

CHEMISTRY

A EUROPEAN JOURNAL

Supporting Information

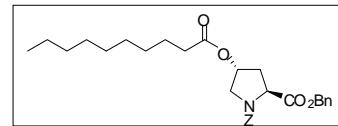
© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2007

Highly Diastereo- and Enantioselective, Direct Aldol Reaction of Aldehyde and Ketone Catalyzed by Siloxypyrolidine in the Presence of Water

Seiji Aratake, Takahiko Itoh, Tsubasa Okano, Norio Nagae, Tatsunobu Sumiya, Mitsuru Shoji, Yujiro Hayashi*

Supporting Information

Highly Diastereo- and Enantioselective Direct Aldol Reaction in the Presence of Water


Seiji Aratake, Takahiko Itoh, Tsubasa Okano, Norio Nagae, Tatsunobu Sumiya,
Mitsuru Shoji, Yujiro Hayashi,*

Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science,
Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

Typical procedure for a synthesis of (2*S*, 4*R*)-4-decanoyloxypyrrolidine-2-carboxylic acid

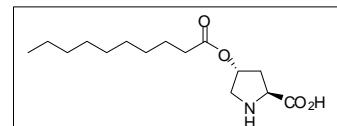
(2*S*, 4*R*)-*N*-Benzylloxycarbonyl-4-decanoyloxypyrrolidine-2-carboxylic acid benzyl ester (9c)

To a solution of (2*S*, 4*R*)-*N*-benzylloxycarbonyl-4-hydroxypyrrolidine-2-carboxylic acid benzyl ester **8** (2.34 g, 4.50 mmol) and catalytic amount of 4-dimethylaminopyridine in pyridine (9.0 mL) was added *n*-decanoyl chloride (1.37 mL, 6.75 mmol) successively at 0 °C. After stirring the reaction mixture for 18h at that temperature to room temperature, the reaction was quenched with saturated NaHCO₃ aqueous solution and the organic materials were extracted with ethyl acetate three times. The combined organic extracts were washed with saturated NaHCO₃ aqueous solution and brine each three times, dried over anhydrous Na₂SO₄, and concentrated in vacuo after filtration. Purification by silica gel chromatography (ethyl acetate : hexane = 1 : 12) gave (2*S*, 4*R*)-*N*-benzylloxycarbonyl-4-decanoyloxypyrrolidine-2-carboxylic acid benzyl ester **9c** (2.06 g, 3.96 mmol) in 88% yield as a colorless oil.

Data are shown as a mixture of two conformers.

¹H NMR (CDCl₃, 400MHz): δ 0.81-0.89 (3H, m), 1.24 (14H, br-s), 2.12-2.28 (3H, m), 2.31-2.43 (1H, m), 3.58-3.82 (2H, m), 4.43-4.58 (1H, m), 4.98 (1H, s), 5.03 (1H, s), 5.11-5.27 (3H, m), 7.15-7.37 (10H, m);

¹³C NMR (CDCl₃, 100MHz): δ 14.0, 22.6, 24.7, 29.0, 29.1, 29.14, 29.3, 29.4, 31.8, 34.1, 35.5, 36.6, 52.1, 52.6, 57.7, 58.0, 66.9, 67.0, 67.3, 71.5, 72.2, 127.8, 128.0, 128.001, 128.1, 128.12, 128.2, 128.4, 128.42, 128.5, 135.2, 135.4, 136.2, 136.3, 154.1, 154.7, 171.7, 171.9, 173.0, 173.1;


IR (neat): ν 2927, 1743, 1735, 1455, 1417, 1353, 1162, 1120, 1064 cm⁻¹;

HRMS (FAB): [M+H] calcd for [C₃₀H₄₀O₆N]: 510.2777, found: 510.2840;

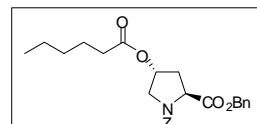
[α]_D²²-39.5 (c = 0.82, CHCl₃).

(2*S*, 4*R*)-4-Decanoyloxypyrrolidine-2-carboxylic acid (4c)

To a solution of (2*S*, 4*R*)-*N*-benzylloxycarbonyl-4-decanoyloxypyrrolidine-2-carboxylic acid benzyl ester **9c** (2.06 g, 3.96 mmol) in ethyl acetate (15.7 mL) was added 20% Pd(OH)₂/C (200 mg, 0.29 mmol) at room temperature, and the reaction mixture was stirred for 15h under H₂ atmosphere. Warmed MeOH (20 ml) was added, and the reaction mixture was filtered through a pad of Celite, and concentrated in vacuo. The residual solid was washed with ethyl acetate to afford (2*S*, 4*R*)-4-decanoyloxypyrrolidine-2-carboxylic acid **4c** (1.12 g, 3.96 mmol) in quantitative yield as a white solid.

¹H NMR (CD₃OD, 600MHz): δ 0.93 (3H, t, *J*=6.8 Hz), 1.28-1.42 (14H, m), 1.63-1.68 (2H, m), 2.26-2.35 (1H, m), 2.37-2.43 (2H, m), 2.49-2.55 (1H, m), 3.37-3.44 (1H, m), 3.61-3.67 (1H, m), 4.19 (1H, dd, *J*=7.8, 10.2 Hz), 5.43 (1H, br-s);

¹³C NMR (CD₃OD, 150MHz): δ 15.3, 24.6, 26.7, 31.0, 31.3, 31.4, 33.9, 35.7, 37.5, 52.8, 62.4, 75.5, 173.8, 175.2;


IR (KBr): ν 2852, 1736, 1620, 1579, 1441, 1417, 1383, 1213, 1165, 640 cm⁻¹;

HRMS (FAB): [M+H] calcd for [C₁₅H₂₈O₄N]: 286.2018, found: 286.2036;

[α]_D²²-29.4 (c = 0.13, MeOH).

