N, 16.06. 1H NMR (400 MHz, 

H2O/D2O 9:1) δ : 1.16 (d, 3H, J=8.0 Hz), 2.06 (s, 3H), 2.72 (d, 3H, J=4.0 Hz), 4.17-4.24 (m, 2H), 

8.00 (s, 1H), 8.16 (d, 1H, J=7.4 Hz). 13C NMR (100 MHz, CDCl3) δ : 18.0, 23.1, 26.1, 56.5, 66.3, 

171.4, 171.9. 

Synthesis of β-glucosylated Ser diamide 1g 
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β-D-Bz4Glc-Ac-L-Ser-NHMe (8). Silver triflate (975 mg, 3.60 mmol) was added to a suspension of 

Ac-L-Ser-NHMe (1) (350 mg, 2.18 mmol) and powdered molecular sieves (4 Å, 1 g) in 

dichloromethane (5 mL) under an inert atmosphere. The mixture was stirred at -30 ºC and then 

2,3,4,6-tetra-O-benzoyl-α-D-glucopyranosyl bromide (2 g, 3.03 mmol) in dichloromethane (2 mL) 



S5 

was added. The mixture was stirred at this temperature for 1 h and then was warmed at rt and stirred 

for another 14 h. The crude was filtered, concentrated and purified by silica gel column 

chromatography, eluting with dicloromethane/methanol (95:5) to yield 821 mg (51%) of β-D-

Bz4Glc-Ac-L-Ser-NHMe (8) as a white solid. Mp: 109-111 ºC. [α]26.5
D (c = 1.35, CDCl3): +62.1. 

Anal. calcd. for C40H38N2O12: C, 65.03; H, 5.18; N, 3.79. Found: C, 64.98; H, 5.13; N, 3.83. 1H 

NMR (400 MHz, CDCl3) δ : 1.94 (s, 3H), 2.71 (d, 3H, J=4.8 Hz), 3.72 (dd, 1H, J=8.5 Hz, J=10.9 

Hz), 4.15 (dd, 1H, J=3.9 Hz, J=10.9 Hz), 4.23 (ddd, 1H, J=2.7 Hz, J=4.5 Hz, J=9.9 Hz), 4.43 (dd, 

1H, J=4.7 Hz, J=12.3 Hz), 4.66 (dt, 1H, J=3.9 Hz, J=8.1 Hz), 4.82 (dd, 1H, J=2.5 Hz, J=12.3 Hz), 

5.03 (d, 1H, J=8.0 Hz), 5.50 (dd, 1H, J=8.1 Hz, J=9.8 Hz), 5.73 (‘t’, 1H, J=9.8 Hz), 5.94 (‘t’, 1H, 

J=9.7 Hz), 6.49-6.54 (m, 2H), 7.22-7.30 (m, 2H), 7.33-7.60 (m, 10H), 7.78-7.84 (m, 2H), 7.90-7.98 

(m, 4H), 8.05-8.10 (m, 2H). 13C NMR (100 MHz, CDCl3) δ : 23.0, 26.4, 52.1, 62.1, 69.0, 70.2, 

71.7, 72.6, 102.3, 128.3, 128.5, 128.6, 128.6, 128.7, 128.9, 129.3, 129.7, 129.8, 129.9, 133.3, 133.4, 

133.5, 133.6, 165.1, 165.3, 165.6, 166.3, 169.9, 170.2. 

β-D-Glc-Ac-L-Ser-NHMe (1g). A solution of β-D-Bz4Glc-Ac-L-Ser-NHMe (8) (355 mg, 0.48 

mmol) in methanol (10 mL) was treated with sodium methoxide/methanol (0.5 M) to pH=9. After 

stirring for 3 h, the mixture was neutralized with Dowex 50-X8, filtered and concentrated. 

