CHEMISTRY A EUROPEAN JOURNAL

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2006

Synthesis, Fluorescence and Two-Photon Absorption of a Series of Elongated Rod-like and Banana-shaped Quadrupolar Fluorophores: a Comprehensive Study of Structure-Property Relationships

Olivier Mongin*, Laurent Porrès, Marina Charlot, Claudine Katan, Mireille Blanchard-

Desce*

Supporting Information gathers complementary synthetic details as well as absorption and emission spectra.

Synthetic Procedures.

4-[4-(Dihexylamino)phenyl]-2-methyl-3-butyn-2-ol (1c): Air was removed from a solution of *N*,*N*-dihexyl-4-iodobenzenamine (**1b**)^[S1] (0.775 g, 2 mmol) in Et₃N (10 mL) by blowing argon for 20 min. Then CuI (15 mg, 0.08 mmol), Pd(PPh₃)₂Cl₂ (28 mg, 0.04 mmol) and 2-methyl-3-butyn-2-ol (0.254 mL, 2.6 mmol) were added, and the mixture was stirred at 40 °C for 12 h. After evaporation of the solvent, the residue was purified by column chromatography (CH₂Cl₂) to yield 0.566 g (82%) of **1c**; ¹H NMR (200.13 MHz, CDCl₃) *d* 7.24 and 6.52 (AA'XX', $J_{AX} = 9.0$, 4H), 3.25 (m, 4H), 2.12 (s, 1H), 1.60 (s, 6H), 1.75-1.49 (m, 4H), 1.32 (m, 12H), 0.90 (t, J = 6.5, 6H); ¹³C NMR (50.32 MHz, CDCl₃) *d* 147.9, 132.8, 111.1, 108.1, 91.2, 83.1, 65.7, 50.9, 31.7, 31.6, 27.1, 26.7, 22.6, 14.0; HRMS (EI) calcd for C₂₃H₃₇NO (M⁺?) *m/z* 343.2875, found 343.2879; elemental analysis calcd (%) for C₂₃H₃₇NO (343.55): C 80.41, H 10.85, N 4.08; found: C 80.14, H 10.61, N 3.95.

4-Ethynyl-*N*,*N***-dihexylbenzenamine** (**1d**): To a solution of **1c** (0.457g, 1.387 mmol) in 25 mL of toluene/*i*PrOH (4/1), was added solid NaOH (0.14 g). The mixture was heated under reflux for 1 h. After cooling, the remaining NaOH was filtered off and the solvents were evaporated. The crude product was filtered through a pad of silica gel (CH₂Cl₂) to yield 0.330 g (87%) of **1d**; ¹H NMR (200.13 MHz, CDCl₃) *d* 7.32 and 6.52 (AA'XX', $J_{AX} = 9.0$, 4H), 3.25 (m, 4H), 2.95 (s, 1H), 1.65-1.47 (m, 4H), 1.32 (m, 12H), 0.89 (t, J = 6.5, 6H); ¹³C NMR (50.32 MHz, CDCl₃) *d* 148.2, 133.3, 111.0, 107.3, 85.1, 74.4, 50.9, 31.7, 27.1, 26.8, 22.7, 14.0; HRMS (EI) calcd for C₂₀H₃₁N (M⁺?) *m*/*z* 285.2457, found 285.2465; elemental analysis calcd (%) for C₂₀H₃₁N (285.47): C 84.15, H 10.94, N 4.91; found: C 84.04, H 10.77, N 4.71.

N,*N*-Dihexyl-4-[(4-iodophenyl)ethynyl]benzenamine (2a): Air was removed from a solution of 1d (0.162 g, 0.568 mmol) and 1,4-diiodobenzene (0.562 g, 1.702 mmol) in 6 mL of toluene/Et₃N (5/1) by blowing argon for 20 min. Then CuI (2.2 mg, 0.012 mmol) and Pd(PPh₃)₂Cl₂ (8.1 mg, 0.012 mmol) were added, and the mixture was stirred at 30 °C for 6 h. After evaporation of the solvent, the crude product was purified by column chromatography (heptane/CH₂Cl₂, gradient from 100:0 to 90:10) to yield 0.197 g (71%) of 2a; ¹H NMR (200.13 MHz, CDCl₃) *d* 7.64 and 7.21 (AA'XX', $J_{AX} = 8.5$, 4H), 7.34 and 6.56 (AA'XX', J_{AX}

= 9.0, 4H), 3.27 (m, 4H), 1.67-1.46 (m, 4H), 1.31 (m, 12H), 0.90 (t, J = 6.5, 6H); ¹³C NMR (50.32 MHz, CDCl₃) **d** 148.0, 137.3, 132.9, 132.7, 123.9, 111.1, 108.1, 92.7, 92.5, 86.2, 50.9, 31.7, 27.1, 26.8, 22.7, 14.0; HRMS (LSIMS⁺, mNBA) calcd for C₂₆H₃₄IN (M⁺?) m/z 487.1736, found 487.1738.