(2*S*, 4*R*)-*N*-Benzylloxycarbonyl-4-hexanoyloxypyrrolidine-2-carboxylic acid benzyl ester (9a)

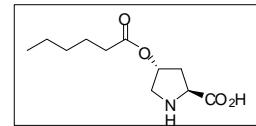
(2*S*, 4*R*)-*N*-benzylloxycarbonyl-4-hexanoyloxypyrrolidine-2-carboxylic acid

benzyl ester **9a** was prepared from (2*S*, 4*R*)-*N*-benzyloxycarbonyl-4-hydroxypyrrolidine-2-carboxylic acid benzyl ester **8** and hexanoyl chloride by the procedure described for the synthesis of (2*S*, 4*R*)-*N*-benzyloxycarbonyl-4-decanoyloxyprrolidine-2-carboxylic acid benzyl ester **9c**.

Data are shown as a mixture of two conformers.

¹H NMR (CDCl₃, 400 MHz): δ 0.86 (3H, t, *J*=6.2 Hz), 1.15-1.33 (4H, m), 1.42-1.62 (2H, m), 2.11-2.44 (4H, m), 3.59-3.81 (2H, m), 4.43-4.54 (1H, m), 4.94-5.30 (5H, m), 7.14-7.39 (10H, m);

¹³C NMR (CDCl₃, 100 MHz): δ 13.8, 22.2, 24.4, 31.1, 34.1, 35.5, 36.6, 52.1, 52.6, 57.7, 58.0, 66.9, 67.0, 67.2, 71.5, 72.3, 127.8, 128.0, 128.1, 128.13, 128.2, 128.4, 128.42, 128.5, 135.2, 135.4, 136.2, 136.3, 154.1, 154.7, 171.7, 171.9, 173.0, 173.1;


IR (neat): ν 2955, 1736, 1716, 1417, 1354, 1165, 1122, 1066, 750, 698 cm⁻¹;

HRMS (FAB): [M+H] calcd for [C₂₆H₃₂O₆N]: 454.2152, found: 454.2230;

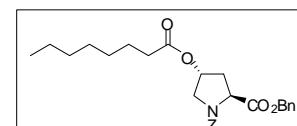
$[\alpha]_D^{22}$ -45.2 (*c* = 0.88, CHCl₃).

(2*S*, 4*R*)-4-Hexanoyloxyprrolidine-2-carboxylic acid (4a)

(2*S*, 4*R*)-4-Hexanoyloxyprrolidine-2-carboxylic acid **4a** was prepared from (2*S*, 4*R*)-*N*-benzyloxycarbonyl-4-hexanoyloxyprrolidine-2-carboxylic acid benzyl ester **9a** by the procedure described for the synthesis of (2*S*, 4*R*)-4-decanoyloxyprrolidine-2-carboxylic acid **4c**.

¹H NMR (CDCl₃, 600 MHz): δ 0.83 (3H, t, *J*=7.0 Hz), 1.16-1.31 (4H, m), 1.54-1.57 (2H, m), 2.18-2.27 (3H, m), 2.39-2.43 (1H, m), 3.32-3.34 (1H, m), 3.57-3.59 (1H, m), 4.10 (1H, br-t, *J*=7.4 Hz), 5.29 (1H, br-s);

¹³C NMR (CDCl₃, 100 MHz): δ 13.8, 22.2, 24.2, 31.1, 33.9, 35.4, 50.4, 60.0, 72.7, 172.4, 173.2;


IR (KBr): ν 2960, 1730, 1624, 1577, 1441, 1419, 1250, 1173, 1038, 640 cm⁻¹;

HRMS (FAB): [M+H] calcd for [C₁₁H₂₀O₄N]: 230.1392, found: 230.1389;

$[\alpha]_D^{22}$ -25.1 (*c* = 0.11, MeOH).

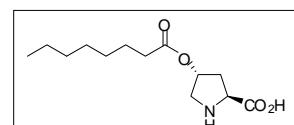
(2*S*, 4*R*)-*N*-Benzylloxycarbonyl-4-octanoyloxyprrolidine-2-carboxylic acid benzyl ester (9b)

(2*S*, 4*R*)-*N*-Benzylloxycarbonyl-4-octanoyloxyprrolidine-2-carboxylic acid benzyl ester **9b** was prepared from (2*S*, 4*R*)-*N*-benzyloxycarbonyl-4-hydroxypyrrolidine-2-carboxylic acid benzyl ester **8** and octanoyl chloride by the procedure described for the synthesis of (2*S*, 4*R*)-*N*-benzyloxycarbonyl-4-decanoyloxyprrolidine-2-carboxylic acid benzyl ester **9c**.

Data are shown as a mixture of two conformers.

¹H NMR (CDCl₃, 400 MHz): δ 0.85 (3H, t, *J*=7.0 Hz), 1.25 (8H, br-s), 1.40-1.62 (2H, m), 2.12-2.42 (4H, m), 3.59-3.80 (2H, m), 4.43-4.54 (1H, m), 4.91-5.30 (5H, m), 7.18-7.38 (10H, m);

¹³C NMR (CDCl₃, 100 MHz): δ 14.0, 22.5, 24.8, 28.8, 31.5, 34.2, 35.6, 36.6, 52.2, 52.6, 57.7, 58.0, 66.9, 67.0, 67.3, 71.5, 72.3, 127.8, 128.0, 128.1, 128.14, 128.3, 128.4, 128.44, 128.5, 135.2, 135.4, 136.2, 136.3, 154.1, 154.7, 171.7, 172.0, 173.1, 173.12;


IR (neat): ν 2955, 1736, 1716, 1417, 1354, 1165, 1122, 1066, 750, 698 cm⁻¹;

HRMS (FAB): [M+H] calcd for [C₂₈H₃₆O₆N]: 481.2464, found: 481.2525;

$[\alpha]_D^{22}$ -41.8 (*c* = 0.83, CHCl₃).