Purification of the residue with C18 reverse-phase sep-pak cartridge gave 141 mg (91%) of β-D-

Glc-Ac-L-Ser–NHMe (1g). [α]26.5
D (c = 0.53, CH3OH): +2.7. Anal. calcd. for C12H22N2O8: C, 44.72; 

H, 6.88; N, 8.69. Found: C, 44.64; H, 6.76; N, 8.56. 1H NMR (400 MHz, D2O) δ : 2.04 (s, 3H), 

2.71 (s, 3H), 3.25 (dd, 1H, J=8.1Hz, J=9.2Hz), 3.31-3.36 (m, 1H), 3.39-3.48 (m, 2H), 3.68 (dd, 1H, 

J=5.9 Hz, J=12.3 Hz), 3.81-3.90 (m, 2H),  4.19 (dd, 1H, J=5.2 Hz, J=10.6 Hz), 4.42 (d, 1H, J=7.9 

Hz), 4.48 (‘t’, 1H, J=4.6 Hz).  13C NMR (100 MHz, D2O) δ : 21.8, 26.0, 53.9, 60.7, 68.7, 69.5, 

73.0, 75.6, 75.9, 102.2, 171.8, 174.5. 

β-D-Ac4-Glc-Ac-L-Ser-NHMe (Ac4-1g). β-D-Glc-Ac-L-Ser–NHMe (1g) (15 mg, 0.05 mmol) 

was dissolved in pyridine/acetic anhydride (2:1, 6 mL) and stirred for 3 h. Removal of the volatiles 

and column chromatographic purification (ethyl acetate/methanol, 95:5) gave a residue (18 mg, 

81%) corresponding to β-D-Ac4-Glc-Ac-L-Ser-NHMe (Ac4-1g). [α]25.4
D (c = 0.96, CDCl3): +14.5. 

Anal. calcd. for C20H30N2O12: C, 48.98; H, 6.17; N, 5.71. Found: C, 49.08; H, 6.05; N, 5.79. 1H 

NMR (400 MHz, D2O) δ : 1.91 (s, 3H), 1.92 (s, 3H), 1.95 (s, 3H), 1.97 (s, 3H), 2.00 (s, 3H), 2.60 

(s, 3H), 3.81 (dd, 1H, J=5.3 Hz, J=10.8 Hz), 3.89-3.96 (m, 2H), 4.09 (dd, 1H, J=1.5 Hz, J=12.8 

Hz), 4.29 (dd, 1H, J=3.6 Hz, J=12.9 Hz), 4.34 (‘t’, 1H, J=5.9 Hz), 4.74 (d, 1H, J=8.0 Hz), 4.83 (‘t’, 

1H, J=8.7 Hz), 4.99 (‘t’, 1H, J=9.7 Hz), 5.23 (‘t’, 1H, J=9.4 Hz). 13C NMR (100 MHz, D2O) δ : 

20.0, 20.1, 20.1, 21.7, 25.9, 53.7, 61.6, 68.0, 68.3, 71.1, 71.3, 72.9, 99.8, 171.3, 172.5, 172.7, 173.1, 
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173.6, 174.3.  1H NMR (400 MHz, CDCl3) δ : 1.99 (s, 3H), 2.01 (s, 3H), 2.02 (s, 3H), 2.03 (s, 3H), 

2.08 (s, 3H), 2.80  (d, 1H, J=4.8 Hz), 3.70 (dd, 1H, J=8.9 Hz, J=10.5 Hz), 3.75 (dd, 1H, J=3.4 Hz, 

J=10.0 Hz), 4.03 (dd, 1H, J=4.7 Hz, J=10.7 Hz), 4.21-4.24 (m, 2H), 4.55-4.60 (m, 1H), 4.62 (d, 1H, 

J=8.1 Hz), 4.97 (dd, 1H, J=8.2 Hz, J=9.6 Hz), 5.06 (‘t’, 1H, J=9.7 Hz), 5.19 (‘t’, 1H, J=9.5 Hz), 

6.45-6.51 (m, 2H). 13C NMR (100 MHz, CDCl3) δ : 20.5, 20.6, 20.7, 23.1, 26.4, 52.1, 61.4, 68.0, 

69.8, 71.1, 72.0, 72.4, 101.6, 169.4, 169.5, 169.9, 170.0, 170.2, 170.7. 