4-[[4-(Dihexylamino)phenyl]ethynyl]benzaldehyde (2b): Air was removed from a solution of **1d** (0.158 g, 0.553 mmol) and 4-bromobenzaldehyde (0.123 g, 0.664 mmol) in 6 mL of toluene/Et₃N (5/1) by blowing argon for 20 min. Then CuI (2.1 mg, 0.011 mmol) and Pd(PPh₃)₂Cl₂ (7.8 mg, 0.011 mmol) were added, and the mixture was stirred at 40 °C for 15 h. After evaporation of the solvent, the crude product was purified by column chromatography (basic alumina, heptane/CH₂Cl₂, gradient from 100:0 to 60:40) to yield 0.160 g (74%) of **2b**; ¹H NMR (200.13 MHz, CDCl₃) **d** 9.98 (s, 1H), 7.82 and 7.60 (AA'XX', $J_{AX} = 8.4$, 4H), 7.38 and 6.57 (AA'XX', $J_{AX} = 9.0$, 4H), 3.28 (m, 4H), 1.71-1.48 (m, 4H), 1.32 (m, 12H), 0.90 (t, J = 6.5, 6H); ¹³C NMR (50.32 MHz, CDCl₃) **d** 191.4, 148.4, 134.5, 133.2, 131.4, 130.9, 129.5, 111.1, 107.6, 95.9, 86.9, 50.9, 31.7, 27.1, 26.7, 22.6, 14.0; HRMS (LSIMS⁺, mNBA) calcd for C₂₇H₃₅NO (M⁺?) *m/z* 389.2719, found 389.2722; elemental analysis calcd (%) for C₂₇H₃₅NO (389.58): C 83.24, H 9.06, N 3.60; found: C 83.06, H 9.17, N 3.34.

4-[(1*E*)-2-(4-Iodophenyl)ethenyl]-*N*,*N*-dioctylbenzenamine (4a): To a solution of $3c^{[S2]}$ (8.826 g, 12.3 mmol) and 4-iodobenzaldehyde^[S3] (2.85 g, 12.3 mmol) in anhyd CH₂Cl₂ (45 mL), was added tBuOK (2.07 g, 18.4 mmol). The mixture was stirred at 20 °C for 5 h. After addition of water (60 mL), extraction with CH₂Cl₂, and drying (Na₂SO₄), the solvent was evaporated. The residue was purified by filtration through a short pad of silica gel (heptane/CH₂Cl₂ 50:50), to afford a mixture of isomers, which was dissolved in Et₂O (80 mL). A catalytic amount of I₂ was then added and the solution was stirred at 20 °C for 2 h under light exposure (75 W lamp). The organic layer was washed with aq Na₂S₂O₃ and dried (Na₂SO₄). After evaporation of the solvent, the crude product was purified by filtration through a pad of silica gel (CH₂Cl₂/heptane 90:10) to yield 5.696 g (85%) of 4a: mp 50-51 °C; ¹H NMR (200.13 MHz, CDCl₃) *d* 7.61 and 7.19 (AA'XX', $J_{AX} = 8.4, 4H$), 7.35 and 6.60 $(AA'XX', J_{AX} = 8.9, 4H), 7.02 (d, J = 16.3, 1H), 6.76 (d, J = 16.3, 1H), 3.27 (m, 4H), 1.67$ -1.48 (m, 4H), 1.42-1.22 (m, 20H), 0.89 (t, J = 6.5, 6H); ¹³C NMR (50.32 MHz, CDCl₃) **d** 147.9, 137.9, 137.5, 129.7, 127.9, 127.6, 123.9, 122.2, 111.5, 91.0, 51.0, 31.8, 29.5, 29.3, 27.3, 27.1, 22.6, 14.1; HRMS (LSIMS⁺, mNBA) calcd for C₃₀H₄₄IN (M⁺?) m/z 545.2519, found 545.2518; elemental analysis calcd (%) for C₃₀H₄₄IN (545.59): C 66.04, H 8.13, N 2.57; found: C 66.09, H 8.28, N 2.46.

4-[(1E)-2-[4-(Dihexylamino)phenyl]ethenyl]benzaldehyde (4b): To a solution of 3b^[S2] (1.045 g, 1.57 mmol) and terephthalaldehyde mono-(diethylacetal) (0.329 g, 1.58 mmol) in anhyd CH₂Cl₂ (15 mL), was added tBuOK (0.185 g, 1.65 mmol). The mixture was stirred at 20 °C for 24 h, then filtered through a short pad of silica gel. Evaporation of the solvents afforded the crude acetal, which was hydrolyzed at 20 °C for 1 h, using 10% HCl (25 mL) in THF (50 mL). Thereafter, THF was evaporated and CH₂Cl₂ was added. The two layers were separated and the organic layer was washed with aq NaHCO₃, dried (Na₂SO₄) and evaporated. The residue was dissolved in CH₂Cl₂, a catalytic amount of I₂ was added, and the solution was stirred at 20 °C for 3 h under light exposure (75 W lamp). The organic layer was washed with aq Na₂S₂O₃ and dried (Na₂SO₄). After evaporation of the solvent, the crude product was purified by column chromatography (cyclohexane/CH₂Cl₂ 20:80) to yield 0.517 g (84%) of **4b**,^[S4] mp 72-73 °C; ¹H NMR (250.13 MHz, CDCl₃) **d** 9.96 (s, 1H), 7.83 and 7.59 (AA'XX', $J_{AX} = 8.2$ Hz, 4H), 7.41 and 6.63 (AA'XX', $J_{AX} = 8.8$ Hz, 4H), 7.20 (d, J = 16.2 Hz, 1H), 6.90 (d, J = 16.2 Hz, 1H), 3.29 (t, J = 7.7 Hz, 4H), 1.60 (m, 4H), 1.32 (m, 12H), 0.91 (t, J = 6.5 Hz, 6H); ¹³C NMR (62.90 MHz ,CDCl₃) *d* 191.6, 148.5, 144.8, 134.4, 132.7, 130.3, 128.4, 126.1, 123.6, 121.9, 111.6, 51.1, 31.7, 27.3, 26.8, 22.7, 14.1; HRMS (CI, CH₄) calcd for C₂₇H₃₈NO $([M+H]^+) m/z$ 392.2953, found 392.2951.