(2*S*, 4*R*)-4-Octanoyloxyprrolidine-2-carboxylic acid (4b)

(2*S*, 4*R*)-4-Octanoyloxyprrolidine-2-carboxylic acid **4b** was prepared from (2*S*, 4*R*)-*N*-benzyloxycarbonyl-4-octanoyloxyprrolidine-2-carboxylic acid benzyl ester **9b** by the procedure described for the synthesis of (2*S*, 4*R*)-4-decanoyloxyprrolidine-2-carboxylic acid **4c**.

¹H NMR (CDCl₃, 600 MHz): δ 0.80-0.88 (3H, m), 1.25 (8H, br-s), 1.56 (2H, br-s), 2.20-2.31 (3H, m), 2.36-2.45 (1H, m), 3.28-3.41 (1H, m), 3.54-3.67 (1H, m), 4.12 (1H, br-s), 5.27 (1H, br-s);

¹³C NMR (CDCl₃, 150 MHz): δ 14.0, 22.5, 24.6, 28.8, 29.0, 31.5, 33.9, 35.4, 50.2, 59.9, 72.5, 172.7, 173.2;

IR (KBr): ν 2960, 2929, 1736, 1624, 1577, 1441, 1419, 1383, 1227, 1167 cm⁻¹;

HRMS (FAB): [M+H] calcd for [C₁₃H₂₄O₄N]: 258.1705, found: 258.1711;

$[\alpha]_D^{22}$ -37.0 (*c* = 0.09, MeOH).

(2*S*, 4*R*)-*N*-Benzylloxycarbonyl-4-dodecanoyloxyprrolidine-2-carboxylic acid benzyl ester (9d)

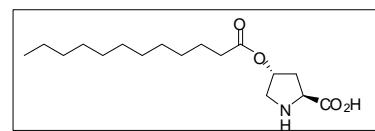
(2*S*, 4*R*)-*N*-Benzylloxycarbonyl-4-dodecanoyloxyprrolidine-2-carboxylic acid benzyl ester **9d** was

prepared from (2*S*, 4*R*)-*N*-benzyloxycarbonyl-4-hydroxypyrrolidine-2-carboxylic acid benzyl ester **8** and dodecanoyl chloride by the procedure described for the synthesis of (2*S*, 4*R*)-*N*-benzyloxycarbonyl-4-decanoxyloxyprrolidine-2-carboxylic acid benzyl ester **9c**.

Data are shown as a mixture of two conformers.

¹H NMR (CDCl₃, 400MHz): δ 0.86 (3H, t, *J*=7.1 Hz), 1.23 (16H, br-s), 1.45-1.65 (2H, m), 2.14-2.28 (2H, m), 2.29-2.42 (2H, m), 3.59-3.80 (2H, m), 4.41-4.55 (1H, m), 4.98 (1H, s), 5.04 (1H, s), 5.11-5.31 (3H, m), 7.17-7.35 (10H, m);

¹³C NMR (CDCl₃, 100MHz): δ 14.0, 22.6, 24.8, 28.8, 29.0, 29.1, 29.2, 29.3, 29.4, 29.5, 31.8, 34.2, 35.6, 36.6, 52.2, 52.6, 57.8, 58.0, 67.0, 67.1, 67.3, 71.5, 72.3, 127.8, 128.0, 128.1, 128.15, 128.3, 128.4, 128.45, 128.5, 135.2, 135.4, 136.2, 136.3, 154.1, 154.7, 171.8, 172.0, 173.1, 173.12;


IR (neat): ν 2925, 2360, 1745, 1739, 1714, 1456, 1417, 1165, 1119, 1065, 914 cm⁻¹;

HRMS (FAB): [M+H] calcd for [C₃₂H₄₄O₆N]: 538.3090, found: 538.3168;

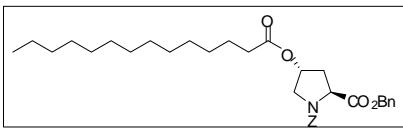
$[\alpha]_D^{22}$ -37.3 (*c* = 0.88, CHCl₃).

(2*S*, 4*R*)-4-Dodecanoxyloxyprrolidine-2-carboxylic acid (4d)

(2*S*, 4*R*)-4-Dodecanoxyloxyprrolidine-2-carboxylic acid **4d** was prepared from (2*S*, 4*R*)-*N*-benzyloxycarbonyl-4-dodecanoxyloxyprrolidine-2-carboxylic acid benzyl ester **9d** by the procedure described for the synthesis of (2*S*, 4*R*)-4-decanoxyloxyprrolidine-2-carboxylic acid **9c**.

¹H NMR (CD₃OD, 600MHz): δ 0.93 (3H, t, *J*=6.8 Hz), 1.24-1.46 (18H, m), 1.61-1.68 (2H, m), 2.27-2.34 (1H, m), 2.37-2.44 (1H, m), 2.54 (1H, dd, *J*=14.4, 7.7 Hz), 3.41 (1H, d, *J*=13.1 Hz), 3.63 (1H, dd, *J*=4.2, 13.1 Hz), 4.18 (1H, t, *J*=7.7 Hz), 5.42 (1H, br-s);

¹³C NMR (CD₃OD, 150MHz): δ 15.4, 24.7, 26.8, 31.0, 31.2, 31.4, 31.5, 31.6, 31.7, 34.1, 35.8, 37.6, 53.0, 62.6, 75.7, 174.0, 175.3;


IR (neat): ν 2920, 2850, 1736, 1616, 1585, 1456, 1417, 1205, 1165, 636 cm⁻¹;

HRMS (FAB): [M+H] calcd for [C₁₇H₃₂O₄N]: 314.2331, found: 314.2307;

$[\alpha]_D^{22}$ -17.8 (*c* = 0.09, MeOH).