Synthesis of β-glucosylated Thr diamide 2g 

OBzO
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H NHAc
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β-D-Bz4-Glc-Ac-L-Thr-NHMe (9). Silver triflate (290 mg, 1.13 mmol) was added to a 

suspension of Ac-L-Thr-NHMe (2) (120 mg, 0.68 mmol) and powdered molecular sieves (4 Å, 1 g) 

in dichloromethane (4 mL) under an inert atmosphere. The mixture was stirred at    -30 ºC and then 

2,3,4,6-tetra-O-benzoyl-α-D-glucopyranosyl bromide (632 mg, 0.96 mmol) in dichloromethane (2 

mL) was added. The mixture was stirred at this temperature for 1 h and was then warmed at rt and 

stirred for another 14 h. The crude was filtered, concentrated and purified by silica gel column 

chromatography, eluting with ethyl acetate/hexane (9:1) to yield 254 mg (30%) of β-D-Bz4Glc-Ac-

L-Thr-NHMe (9) as oil. [α]26.0
D (c = 0.38, CDCl3): +62.6. Anal. calcd. for C41H40N2O12: C, 65.42; 

H, 5.36; N, 3.72. Found: C, 65.32; H, 5.48; N, 3.66. 1H NMR (300 MHz, CDCl3) δ : 0.93 (d, 3H, 

J=6.6 Hz), 1.99 (s, 3H), 2.79 (d, 1H, J=4.8 Hz), 4.21-4.34 (m, 2H), 4.43 (dd, 1H, J=4.9 Hz, J=12.3 

Hz), 4.68 (dd, 1H, J=3.0 Hz, J=6.6 Hz), 4.80 (dd, 1H, J=2.5 Hz, J=12.3 Hz), 5.14 (d, 1H, J=8.1 

Hz), 5.48 (dd, 1H, J=8.1 Hz, J=9.9 Hz), 5.72 (‘t’, 1H, J=9.7 Hz), 5.93 (‘t’, 1H, J=9.7 Hz), 6.50-6.60 

(m, 2H), 7.24-7.62 (m, 12H), 7.80-7.85 (m, 2H), 7.90-7.98 (m, 4H), 8.02-8.10 (m, 2H). 13C NMR 

(75 MHz, CDCl3) δ : 15.9, 23.1, 26.4, 53.4, 55.4, 61.9, 69.0, 71.8, 72.5, 72.7, 101.8, 128.3, 128.4, 

128.5, 128.5, 128.6, 128.7, 129.0, 129.3, 129.7, 129.7, 129.8, 129.9, 133.3, 133.4, 133.4, 133.6, 

165.2, 165.2, 165.6, 166.1, 168.7, 170.1. 

β-D-Glc-Ac-L-Thr–NHMe (2g).  A solution of β-D-Bz4Glc-Ac-L-Thr-NHMe (9) (254 mg, 0.34 

mmol) in methanol (15 mL) was treated with sodium methoxide/methanol (0.5 M) to pH=9. After 

stirring 3 h, the mixture was neutralized with Dowex 50-X8, filtered and concentrated. Purification 

of the residue with C18 reverse-phase sep-pak cartridge gave 101 mg (89%) of β-D-Glc-Ac-L-Thr-
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NHMe (2g). [α]23.4
D (c = 1.35, CH3OH): –2.8. Anal. calcd. for C13H24N2O8: C, 46.42; H, 7.19; N, 

8.33. Found: C, 46.37; H, 7.10; N, 8.42. 1H NMR (400 MHz, D2O) δ : 1.23 (d, 3H, J=6.3 Hz), 2.10 

(s, 3H), 2.74 (s, 3H), 3.23 (dd, 1H, J=8.2 Hz, J=9.2 Hz), 3.34-3.50 (m, 3H), 3.71 (dd, 1H, J=5.4 Hz, 