5-[(1*E***)-2-[4-(Dioctylamino)phenyl]ethenyl]-2-furanecarboxaldehyde (6a):** Reaction of **5a**^[S5] (336 mg, 2 mmol) with **3c**^[S2] (1.44 g, 2 mmol), as described for **4b**, for 15 h, with subsequent purification by column chromatography (heptane/CH₂Cl₂ 50:50), afforded 832 mg (95%) of **6a**; ¹H NMR (200.13 MHz, CDCl₃) **d** 9.51 (s, 1H), 7.37 and 6.60 (AA'XX', $J_{AX} = 8.9, 4H$), 7.32 (d, J = 16.1, 1H), 7.23 (d, J = 3.7, 1H), 6.68 (d, J = 16.1, 1H), 6.41 (d, J = 3.7, 1H), 3.29 (m, 4H), 1.59 (m, 4H), 1.30 (m, 20H), 0.89 (t, J = 6.5, 6H); ¹³C NMR (75.48 MHz, CDCl₃) **d** 176.2, 160.5, 151.1, 148.7, 134.2, 130.5, 128.7, 122.7, 111.4, 109.5, 108.7, 51.0, 31.8, 29.5, 29.3, 27.3, 27.1, 22.6, 14.1.

5-[(1*E***)-2-[4-(Dioctylamino)phenyl]ethenyl]-2-thiophenecarboxaldehyde (6b):** Reaction of **5b**^[S6] (366 mg, 1.99 mmol) with **3c**^[S2] (1.56 g, 2.17 mmol), as described for **4b**, for 14 h, with subsequent purification by column chromatography (heptane/CH₂Cl₂ 50:50), afforded 715 mg (79%) of **6b**; ¹H NMR (200.13 MHz, CDCl₃) **d** 9.81 (s, 1H), 7.62 (d, J = 4.1, 1H), 7.36 and 6.60 (AA'XX', $J_{AX} = 8.5, 4H$), 7.09 (d, J = 16.3, 1H), 7.04 (d, J = 4.1, 1H), 6.95 (d, J = 16.3, 1H), 3.29 (m, 4H), 1.56 (m, 4H), 1.30 (m, 20H), 0.89 (t, J = 6.3, 6H); ¹³C NMR (50.32 MHz, CDCl₃) **d** 182.3, 154.6, 148.7, 139.9, 137.6, 133.7, 128.6, 124.7, 122.7, 115.4, 111.5, 51.0, 31.8, 29.5, 29.3, 27.3, 27.1, 22.6, 14.1; HRMS (LSIMS⁺, mNBA) calcd for C₂₉H₄₃NOS (M⁺?)

m/*z* 453.3065, found 453.3068; elemental analysis calcd (%) for C₂₉H₄₃NOS (453.72): C 76.77, H 9.55, N 3.09; found: C 76.78, H 9.49, N 2.96.

5-[(1*E***)-2-[4-(Dihexylamino)phenyl]ethenyl]-2-thiophenecarboxaldehyde (6c):** Reaction of **5b**^[S6] (368 mg, 2 mmol) with **3b**^[S2] (1.425 g, 2.15 mmol), as described for **4b**, for 14 h, with subsequent purification by column chromatography (heptane/CH₂Cl₂ 50:50), afforded 677 mg (85%) of **6c**; ¹H NMR (200.13 MHz, CDCl₃) **d** 9.80 (s, 1H), 7.62 (d, J = 4.3, 1H), 7.36 and 6.60 (AA'XX', $J_{AX} = 8.8$, 4H), 7.09 (d, J = 16.2, 1H), 7.03 (d, J = 4.3, 1H), 6.95 (d, J = 16.2, 1H), 3.29 (m, 4H), 1.60 (m, 4H), 1.32 (m, 12H), 0.90 (t, J = 6.3, 6H); ¹³C NMR (50.32 MHz, CDCl₃) **d** 182.3, 154.6, 148.7, 139.9, 137.6, 133.7, 128.6, 124.7, 122.7, 115.4, 111.5, 51.0, 31.7, 27.2, 26.8, 22.7, 14.0; HRMS (LSIMS⁺, mNBA) calcd for C₂₅H₃₅NOS (M⁺?) *m/z* 397.2439, found 397.2435; elemental analysis calcd (%) for C₂₅H₃₅NOS (397.62): C 75.52, H 8.87, N 3.52; found: C 75.64, H 9.06, N 3.28.