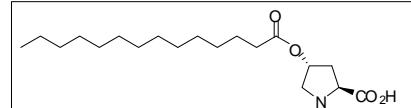
(2*S*, 4*R*)-*N*-Benzylloxycarbonyl-4-myristoyloxyprrolidine-2-carboxylic acid benzyl ester (9e)

(2*S*, 4*R*)-*N*-Benzylloxycarbonyl-4-myristoyloxyprrolidine-2-carboxylic acid benzyl ester **9e** was prepared from (2*S*, 4*R*)-*N*-benzyloxycarbonyl-4-hydroxypyrrolidine-2-carboxylic acid benzyl ester **8** and myristoyl chloride by the procedure described for the synthesis of (2*S*, 4*R*)-*N*-benzyloxycarbonyl-4-decanoxyloxyprrolidine-2-carboxylic acid benzyl ester **9c**.

Data are shown as a mixture of two conformers.

¹H NMR (CDCl₃, 400 MHz): δ 0.86 (3H, t, *J*=7.0 Hz), 1.23 (20H, br-s), 1.54 (2H, br-s), 2.10-2.28 (3H, m), 2.31-2.43 (1H, m), 3.58-3.81 (2H, m), 4.39-4.58 (1H, m), 4.88-5.33 (5H, m), 7.16-7.35 (10H, m);

¹³C NMR (CDCl₃, 100 MHz): δ 14.0, 22.6, 24.8, 29.0, 29.1, 29.3, 29.4, 29.5, 29.57, 29.6, 31.9, 34.2, 35.6, 36.6, 52.6, 57.7, 58.0, 67.0, 67.03, 67.3, 71.5, 72.3, 127.8, 128.0, 128.1, 128.13, 128.3, 128.4, 128.43, 128.5, 135.2, 135.4, 136.2, 136.3, 154.1, 154.7, 171.7, 172.0, 173.1, 173.11;


IR (neat): ν 2925, 1735, 1716, 1456, 1417, 1354, 1167, 1120, 1066, 698 cm⁻¹;

HRMS (FAB): [M+H] calcd for [C₃₄H₄₈O₆N]: 566.3403, found: 566.3487;

$[\alpha]_D^{22}$ -35.3 (*c* = 1.1, CHCl₃).

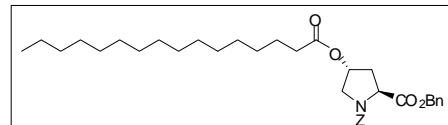
(2*S*, 4*R*)-4-Myristoyloxyprrolidine-2-carboxylic acid (4e)

(2*S*, 4*R*)-4-Miristoyloxyprrolidine-2-carboxylic acid **4e** was prepared from (2*S*, 4*R*)-*N*-benzyloxycarbonyl-4-myristoyloxyprrolidine-2-carboxylic acid benzyl ester **9e** by the procedure described for the synthesis of (2*S*, 4*R*)-4-decanoxyloxyprrolidine-2-carboxylic acid **4c**.

¹H NMR (CD₃OD, 600 MHz): δ 0.89-0.99 (3H, m), 1.25-1.46 (20H, m), 1.58-1.70 (2H, m), 2.26-2.34 (1H, m), 2.36-2.44 (2H, m), 2.49-2.56 (1H, m), 3.42 (1H, d, *J*=13.1 Hz), 3.61-3.68 (1H, m), 4.16-4.21 (1H, m), 5.40-5.45 (1H, m);

¹³C NMR (CD₃OD, 150 MHz): δ 11.6, 20.9, 22.9, 27.3, 27.5, 27.6, 27.7, 27.8, 27.85, 27.88, 27.91, 30.2,

58.71, 71.78, 170.1, 171.4;


IR (KBr): ν 2918, 2850, 1736, 1614, 1587, 1456, 1415, 1220, 1165, 636 cm^{-1} ;

HRMS (FAB): [M+H] calcd for $[\text{C}_{19}\text{H}_{36}\text{O}_4\text{N}]$: 342.2644, found: 342.2619;

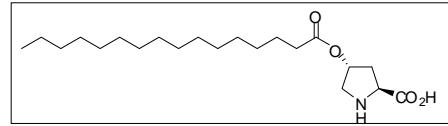
$[\alpha]_D^{22}$ -20.8 ($c = 0.07$, MeOH).

(2S, 4R)-N-Benzylloxycarbonyl-4-palmitoyloxypyrrolidine-2-carboxylic acid benzyl ester (9f)

(2S, 4R)-N-Benzylloxycarbonyl-4-palmitoyloxypyrrolidine-2-carboxylic acid benzyl ester **9f** was prepared from (2S, 4R)-N-benzylloxycarbonyl-4-hydroxypyrrolidine-2-carboxylic acid benzyl ester **8** and palmitoyl chloride by the procedure described for the synthesis of (2S, 4R)-N-benzylloxycarbonyl-4-decanoyloxypyrrolidine-2-carboxylic acid benzyl ester **9c**.

^1H NMR (CDCl_3 , 400 MHz): δ 0.86 (3H, t, $J=6.9$ Hz), 1.23 (24H, br-s), 1.53 (2H, br-s), 2.13-2.29 (3H, m), 2.31-2.42 (1H, m), 3.58-3.80 (2H, m), 4.39-4.58 (1H, m), 4.91-5.32 (5H, m), 7.16-7.37 (10H, m);

^{13}C NMR (CDCl_3 , 100 MHz): δ 14.0, 22.6, 24.7, 29.0, 29.1, 29.2, 29.3, 29.5, 29.52, 29.53, 29.6, 31.8, 34.1, 35.5, 36.6, 52.5, 57.7, 58.0, 66.8, 67.0, 67.2, 71.4, 72.2, 127.8, 127.9, 128.0, 128.1, 128.2, 128.3, 128.4, 128.5, 135.2, 135.4, 136.1, 136.3, 154.1, 154.6, 171.7, 171.9, 173.0, 173.01;


IR (neat): ν 2854, 1747, 1736, 1716, 1456, 1417, 1354, 1166, 1068, 914 cm^{-1} ;

HRMS (FAB): [M+H] calcd for $[\text{C}_{32}\text{H}_{44}\text{O}_6\text{N}]$: 594.3716, found: 594.3799;

$[\alpha]_D^{22}$ -34.0 ($c = 1.01$, MeOH).