J=12.3 Hz), 3.88 (dd, 1H, J=1.6 Hz, J=12.3 Hz), 4.35 (d, 1H, J=3.4 Hz), 4.39-4.46 (m, 1H),  4.50 

(d, 1H, J=7.9 Hz) 13C NMR (100 MHz, D2O) δ : 15.7, 21.7, 25.9, 58.4, 60.6, 69.5, 72.9, 73.3, 75.6, 

75.7, 99.6, 172.2, 174.9. 
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1H and 13C NMR spectra for compounds 1, 2, 1g, Ac4-1g, 2g, 4, 6, 7, 8 and 9 as 
well as COSY and HSQC correlations for compounds 1g, Ac4-1g, 2g and 8. 

Ac-L-Ser(OBn)-NHMe (4) 
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Ac-L-Ser-NHMe (1) 
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Boc-L-Thr(OBn)-NHMe (6) 
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Ac-L-Thr(OBn)-NHMe (7) 
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Ac-L-Thr-NHMe (2) 
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β-D-Bz4Glc-Ac-L-Ser-NHMe (8) 
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β-D-Glc-Ac-L-Ser-NHMe (1g) 
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β-D-Bz4-Glc-Ac-L-Thr-NHMe (9) 
 

 

1H NMR (300 MHz)
OBzO

BzO
OBz

O

OBz

CONHMe

H NHAc

Me
9

13C NMR (75MHz)
OBzO

BzO
OBz

O

OBz

CONHMe

H NHAc

Me
9



S18 

β-D-Glc-Ac-L-Thr–NHMe (2g) 
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Ac4-1g D2O  
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NOE build-up curves for 1g, Ac4-1g and 2g and 2D NOESY for 1, 2, 1g, Ac4-1g and 2g. 
  

NOEs intensities were normalized with respect to the diagonal peak at zero mixing time. 

Experimental NOEs were fitted to a double exponential function, f(t)=p0(e-p1t)(1-e-p2t) with p0, p1 

and p2 being adjustable parameters.1 The initial slope was determined from the first derivative at 

time t=0, f '(0)=p0p2. From the initial slopes, interproton distances were obtained by employing the 

isolated spin pair approximation. Selective ge-1D ROESY was carried out using the 1D-SPFGE 

sequence. 
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Amide-aliphatic cross-peaks NOESY (mixing time = 800 ms 400 MHz) for compound 1 

 
 
Amide-aliphatic cross-peaks NOESY (mixing time = 800 ms 400 MHz) for compound 2 
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1D-NOESY experiments at different mixing times for compound 1g 
 
 
 

 
 
NOE Build-up curves for compound 1g 
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NOE Build-up curves for compound 2g 

 

O
HO

HO

HO

O

OH

MeHNOC

NHAc

MeHH

H

H

3.06

2.41

2.58

3.00

 

Amide cross-peaks NOESY (mixing time = 800 ms 400 MHz) for compound 2g 

 
 



S29 
NOE Build-up curves for compound Ac4-1g in D2O 
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NOE Build-up curves for compound Ac4-1g in CDCl3 
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NOESY (mixing time = 800 ms 400 MHz at –50 ºC) for compound Ac4-1g in CDCl3 

 

Selective ROESY (mixing time = 800 ms 400 MHz at –50 ºC) for compound Ac4-1g in CDCl3 
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Analysis of molecular dynamics simulations using different force fields. 

Calculations: MD-tar simulations (dielectric constant=80).– In order to obtain a NMR-derived ensemble, MD-tar 

simulations were performed for compounds 1, 2, 1g and 2g. NOE-derived distances (see Tables 1 and 2) were included 

as time averaged distance constraints, and scalar coupling constants J as time averaged coupling constraints. A <r-6>-1/6 

average was used for the distances and a linear average was used for the coupling constants. Final trajectories were run 

using an exponential decay constant of 8000 ps and a simulation length of 80 ns.  