1-Bromo-4-(octylsulfonyl)benzene (8a): To a solution of 1-bromo-4-(octylthio)benzene (**7a**)^[S7] (700 mg, 2.32 mmol) and Na₂WO₄-2H₂O (12 mg, 0.036 mmol) in 7.5 mL of EtOH/water (5:1), was slowly added, at 40 °C, 35% aq H₂O₂ (0.4 mL). Then, the mixture was heated at 80 °C and H₂O₂ (0.4 mL) was again slowly added. The mixture was refluxed for 1 h. After evaporation of the solvent, the residue was dissolved in CH₂Cl₂, washed with 10% Na₂CO₃, water and dried (Na₂SO₄). The solvent was removed to yield 720 mg (93%) of **8a**: mp 38-39 °C; ¹H NMR (200.13 MHz, CDCl₃) **d** 7.78 and 7.71 (AA'XX', $J_{AX} = 8.8, 4H$), 3.07 (m, 2H), 1.69 (m, 2H), 1.24 (m, 10H), 0.86 (t, J = 6.5, 3H); ¹³C NMR (50.32 MHz, CDCl₃) **d** 138.2, 132.6, 129.6, 128.9, 56.3, 31.6, 28.92, 28.86, 28.2, 22.6, 22.5, 14.0; HRMS (EI) calcd for C₁₄H₂₁⁷⁹BrO₂S (M⁺?) *m/z* 332.0446, found 332.0418.

1-Bromo-4-[(trifluoromethyl)sulfonyl]benzene (**8b**): A solution of 1-bromo-4-[(trifluoromethyl)thio]benzene (**7b**) (922 mg, 3.59 mmol) in 35% aq H₂O₂ (12 mL) and glacial acetic acid (36 mL) was refluxed for 3 h. After addition of CH₂Cl₂, the organic layer was washed with NaHCO₃, then with water and dried (Na₂SO₄). The solvent was evaporated and the crude product was purified by column chromatography (heptane/CH₂Cl₂ 70:30) to yield 912 mg (89%) of **8b**: mp 63 °C (lit.^[S8] mp 59.5-61.5 °C); ¹H NMR (200.13 MHz, CDCl₃) **d** 7.91 and 7.83 (AA'XX', $J_{AX} = 8.9$, 4H); ¹³C NMR (50.32 MHz, CDCl₃) **d** 133.4, 132.8, 132.0, 130.2, 119.6 (q, J = 325.8); HRMS (EI) calcd for C₇H₄⁷⁹BrF₃O₂S (M⁺?) *m/z* 287.9067, found 287.9066. **Trimethyl**[[4-[(trifluoromethyl)sulfonyl]phenyl]ethynyl]silane (8c): Air was removed from a solution of **8b** (390.0 mg, 1.35 mmol) in 5 mL of Et₃N by blowing argon for 20 min. Then CuI (5.1 mg, 27.0 μ mol), Pd(PPh₃)₂Cl₂ (18.9 mg, 27.0 μ mol), and trimethylsilylacetylene (288 μ L, 2.02 mmol) were added under deaeration. Thereafter, the mixture was stirred at 40 °C for 3 h. The solvent was removed and the residue was purified by column chromatography (heptane/CH₂Cl₂ 75:25) to yield 364.0 mg (88%) of **8c**; ¹H NMR (200.13 MHz, CDCl₃) **d** 7.94 and 7.68 (AA'XX', $J_{AX} = 8.6$, 4H), 0.25 (s, 9H); ¹³C NMR (50.32 MHz, CDCl₃) **d** 132.9, 132.0, 130.5, 130.2, 119.7 (q, J = 325.8), 102.2, 101.9, -0.6.

1-Ethynyl-4-[(trifluoromethyl)sulfonyl]benzene (8d): To a solution of **8c** (356.6 mg, 1.16 mmol) in 3 mL of THF, was added TBAF (1 M in THF, 1.16 mL, 1.16 mmol) and the mixture was stirred for 2 min at 20 °C. After addition of CaCl₂, the solvent was removed and the mixture was purified by column chromatography (heptane/CH₂Cl₂ 75:25) to yield 175.2 mg (64%) of **8d**; ¹H NMR (200.13 MHz, CDCl₃) *d* 8.02 and 7.76 (AA'XX', $J_{AX} = 8.4, 4H$), 3.45 (s, 1H); ¹³C NMR (50.32 MHz, CDCl₃) *d* 133.2, 131.0, 130.8, 130.6, 119.7 (q, J = 325.9), 83.4, 81.2; elemental analysis calcd (%) for C₉H₅F₃O₂S (234.20): C 46.16, H 2.15, S 13.69; found: C 45.88, H 2.09, S 13.66.