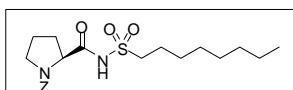
(2S, 4R)-4-Palmitoyloxypyrrolidine-2-carboxylic acid (4f)

(2S, 4R)-4-Palmitoyloxypyrrolidine-2-carboxylic acid **4f** was prepared from (2S, 4R)-N-benzylloxycarbonyl-4-palmitoyloxypyrrolidine-2-carboxylic acid benzyl ester **9f** by the procedure described for the synthesis of (2S, 4R)-4-decanoyloxypyrrolidine-2-carboxylic acid **9c**.

^1H NMR (CDOD , 600 MHz): δ 0.89-0.97 (3H, m), 1.25-1.37 (24H, m), 1.66 (2H, br-t, $J=6.5$ Hz), 2.27-2.35 (1H, m), 2.37-2.44 (2H, m), 2.50-2.56 (1H, m), 3.40 (1H, d, $J=13.1$ Hz), 3.63 (1H, dd, $J=4.2$, 13.1 Hz), 4.12-4.22 (1H, m), 5.43 (1H, br-s);

^{13}C NMR (CD_3OD , 150 MHz): δ 15.4, 24.7, 26.8, 31.2, 31.4, 31.5, 31.6, 31.72, 31.76, 31.8, 34.1, 35.9, 37.7, 53.0, 62.6, 75.7, 174.0, 175.3;

IR (KBr): ν 2918, 2850, 1736, 1618, 1585, 1441, 1415, 1228, 1167, 721 cm^{-1} ;


HRMS (FAB): [M+H] calcd for $[\text{C}_{21}\text{H}_{40}\text{O}_4\text{N}]$: 370.2957, found: 370.2943;

$[\alpha]_D^{22}$ -25.9 ($c = 0.05$, MeOH).

Typical procedure for a synthesis of sulfonyl pyrrolidine-2-carboxamide

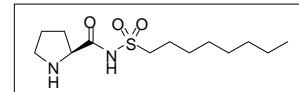
(2R)-N-Benzylloxycarbonyl(octanesulfonyl) pyrrolidine-2-carboxamide (11a)

To a solution of octanesulfonamide (651 mg, 3.37 mmol) in 17 mL of *N,N*-dimethylformamide was added sodium hydride (403 mg, 60 wt% dispersion in mineral oil, 10.1 mmol). After stirring for 0.5 hours at room temperature, (2S)-N-benzylloxycarbonyl-(4-nitrophenyl) pyrrolidine-2-carboxylate **10** (1.87 g, 5.06 mmol) was added. The solution was stirred 5 hours at room temperature and then poured onto crushed ice. The pH was adjusted to 3 by addition of citric acid. The aqueous layer was extracted with ethyl acetate three times. The organic layer was washed with water, dried over sodium sulfate and concentrated in vacue. The residue was purified by silica gel column chromatography (ethyl acetate:hexane=1:3) gave (2R)-N-benzylloxycarbonyl(octanesulfonyl) pyrrolidine-2-carboxamide **11a** (909 mg, 2.14 mmol) in 64% yield as a pale yellow oil.

Data are shown as a mixture of two conformers.

^1H NMR (CDCl_3 , 400 MHz): δ 0.85 (3H, t, $J=7.0$ Hz), 1.14-1.43 (11H, m), 1.53-2.07 (5H, m), 2.35 (1H, br-s), 3.03-3.60 (4H, m), 4.31 (1H, br-s), 5.14 (2H, q, $J=12.0$ Hz), 7.25-7.40 (5H, m);

^{13}C NMR (CDCl_3 , 100 MHz): δ 14.1, 22.6, 23.3, 24.4, 25.3, 28.2, 29.0, 29.1, 31.7, 34.7, 47.1, 53.2, 61.7, 67.9, 128.0, 128.2, 128.6, 136.0, 156.8;


IR (neat): ν 2925, 1685, 1584, 1456, 1422, 1358, 1124, 1088, 767, 697 cm^{-1} ;

HRMS (FAB): [M+Na] calcd for $[\text{C}_{21}\text{H}_{32}\text{N}_2\text{O}_5\text{SNa}]$: 447.1924, found: 447.1917;

$[\alpha]_D^{22}$ -132.4 ($c = 0.95$, CHCl_3).

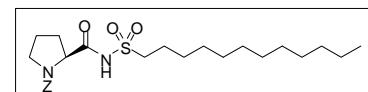
(2R)-Octanesulfonyl pyrrolidine-2-carboxamide (6a)

To a solution of (2R)-*N*-benzyloxycarbonyl(octanesulfonyl pyrrolidine-2-carboxamide) **11a** (829 mg, 1.95 mmol) in MeOH (3 mL) was added 10% Pd/C (83 mg, 0.08 mmol) at room temperature. The reaction mixture was stirred for 20 h under H_2 atmosphere. The reaction was filtered through a pad of Celite, and concentrated in vacue. The residual solid was washed with Et_2O to afford (2R)-octanesulfonyl pyrrolidine-2-carboxamide **6a** in 89% yield as a white solid.

^1H NMR (CDCl_3 , 400 MHz): δ 0.86 (3H, t, $J=7.0$ Hz), 1.15-1.32 (8H, m), 1.30-1.40 (2H, m), 1.68-1.82 (2H, m), 1.88-2.12 (3H, m), 2.30-2.41 (1H, m), 2.97-3.11 (2H, m), 3.54-3.63 (1H, m), 3.51-3.68 (1H, m), 4.19 (1H, t, $J=7.9$ Hz);

^{13}C NMR (CDCl_3 , 100 MHz): δ 14.1, 22.6, 23.7, 24.6, 28.5, 29.1, 29.2, 30.2, 31.8, 46.8, 52.9, 62.6, 173.9;

IR (KBr): ν 3122, 2923, 2853, 1616, 1597, 1564, 1389, 1277, 1125, 854 cm^{-1} ;


HRMS (FAB): [M+Na] calcd for $[\text{C}_{13}\text{H}_{26}\text{N}_2\text{O}_3\text{SNa}]$: 313.1556, found: 313.1545;

$[\alpha]_D^{22}$ -32.2 ($c = 1.00$, MeOH).