Molecular modelling in explicit water.– First, the solute molecule was immersed in a bath TIP3P water molecules[2] 

with the LEAP module.[3] The simulation was performed using periodic boundary conditions and the particle-mesh 

Ewald approach[4] to introduce long-range electrostatic effects. The SHAKE algorithm[5] for hydrogen atoms, which 

allows using a 2 fs time step, was employed. Finally, a 9 Å cutoff was applied to Lennard-Jones interactions.   

Equilibration of the system was carried out as follows; as a first step, a short minimization with positional restraints on 

solute atoms was run to remove any potentially bad contact. The force constant for the positional constraints was 500 

Kcal mol-1 Å-2. We ran then a 12.5 ps molecular dynamics calculation at 300 K maintaining positional restraints on the 

solute in order to equilibrate the water box. For these two steps, a 9 Å cutoff was used for the treatment of the 

electrostatic interactions. As a next step, the system was equilibrated using the mesh Ewald method, as water properties 

are slightly different with this treatment. With this purpose, a short MD simulation (12.5 ps) was run at 300 K, also 

using the Ewald approach for long-range electrostatic effects. Then, the system was subjected to several minimization 

cycles (each using 1000 steepest descent iterations) gradually reducing positional restraints on the solute from 500 Kcal 

mol-1 Å-2 to 0. Finally, one unrestrained MD trajectory at constant pressure (1 atm) and temperature (300 K) was 

collected and analyzed using the CARNAL module.[6] The simulation length was 10 ns. 
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Table S1. Comparison of the experimental and MD-tar simulations derived distances and 3J couplings obtained using 

different force fields for peptide 1.[a] 

 Exp[b] ff94 ff99 ff99’ 

dNH1,NH2 absent 3.0 3.2 3.3 

dHα,NH1 s (2.3) 2.4 2.4 2.3 

dHα,NH2 m (2.7) 2.9 2.9 2.9 
3JHα,Hβ

[c] 5.7 5.4 5.0 5.3 
3JNH2,Hα

[d] 6.3 6.5 6.8 6.8 

 

 

 

 

 

Table S2. Comparison of the experimental and MD-tar simulations derived distances and 3J couplings obtained using 

different force fields for glycopeptides 1g. [a] 

 Exp[b] ff94 ff99 ff99’ 

dNH1,NH2 m (2.7) 2.5 2.5 2.5 

dHα,NH1 s (2.3) 2.5 2.5 2.4 

dHα,NH2 m (2.6) 2.9 2.9 2.9 

dHβproS,NH2 m (2.9) 2.7 2.9 2.9 

dHβproR,NH2 m (2.8) 2.8 3.0 2.9 

dHβproS,Hα 2.6 2.5 2.5 2.5 

dHβproR,Hα 2.6 2.5 2.5 2.5 

dHβproS,H1 2.6 2.6 2.4 2.4 

dHβproR,H1 2.3 2.4 2.6 2.6 
3JHα,Hβ

[c] 4.6 5.1 5.3 5.4 
3JNH2,Hα

[d] 6.9 6.8 7.2 7.3 

 

[a] Distances are given in Å and 3J coupling in Hz. [b] w = weak, m = medium and s = strong NOE. [c] Estimated using 

the Karplus equation given in reference: A. Marco, M. Llinas and K. Wuthrich, Biopolymers 1978, 17, 617–636. [d] 

Estimated using the Karplus equation given in reference: G. W. Vuister, A. Bax, J. Am. Chem. Soc. 1993, 115, 7772–

7777. 
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Figure S1 Comparison of the Φp/Ψp distributions obtained from the MD-tar simulations for 1 and 1g using ff99 and 

ff99’ force fields.  
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Figure S2 Comparison of the Φp/Ψp and χ1 distributions obtained from the MD-free simulations in explicit water for 1 

using ff94 and ff99’ force fields.  
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Figure S3 Comparison of the Φp/Ψp, Φs/Ψs and χ1 distributions obtained from the MD-free simulations in explicit 

water for 1g using ff94 and ff99’ force fields.  
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Radial pair distribution function (RDF) of water and heteroatoms of glycopeptide 1g. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure S4 Radial pair distribution function (RDF) of water and heteroatoms of glycopeptide 1g using ff94/GLYCAM04 

force field.  
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Comparison of most relevant dihedrals obtained from the MD-tar simulations for Ac4-1g in water and 

in chloroform solution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure S5 Comparison of most relevant dihedrals obtained from the MD-tar simulations (ff94/GLYCAM04) for Ac4-

1g in water (ε=80) and in chloroform (ε=1) solution. 
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γL-turn

aqueous solution 



S39 
B3LYP/6-31G(d) energy, enthalpy, free energy, entropy and coordinates of the optimized structure of 

1g. 
 