1-Iodo-4-[(1*E*)-**2-**[**4-(octylsulfonyl)phenyl]ethenyl]benzene (10):** To a solution of **9b** (1.702 g, 4.208 mmol) and 4-iodobenzaldehyde (1.057 g, 4.556 mmol) in anhyd THF (16 mL), was added NaH (273 mg, 60% dispersion in mineral oil). The mixture was stirred at 20 °C for 15 h. After addition of water, the product was extracted with CH₂Cl₂ and was then purified by column chromatography (heptane/CH₂Cl₂ 30:70) to yield 1.242 g (61%) of **10**: mp 158-159 °C; ¹H NMR (200.13 MHz, CDCl₃) *d* 7.88 and 7.66 (AA'XX', $J_{AX} = 8.5$, 4H), 7.72 and 7.27 (AA'XX', $J_{AX} = 8.5$, 4H), 7.15 (s, 2H), 3.09 (m, 2H), 1.72 (m, 2H), 1.24 (m, 10H), 0.86 (t, J = 5.7, 3H); ¹³C NMR (50.32 MHz, CDCl₃) *d* 142.1, 137.8, 137.6, 135.7, 131.2, 128.4, 127.2, 126.9, 94.0, 56.3, 31.5, 29.6, 28.84, 28.77, 22.6, 22.4, 14.0; HRMS (LSIMS⁺, mNBA) calcd for C₂₂H₂₈IO₂S ([M+H]⁺) *m/z* 483.0855, found 483.0864.

[(1,1'-Biphenyl)-4,4'-diylbis(methylene)]bisphosphonic acid tetraethyl ester (15b): A solution of $15a^{[S9]}$ (10.20 g, 30.0 mmol) and P(OEt)₃ (13.34 g, 80 mmol) in toluene (60 mL) was refluxed for 60 h. Filtration of the precipitate obtained after cooling at 0 °C gave 11.7 g (86%) of **15b**: mp 109 °C (lit.^[S10] mp 109-110 °C); ¹H NMR (200.13 MHz, CDCl₃) *d* 7.45 (d, J = 8.0, 4H), 7.28 (dd, J = 8.0, 2.1, 4H), 3.96 (dq, J = 7.8, 7.1, 8H), 3.10 (d, J = 21.6, 4H), 1.18 (t, J = 7.0, 12H); ¹³C NMR (50.32 MHz, CDCl₃) *d* 139.2, 130.7 (d, J = 9.2), 130.1 (d, J = 1.0, 4H)

6.5), 127.1 (d, J = 2.3), 62.1 (d, J = 6.7), 33.4 (d, J = 137.3), 16.4 (d, J = 6.0); ³¹P NMR (101.25 MHz, CDCl₃) **d** 26.20; HRMS (CI, CH₄) calcd for C₂₂H₃₃O₆P₂ [M + H]⁺ m/z 455.1752, found 455.1749.

2,7-Diiodo-9,9-dinonyl-9H-fluorene (18b): To a mixture of **18a** (10.0 g, 23.88 mmol), AcOH (25 mL), concd H₂SO₄ (0.75 mL) and water (5 mL) at 75 °C, were added H₅IO₆ (1.09 g) and I₂ (2.42 g). The solution was heated at 75 °C for 1 h, then AcOH (25 mL), H₅IO₆ (1.09 g) and I₂ (2.42 g) were again added and the heating was continued at 75 °C for 1 h. The reaction mixture was cooled, diluted with CH₂Cl₂ and a solution of Na₂S₂O₃ was added. The two layers were separated and the organic layer was washed with 1 N NaOH, then with water and dried (Na₂SO₄). After evaporation of the solvent, the residue was purified by column chromatography (heptane) to yield 11.02 g (69%) of **18b**; ¹H NMR (200.13 MHz, CDCl₃) *d* 7.65 (d, J = 8.5, 2H), 7.40 (d, J = 8.5, 2H), 7.63 (s, 2H), 1.89 (m, 4H), 1.29-1.01 (m, 24H), 0.85 (t, J = 6.7, 6H), 0.57 (m, 4H); ¹³C NMR (50.32 MHz, CDCl₃) *d* 152.5, 139.7, 136.0, 132.0, 121.5, 93.1, 55.5, 40.0, 31.8, 29.8, 29.4, 29.2, 29.1, 23.6, 22.6, 14.1; HRMS (LSIMS⁺, mNBA) calcd for C₃₁H₄₄I₂ (M⁺?) *m/z* 670.1533, found 670.1527; elemental analysis calcd (%) for C₃₁H₄₄I₂ (670.50): C 55.53, H 6.61; found: C 55.74, H 6.89.

4,4'-(9,9-Dinonyl-9H-fluorene-2,7-diyl)bis(2-methyl-3-butyn-2-ol) (**18c):** Air was removed from a solution of **18b** (4.19 g, 6.25 mmol) in 20 mL of Et₃N by blowing argon for 20 min. Then CuI (48.1 mg, 0.253 mmol), Pd(PPh₃)₂Cl₂ (176.0 mg, 0.251 mmol) and 2-methyl-3-butyn-2-ol (1.868 mL, 19.12 mmol) were added, and the mixture was stirred at 20 °C for 16 h. The precipitate which separated was filtered off and washed with Et₂O. The filtrate was evaporated to dryness and the residue was purified by column chromatography (heptane/CH₂Cl₂ 30:70) to yield 2.64 g (72%) of **18c**; ¹H NMR (200.13 MHz, CDCl₃) *d* 7.59 (d, *J* = 8.5, 2H), 7.39 (d, *J* = 8.5, 2H), 7.37 (s, 2H), 2.10 (s, 2H), 1.92 (m, 4H), 1.66 (s, 12H), 1.28-0.98 (m, 24H), 0.84 (t, *J* = 6.7, 6H), 0.54 (m, 4H); ¹³C NMR (50.32 MHz, CDCl₃) *d* 150.8, 140.4, 130.6, 125.9, 121.4, 119.7, 94.0, 82.9, 65.6, 55.0, 40.3, 31.7, 31.4, 29.9, 29.4, 29.2, 29.1, 23.6, 22.5, 14.0; MS (LSIMS⁺, mNBA) *m*/*z* 582.4 ([M⁺?], 63), 565.4 ([M+H⁺-H₂O], 100); HRMS (LSIMS⁺, mNBA) calcd for C₄₁H₅₈O₂ (M⁺) *m*/*z* 582.4437, found 582.4432.