(2R)-*N*-Benzoyloxycarbonyl(dodecanesulfonyl pyrrolidine-2-carboxamide) (11b)

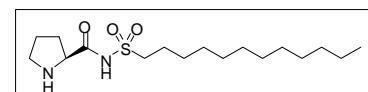
(2R)-*N*-Benzoyloxycarbonyl(dodecanesulfonyl pyrrolidine-2-carboxamide)

11b (715 mg, 54%) was prepared from dodecanesulfonamide (687 mg, 2.75 mmol) and (2S)-*N*-benzyloxycarbonyl-(4-nitrophenyl)pyrrolidine-2-carboxylate **10** (1.52 g, 4.1 mmol) by the procedure described for the

synthesis of (2R)-*N*-benzyloxycarbonyl(octanesulfonyl pyrrolidine-2-carboxamide) **11a**. Data are shown as a mixture of two conformers.

^1H NMR (CDCl_3 , 400 MHz): δ 0.86 (3H, t, $J=6.8$ Hz), 1.18-1.42 (19H, m), 1.48-2.00 (5H, m), 2.43 (1H, br-s), 3.00-3.62 (4H, m), 4.35 (1H, br-s), 5.08-5.22 (2H, m), 7.27-7.42 (5H, m);

^{13}C NMR (CDCl_3 , 100 MHz): δ 14.1, 22.7, 23.0, 24.5, 27.0, 28.0, 29.0, 29.3, 29.33, 29.5, 29.6, 31.9, 47.3, 53.2, 60.9, 68.2, 128.2, 128.5, 128.7, 135.8, 157.1;


IR (neat): ν 2923, 2852, 2360, 1699, 1457, 1422, 1357, 1338, 1125, 697 cm^{-1} ;

HRMS (FAB): [M+Na] calcd for $[\text{C}_{25}\text{H}_{40}\text{N}_2\text{O}_5\text{SNa}]$: 503.2550, found: 503.2542;

$[\alpha]_D^{22}$ -83.4 ($c = 0.95$, CHCl_3).

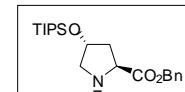
(2R)-Dodecanesulfonyl pyrrolidine-2-carboxamide (6b)

(2R)-Dodecanesulfonyl pyrrolidine-2-carboxamide **6b** (434 mg, 98%)

was prepared from (2R)-*N*-benzyloxycarbonyl-(dodecanesulfonyl pyrrolidine-2-carboxamide) **11b** (595 mg, 1.29 mmol) by the procedure described for the synthesis of (2R)-octanesulfonyl pyrrolidine-2-carboxamide **6a**.

^1H NMR (CDCl_3 , 400MHz): δ 0.86 (3H, t, $J=6.8$ Hz), 1.18-1.32 (16H, m), 1.32-1.37 (2H, m), 1.68-1.84 (2H, m), 1.88-2.12 (3H, m), 2.28-2.43 (1H, m), 2.94-3.15 (2H, m), 3.26-3.40 (1H, m), 3.48-3.63 (1H, m), 4.09-4.25 (1H, m);

^{13}C NMR (CDCl_3 , 100MHz): δ 14.1, 22.7, 23.7, 24.5, 28.5, 29.3, 29.31, 29.4, 29.55, 29.6, 30.1, 31.9, 46.5, 52.8, 62.6, 174.0;


IR (KBr): ν 3124, 2917, 2850, 1597, 1562, 1471, 1387, 1279, 1126, 534 cm^{-1} ;

HRMS (FAB): [M+Na] calcd for $[\text{C}_{17}\text{H}_{34}\text{N}_2\text{NaO}_3\text{S}]$: 369.2182, found: 369.2174;

$[\alpha]_D^{22}$ -61.6 ($c = 1.00$, CHCl_3).

Typical procedure for the synthesis of (2S, 4R)-4-triisopropylsiloxy pyrrolidine-2-carboxylic acid (7b).

(2S, 4R)-*N*-benzyloxycarbonyl-4-triisopropylsiloxy pyrrolidine-2-carboxylic acid (12b)

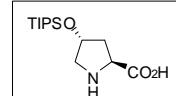
To a dichloromethane solution (10 mL) of (2S, 4R)-*N*-benzyloxycarbonyl-4-hydroxypyrrolidine-2-carboxylic acid benzyl ester **8** (3.55 g, 10.0 mmol) was added 2,6-lutidine (1.90 mL, 13.0 mmol) and TIPSOTf (2.96 mL, 13.0 mmol) at 0 °C. The reaction mixture was stirred for 30 minutes at room temperature, then the reaction was quenched by addition of phosphate buffer (pH 7.0). Organic materials were extracted three times with ethyl acetate, and the combined organic phases were dried (Na_2SO_4), concentrated, and purified by column

chromatography (ethyl acetate:hexane = 1:5) to afford (2*S*, 4*R*)-*N*-benzyloxycarbonyl-4-triisopropylsiloxy-pyrrolidine-2-carboxylic acid **12b** (4.8 g, 9.54 mmol, 95%) as a clear viscous oil.

Data are shown as a mixture of two conformers.