 
All calculations were carried out by means of the B3LYP hybrid functional.[7] Full geometry optimizations were carried 

out with the 6-31G(d) basis set using the Gaussian 03 package.[8] BSSE corrections have not been considered in this 

work. Frequency analyses were carried out at the same level used in the geometry optimizations. 

 
E0 H S G Lowest freq. 

(Hartree)a (Hartree)b (cal mol–1 K–1)b (Hartree)b (cm–1) glycopetide 1g 
-1181.801003 -1181.409541 163.521 -1181.487235 34.88 

 

a 1 Hartree = 627.5 Kcal mol–1. b Thermal corrections at 298.15 K. 
 

Cartesian coordinates of the optimized structure of 1g (B3LYP/6-31G*) 

 

 C                  2.74546100    2.32176000   -1.89098600 

 H                  2.98385700    2.12434500   -2.94257400 

 H                  3.51035100    2.97085600   -1.45981900 

 H                  1.77984200    2.82899200   -1.83802500 

 N                  2.69784200    1.08689300   -1.11369100 

 H                  3.50037500    0.82408000   -0.54139300 

 C                  1.85030800    0.08501300   -1.46937200 

 O                  1.01852700    0.19151800   -2.36661200 

 C                  2.04738800   -1.23737100   -0.67839100 

 N                  2.18607300   -1.06718500    0.76273400 

 C                  3.34441100   -0.72053200    1.37760600 

 O                  4.36173700   -0.41788300    0.74485200 

 C                  3.32153100   -0.72144200    2.89533100 

 H                  2.34739000   -0.98347300    3.31819700 

 H                  3.61861100    0.26775800    3.25659200 

 H                  4.06823800   -1.43667300    3.25473000 

 H                  1.33247100   -1.19297000    1.29270000 

 H                  2.98861700   -1.66889300   -1.04546900 

 C                  0.91834300   -2.24531500   -0.95037000 

 H                  0.62058400   -2.17913500   -2.00060800 

 H                  1.27638500   -3.25498000   -0.73543100 
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 O                 -0.21186900   -2.07860600   -0.09154300 

 C                 -1.08152400   -1.02664900   -0.37791800 

 H                 -1.05987800   -0.77731000   -1.44624300 

 O                 -0.63900900    0.10635200    0.38602200 

 C                 -1.42310800    1.29270900    0.19790600 

 C                 -0.72421500    2.39733800    0.98199100 

 O                  0.53937400    2.74195600    0.45468000 

 H                  1.05762500    1.92483200    0.34896100 

 H                 -1.33276300    3.30746300    0.93880500 

 H                 -0.65212100    2.08391300    2.03804700 

 H                 -1.43931500    1.56549700   -0.86794200 

 C                 -2.85801300    1.01437200    0.67834800 

 O                 -3.75773600    2.08997700    0.39439000 

 H                 -3.66779800    2.76167900    1.08621800 

 H                 -2.84442400    0.79324300    1.75625800 

 C                 -3.40842400   -0.19809500   -0.06353900 

 O                 -4.68790300   -0.58366200    0.42289800 

 H                 -5.25226400    0.20344400    0.34532900 

 H                 -3.47563000    0.06461400   -1.13261800 

 C                 -2.49118800   -1.41172500    0.06996300 

 H                 -2.43878200   -1.70964800    1.12932300 

 O                 -2.95406300   -2.47583700   -0.73973200 

 H                  -3.9070620   -2.54648200   -0.56140000 
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