2,7-Diethynyl-9,9-dinonyl-9*H***-fluorene (18d):** To a refluxing solution of **18c** (1.72 g, 2.95 mmol) in 30 mL of toluene/*i*PrOH (4/1), was added solid KOH (0.494 g, 8.8 mmol). The mixture was stirred under reflux for 0.5 h. After cooling, the mixture was filtered through

Celite[®] and the filter cake was washed with CH₂Cl₂. The combined filtrate and washings were dried (Na₂SO₄) and evaporated to give a crude product, which was purified by column chromatography (heptane) to yield 1.21 g (88%) of **18d**; ¹H NMR (200.13 MHz, CDCl₃) *d* 7.63 (d, J = 8.6, 2H), 7.48 (d, J = 8.6, 2H), 7.46 (s, 2H), 3.14 (s, 2H), 1.93 (m, 4H), 1.27-0.99 (m, 24H), 0.84 (t, J = 6.7, 6H), 0.56 (m, 4H); ¹³C NMR (50.32 MHz, CDCl₃) *d* 151.0, 141.0, 131.2, 126.5, 120.8, 119.9, 84.5, 77.3, 55.2, 40.2, 31.8, 29.9, 29.5, 29.2, 29.1, 23.6, 22.6, 14.1; HRMS (LSIMS⁺, mNBA) calcd for C₃₅H₄₆ (M⁺?) *m/z* 466.3600, found 466.3602.

2,7-Dibromo-9,9-dinonyl-9*H***-fluorene (22a):** To 300 mL of a CH₂Cl₂ solution of **18a** (18 g, 43 mmol) and iodine (22 mg, 0.087 mmol), was added dropwise a solution of bromine (4.41 mL, 86 mmol), and the mixture was stirred for 15 h at 20 °C. The organic layer was washed with aq Na₂S₂O₃ and dried (MgSO₄). After evaporation of the solvent, the crude product was purified by column chromatography (heptane) to yield 24.16 g (97%) of **22a**; ¹H NMR (200.13 MHz, CDCl₃) **d** 7.52 (d, J = 8.6, 2H), 7.45 (dd, J = 8.6, 1.8, 2H), 7.44 (d, J = 1.8, 2H), 1.90 (m, 4H), 1.32-0.99 (m, 24H), 0.84 (t, J = 6.8, 6H), 0.57 (m, 4H); ¹³C NMR (50.32 MHz, CDCl₃) **d** 152.5, 139.0, 130.1, 126.1, 121.4, 121.1, 55.6, 40.1, 31.8, 29.8, 29.4, 29.2, 23.6, 22.6, 14.1; HRMS (LSIMS⁺, mNBA) calcd for C₃₁H₄₄⁷⁹Br₂ (M⁺?) *m/z* 574.1810, found 574.1820; elemental analysis calcd (%) for C₃₁H₄₄Br₂ (576.50): C 64.59, H 7.69; found: C 64.96, H 7.95.

9,9-Dinonyl-9*H***-fluorene-2,7-dicarboxaldehyde (22b):** A solution of 11.65 g (20.21 mmol) of **22a** in 340 mL of anhyd benzene was cooled to 0 °C before 48.5 mL of a solution of *n*-butyllithium (2.5 M in hexane, 121.25 mmol) was added dropwise. After the addition was complete, the reaction mixture was stirred at 60 °C for 4 h, cooled to 0 °C, and *N*-formylpiperidine (32 g, 282.8 mmol) was added and allowed to react at 20 °C for 14 h. Thereafter, 3 M HCl (240 mL) was added. The two layers were separated and the organic layer was washed with water. The solvents were removed under reduced pressure, and the residue was purified by column chromatography (heptane/CH₂Cl₂, gradient from 95:5 to 70:30) to yield 4.65 g (48%) of **22b**; ¹H NMR (200.13 MHz, CDCl₃) *d* 10.10 (s, 2H), 7.92 (m, 6H), 2.07 (m, 4H), 1.32-0.97 (m, 24H), 0.82 (t, *J* = 6.7, 6H), 0.56 (m, 4H); ¹³C NMR (50.32 MHz, CDCl₃) *d* 191.6, 152.5, 145.3, 136.2, 129.8, 123.2, 121.0, 55.2, 39.7, 31.4, 29.5, 29.1, 28.9, 28.8, 23.5, 22.3, 13.7; HRMS (LSIMS⁺, mNBA) calcd for C₃₃H₄₇O₂ ([M+H]⁺) *m/z* 475.3576, found 475.3576; elemental analysis calcd (%) for C₃₃H₄₆O₂ (474.73): C 83.49, H 9.77; found: C 83.65, H 9.86.