¹H NMR (CDCl₃, 600 MHz): δ 1.01 (21H, d, *J*=4.5 Hz), 2.00-2.12 (1H, m), 2.17-2.31 (1H, m), 3.42-3.59 (1H, m), 3.62-3.76 (1H, m), 4.45-4.60 (2H, m), 4.91-5.26 (4H, m), 7.17-7.37 (10H, m);

¹³C NMR (CDCl₃, 150 MHz): δ 12.4, 18.3, 39.5, 40.4, 55.3, 55.7, 58.5, 58.7, 67.1, 67.3, 67.5, 70.3, 71.0, 128.2, 128.3, 128.4, 128.55, 128.61, 128.65, 128.75, 128.8, 128.9, 129.0, 135.9, 136.1, 136.9, 137.1, 154.8, 155.5, 172.8, 173.0;


IR (neat): ν 2943, 2866, 1749, 1712, 1458, 1415, 1117, 1022, 883, 696 cm⁻¹;

HRMS (FAB): [M+H] calcd for [C₂₉H₄₂NO₅Si]: 512.2832, found: 512.2809;

$[\alpha]_D^{22}$ -35.1 (*c* = 1.00, CHCl₃).

(2*S*, 4*R*)-4-triisopropylsiloxy-pyrrolidine-2-carboxylic acid (7b)

To a MeOH solution (10 mL) of (2*S*, 4*R*)-*N*-benzyloxycarbonyl-4-triisopropylsiloxy-pyrrolidine-2-carboxylic acid benzyl ester **12b** (4.8 g, 9.54 mmol) was added Pd/C (480 mg, 10 wt%) at room temperature and the reaction mixture was stirred for 20 h at that temperature. The filtration of the inorganic materials and concentration afforded (2*S*, 4*R*)-4-triisopropylsiloxy-pyrrolidine-2-carboxylic acid **7b** in 96% yield (2.8 g, 9.16 mmol) as a white solid.

¹H NMR (CDCl₃): δ 0.97-1.05 (21H, m), 2.13 (1H, ddd, *J*=12.9, 7.8, 5.4 Hz), 2.27 (1H, ddd, *J*=12.9, 7.8, 4.1 Hz), 3.20 (1H, br-d, *J*=9.0 Hz), 3.46 (1H, br-s), 4.15 (1H, t, *J*=7.8 Hz), 4.51 (1H, quintet, *J*=4.1 Hz);

¹³C NMR (CDCl₃): δ 11.9, 17.8, 39.2, 52.5, 59.8, 71.0, 173.7;

IR (KBr): ν 3438, 2942, 1624, 1464, 1400, 1389, 1101, 999, 883, 685 cm⁻¹;

HRMS (FAB): [M+H] calcd for [C₁₄H₂₉NO₃Si]: 288.1995, found: 288.2010;

$[\alpha]_D^{22}$ -15.9 (*c* = 1.00, CHCl₃).

(2*S*, 4*R*)-4-*tert*-Butyldimethylsiloxy-pyrrolidine-2-carboxylic acid (7a)¹

(2*S*, 4*R*)-*N*-Benzylloxycarbonyl-4-hydroxypyrrolidine-2-carboxylic acid benzyl ester (8)²

(2*S*, 4*R*)-4-*tert*-Butyldiphenylsiloxy-pyrrolidine-2-carboxylic acid (7c)¹

are known compounds.

Typical procedure of screening of the effect of catalyst on the reaction yield and stereoselectivity in the asymmetric aldol reaction of benzaldehyde with cyclohexanone in the presence of water (Table 1, entry 17).

Catalyst **7c** (14.8 mg, 0.04 mmol) was added to a mixture of benzaldehyde (40.6 μ L, 0.4 mmol) and cyclohexanone (207 μ L, 2.0 mmol) in water (0.13 mL) at room temperature. The reaction mixture was stirred for 18 h at this temperature, then the reaction was quenched by addition of phosphate buffer (pH 7.0). Organic materials were extracted three times with ethyl acetate, and the combined organic phases were dried over anhydrous Na₂SO₄, and concentrated in vacuo after filtration. Purification by silica gel column chromatography (ethyl acetate:hexane=1:10 ~ 1:3) gave 2-(hydroxyphenylmethyl)cyclohexan-1-one (63.7 mg, 78%) as a clear oil: *anti:syn* = 13:1 (by ¹H NMR spectroscopy of the crude mixture), >99% ee (by HPLC on a chiralcel OD-H column, λ =213 nm, ⁱPrOH/hexane 1/100, 1.0 mL/min; *tr*=19.4 min (major), 25.9 min (minor)).

(2*S*, 1*R*)-2-(Hydroxyphenylmethyl)cyclohexan-1-one³

is known compound. Absolute stereochemistry is determined by the comparison with the literature data³.

$[\alpha]_D^{14}$ +27.7 (*c* = 0.85, CHCl₃), >99% ee.

Lit. $[\alpha]_D^{24}$ -24.2 (*c* = 1.03, CHCl₃). (93% ee, (2*R*, 1'S)-2-(Hydroxyphenylmethyl)cyclohexanone).

Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column, λ =213 nm, ⁱPrOH/hexane 1/100, 1.0 mL/min; *tr* = 19.4 min (major), *tr* = 25.9 min (minor).

Typical procedure of screening of solvent effect on the reaction yield and stereoselectivity of asymmetric aldol reaction of benzaldehyde with cyclohexanone in the presence of water (Table 2, entry 3).

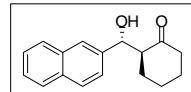
Catalyst **7a** (9.8 mg, 0.04 mmol) was added to a mixture of benzaldehyde (40.6 μ L, 0.4 mmol) and cyclohexanone (207 μ L, 2.0 mmol) in DMSO (0.4 mL) at room temperature. The reaction mixture was stirred for 18 h at this temperature, then the reaction was quenched by addition of phosphate buffer (pH 7.0). Organic materials were extracted three times with ethyl acetate, and the combined organic phases were dried over anhydrous Na_2SO_4 , and concentrated in vacuo after filtration. Purification by silica gel column chromatography (ethyl acetate:hexane=1:10 ~ 1:3) gave 2-(hydroxyphenylmethyl)cyclohexan-1-one (53.9 mg, 66%) as a clear oil: *anti:syn* = 1:1 (by ^1H NMR spectroscopy of the crude mixture), 80% ee (by HPLC on a chiralcel OD-H column, λ =213 nm, $^i\text{PrOH}/\text{hexane}$ 1/100, 1.0 mL/min; tr =19.4 min (major), 25.9 min (minor)).