2,7-Diethenyl-9,9-dinonyl-9H-fluorene (27): To a solution of **22b** (670.0 mg, 1.41 mmol) and methyltriphenylphosphonium iodide (1.46 g, 3.62 mmol) in anhyd THF (32 mL), was added NaH (310 mg, 60% dispersion in mineral oil). The mixture was stirred at 20 °C for 48 h and then filtered through Celite[®] (heptane). After evaporation of the solvent, the crude product was purified by column chromatography (heptane) to yield 417.0 mg (63%) of **27**; ¹H NMR (200.13 MHz, CDCl₃) **d** 7.66 (d, J = 7.9, 2H), 7.44 (dd, J = 7.9, J = 1.7, 2H), 7.39 (d, J = 1.7, 2H), 6.84 (dd, J = 17.6, J = 10.9, 2H), 5.84 (dd, J = 17.6, J = 0.9, 2H), 5.30 (dd, J = 10.9, J = 0.9, 2H), 1.58 (m, 4H), 1.29-1.08 (m, 24H), 0.87 (t, J = 6.4, 6H), 0.65 (s, 4H); ¹³C NMR (50.32 MHz, CDCl₃) **d** 151.8, 141.1, 137.9, 136.9, 125.7, 120.9, 120.1, 113.4, 55.3, 40.8, 32.3, 30.5, 29.9, 29.7, 24.1, 23.0, 14.5. HRMS (EI) calcd for C₃₅H₅₀ (M⁺?) *m/z* 470.3913, found 470.3909.

9,9-Dinonyl-9*H***-fluorene-2,7-dimethanol (29a):** To a solution of **22b** (1.018 g, 2.14 mmol) in 38 mL of EtOH/CH₂Cl₂ (2/1), was added KBH₄ (346 mg, 6.42 mmol). The mixture was stirred at 20 °C for 14 h. After addition of water, the solvent was evaporated. The residue was filtered and washed with water. The crude product was purified by column chromatography (CH₂Cl₂) to yield 0.994 g (97%) of **29a**; ¹H NMR (200.13 MHz, CDCl₃) *d* 7.67 (d, *J* = 8.3, 2H), 7.34 (s, 2H), 7.32 (d, *J* = 8.3, 2H), 4.78 (d, *J* = 5.8, 4H), 1.95 (m, 4H), 1.68 (t, *J* = 5.8, 2H), 1.24-1.03 (m, 24H), 0.83 (t, *J* = 6.7, 6H), 0.60 (m, 4H); ¹³C NMR (50.32 MHz, CDCl₃) *d* 151.3, 140.3, 139.7, 125.7, 121.5, 119.6, 65.7, 55.0, 40.3, 31.8, 30.0, 29.5, 29.3, 29.2, 23.8, 22.6, 14.0; HRMS (LSIMS⁺, mNBA) calcd for C₃₃H₅₀O₂ (M⁺?) *m/z* 478.3811, found 478.3814; elemental analysis calcd (%) for C₃₃H₅₀O₂ (478.76): C 82.79, H 10.53; found: C 82.81, H 10.56.

2,7-Bis(bromomethyl)-9,9-dinonyl-9*H***-fluorene (29b):** A solution of **29a** (1.05 g, 2.19 mmol) in 48% aq HBr (5.2 mL) was refluxed for 3 h. After addition of aq NaHCO₃, extraction with CH₂Cl₂, and drying (Na₂SO₄), the solvent was evaporated to yield 1.19 g (90%) of **29b**; ¹H NMR (200.13 MHz, CDCl₃) *d* 7.64 (d, J = 8.2, 2H), 7.36 (d, J = 8.2, 2H), 7.34 (s, 2H), 4.60 (s, 4H), 1.94 (m, 4H), 1.25-1.04 (m, 24H), 0.83 (t, J = 6.7, 6H), 0.61 (m, 4H); ¹³C NMR (50.32 MHz, CDCl₃) *d* 151.6, 140.6, 136.8, 127.9, 123.6, 120.0, 55.1, 40.0, 34.3, 31.8, 29.8, 29.4, 29.1, 23.6, 22.6, 14.1; HRMS (LSIMS⁺, mNBA) calcd for C₃₃H₄₇⁷⁹Br₂ ([M-H]⁺) *m/z* 601.2045, found 601.2026.

[(9,9-Dinonyl-9*H*-fluorene-2,7-diyl)bis(methylene)]bisphosphonic acid tetraethyl ester (29c): A solution of 29b (1.18 g, 1.96 mmol) in P(OEt)₃ (20 mL) was refluxed for 60 h. Then

P(OEt)₃ was removed by distillation under vacuum. The crude product was purified by column chromatography (CH₂Cl₂/AcOEt, gradient from 85:15 to 50:50) to yield 870 mg (62%) of **29c**; ¹H NMR (200.13 MHz, CDCl₃) **d** 7.61 (d, J = 8.1, 2H), 7.26 (m, 4H), 4.00 (m, 8H), 3.24 (d, J = 21.7, 4H), 1.94 (m, 4H), 1.23 (t, J = 7.1, 12H), 1.19-0.98 (m, 24H), 0.83 (t, J = 6.7, 6H), 0.57 (m, 4H); ¹³C NMR (50.32 MHz, CDCl₃) **d** 151.0, 139.6, 130.2 (d, J = 9.1), 128.4 (d, J = 6.3), 124.2 (d, J = 6.6), 119.6, 62.1 (d, J = 7.1), 54.9, 40.4, 34.1 (d, J = 137.6), 31.7, 30.1, 29.5, 29.4, 29.2, 23.9, 22.6, 16.1 (d, J = 6.1), 14.0; ³¹P NMR (121.50 MHz, CDCl₃) **d** 27.15; HRMS (LSIMS⁺, mNBA) calcd for C₄₁H₆₉O₆P₂ ([M+H]⁺) *m/z* 719.4569, found 719.4554.

5,5'-[(9,9-Dinonyl-9H-fluorene-2,7-diyl)di-(1E)-2,1-ethenediyl]bis-2-thiophene-

carboxaldehyde (33): To a solution of **22b** (170 mg, 0.237 mmol) and **5b** (100.4 mg, 0.545 mmol) in anhyd THF (22 mL), was added NaH (75 mg, 60% dispersion in mineral oil). The mixture was stirred at 20 °C for 15 h, then at 60 °C for 2 h. After addition of water, extraction with CH₂Cl₂, and drying (Na₂SO₄), the solvents were evaporated. Purification of the residue by column chromatography (heptane/AcOEt 70:30) afforded the crude acetal, which was hydrolyzed at 20 °C for 2 h, using 10% HCl (4 mL) in THF (8 mL). Thereafter, THF was evaporated and CH₂Cl₂ was added. The two layers were separated and the organic layer was washed with aq NaHCO₃, dried (Na₂SO₄) and evaporated. The crude product was purified by column chromatography (heptane/AcOEt 80:20) to yield 90 mg (55%) of **33**; ¹H NMR (200.13 MHz, CDCl₃) **d** 9.87 (s, 2H), 7.70 (d, *J* = 7.8, 2H), 7.69 (d, *J* = 4.1, 2H), 7.50 (d, *J* = 7.8, 2H), 7.46 (s, 2H), 7.26 (m, 4H), 7.19 (d, *J* = 4.1, 2H), 2.02 (m, 4H), 1.26-1.04 (m, 24 H), 0.80 (t, *J* = 6.5, 6H), 0.61 (m, 4H); ¹H NMR (200.13 MHz, C₆D₆) δ 9.51 (s, 2H), 7.55 (d, *J* = 8.0, 2H), 7.43 (s, 2H), 7.24 (d, *J* = 8.0, 2H), 7.10 (d, *J* = 16.1, 2H), 6.98 (d, *J* = 16.1, 2H), 6.88 (d, *J* = 3.9, 2H), 6.56 (d, *J* = 3.9, 2H), 2.14 (m, 4H), 1.46-0.76 (m, 28H), 0.81 (t, *J* = 6.5, 6H).

Absorption and emission spectra.

Figure S1. Absorption and emission of 13a and 19a in toluene: core effect.

Figure S2. Absorption and emission of 19a and 24 in toluene: linker effect.

Figure S3. Absorption and emission in toluene of (a) 24 and 34a; (b) 30, 34b and 31: connector effects.

Figure S4. Absorption and emission spectra in toluene of (a) 24 and 30; (b) 34a and 34b; (c) 19a and 19b: length effects.

Figure S5. Absorption and emission spectra in toluene of (a) 16a, 17b and 17a; (b) 24, 32 and 31: length effects.

Figure S6. Absorption and emission spectra in toluene of (a) 21a and 21b; (b) 24, 28 and 23: end-groups' effect.

References

- [S1] C. Käpplinger, R. Beckert, Synthesis 2002, 1843-1850.
- [S2] L. Porrès, B. K. G. Bhatthula, M. Blanchard-Desce, Synthesis 2003, 1541-1544.
- [S3] K. J. L. Paciorek, S. R. Masuda, J. G. Shih, J. H. Nakahara, J. Fluorine Chem. 1991, 53, 233-248.
- [S4] J. Brunel, O. Mongin, A. Jutand, I. Ledoux, J. Zyss, M. Blanchard-Desce, Chem. Mater. 2003, 15, 4139-4148.
- [S5] B. L. Feringa, R. Hulst, R. Rikers, L. Brandsma, *Synthesis* 1988, 316-318.
- [S6] A. J. Carpenter, D. J. Chadwick, *Tetrahedron* 1985, 41, 3803-3812.
- [S7] N. Nemoto, J. Abe, F. Miyata, Y. Shirai, Y. Nagase, J. Mater. Chem. 1998, 8, 1193-1197.
- [S8] E. A. Nodiff, S. Lipschutz, P. N. Craig, M. Gordon, J. Org. Chem. 1960, 25, 60-65.
- [S9] A. Helms, D. Heiler, G. McLendon, J. Am. Chem. Soc. 1992, 114, 6227-6238.
- [S10] V. S. Abramov, N. A. Moskva, Zh. Obshch. Khim. 1967, 37, 2243-2247.