Typical procedure of screening of the effect of amount of water on the reaction yield and stereoselectivity in the asymmetric aldol reaction of benzaldehyde with cyclohexanone in the presence of water (Table 3, entry 8).

Catalyst **7c** (14.8 mg, 0.04 mmol) was added to a mixture of benzaldehyde (40.6 μ L, 0.4 mmol) and cyclohexanone (207 μ L, 2.0 mmol) in water (0.72 mL) at room temperature. The reaction mixture was stirred for 18 h at this temperature, then the reaction was quenched by addition of phosphate buffer (pH 7.0). Organic materials were extracted three times with ethyl acetate, and the combined organic phases were dried over anhydrous Na_2SO_4 , and concentrated in vacuo after filtration. Purification by silica gel column chromatography (ethyl acetate:hexane=1:10 ~ 1:3) gave 2-(hydroxyphenylmethyl)cyclohexan-1-one (68.6 mg, 84%) as a clear oil: *anti:syn* = 12:1 (by ^1H NMR spectroscopy of the crude mixture), >99% ee (by HPLC on a chiralcel OD-H column, λ =213 nm, $^i\text{PrOH}/\text{hexane}$ 1/100, 1.0 mL/min; tr =19.4 min (major), 25.9 min (minor)).

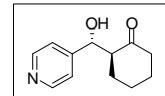
Typical procedure of screening of the effect of amount of catalyst **7c on the reaction yield and stereoselectivity in the asymmetric aldol reaction of benzaldehyde with cyclohexanone in the presence of water (Table 4, entry 4).**

Catalyst **7c** (1.5 mg, 0.004 mmol) was added to a mixture of benzaldehyde (40.6 μ L, 0.4 mmol) and cyclohexanone (207 μ L, 2.0 mmol) in water (0.72 mL) at room temperature. The reaction mixture was stirred for 49 h at this temperature, then the reaction was quenched by addition of phosphate buffer (pH 7.0). Organic materials were extracted three times with ethyl acetate, and the combined organic phases were dried over anhydrous Na_2SO_4 , and concentrated in vacuo after filtration. Purification by silica gel column chromatography (ethyl acetate:hexane=1:10 ~ 1:3) gave 2-(hydroxyphenylmethyl)cyclohexan-1-one (62.1 mg, 76%) as a clear oil: *anti:syn* = 10:1 (by ^1H NMR spectroscopy of the crude mixture), 99% ee (by HPLC on a chiralcel OD-H column, λ =213 nm, $^i\text{PrOH}/\text{hexane}$ 1/100, 1.0 mL/min; tr =19.4 min (major), 25.9 min (minor)).


Typical procedure of 4-siloxypyroline **7c catalyzed asymmetric aldol reactions of aldehydes with ketones in the presence of water (Table 5, entry 5).**

Catalyst **7c** (14.8 mg, 0.04 mmol) was added to a mixture of 2-naphthalene carbaldehyde (62.4 mg, 0.4 mmol) and cyclohexanone (207 μ L, 2.0 mmol) in water (0.13 mL) at room temperature. The reaction mixture was stirred for 40h at this temperature, then the reaction was quenched by addition of phosphate buffer (pH 7.0). Organic materials were extracted three times with ethyl acetate, and the combined organic phases were dried over anhydrous Na_2SO_4 , and concentrated in vacuo after filtration. Purification by silica gel column chromatography (ethyl acetate:hexane=1:10 ~ 1:3) gave 2-(hydroxyphenylmethyl)cyclohexan-1-one (90.5 mg, 89%) as a clear oil: *anti:syn* = 13:1 (by ^1H NMR spectroscopy of the crude mixture), >99% ee (by HPLC on a chiralcel AS-H column, λ =213 nm, $^i\text{PrOH}/\text{hexane}$ 1/50, 1.0 mL/min; tr =17.6 min (major), 20.5 min (minor)).

(2*S*, 1*R*)-2-(Hydroxy-*p*-nitrophenylmethyl)cyclohexan-1-one³
 (2*S*, 1*R*)-2-(Hydroxy-*p*-bromophenylmethyl)cyclohexan-1-one⁴
 (2*S*, 1*R*)-2-(Hydroxy-*p*-methoxyphenylmethyl)cyclohexan-1-one⁴
 (2*S*, 1*R*)-2-(Hydroxy-2-furylmethyl)cyclohexan-1-one⁵
 (2*S*, 1'S)-2-(1'-Hydroxy-3'-methylbutyl)cyclohexan-1-one⁵
 (2*S*, 1'S)-2-(1'-Hydroxyhexyl)cyclohexan-1-one⁶
 (2*S*, 1'S)-2-(Cyclohexylhydroxymethyl)cyclohexan-1-one⁷
 (2*S*, 1'S)-2-(1'-Hydroxy-2'-methylpropyl)cyclohexan-1-one⁸
 (2*S*, 1'R)-2-(Hydroxyphenylmethyl)cyclopentan-1-one⁹
 (4*S*, 1'S)-4-(Hydroxyphenylmethyl)-2,2-dimethyl-1,3-dioxane-5-one¹⁰
 (2*S*)-2-(Hydroxymethyl)cyclohexan-1-one¹¹
 (4*R*)-4-Hydroxy-*p*-trifluoromethylphenylbutan-2-one¹²
 (3*S*, 4*S*)-3,4-Dihydroxy-*o*-chlorophenylbutan-2-one¹³
 (3*S*, 4*R*)-4-Hydroxy-3-methyl-4-phenylbutan-2-one¹⁴
 (1*R*)-1-Hydroxy-1-phenylpentan-3-one¹⁴
 are known compounds.

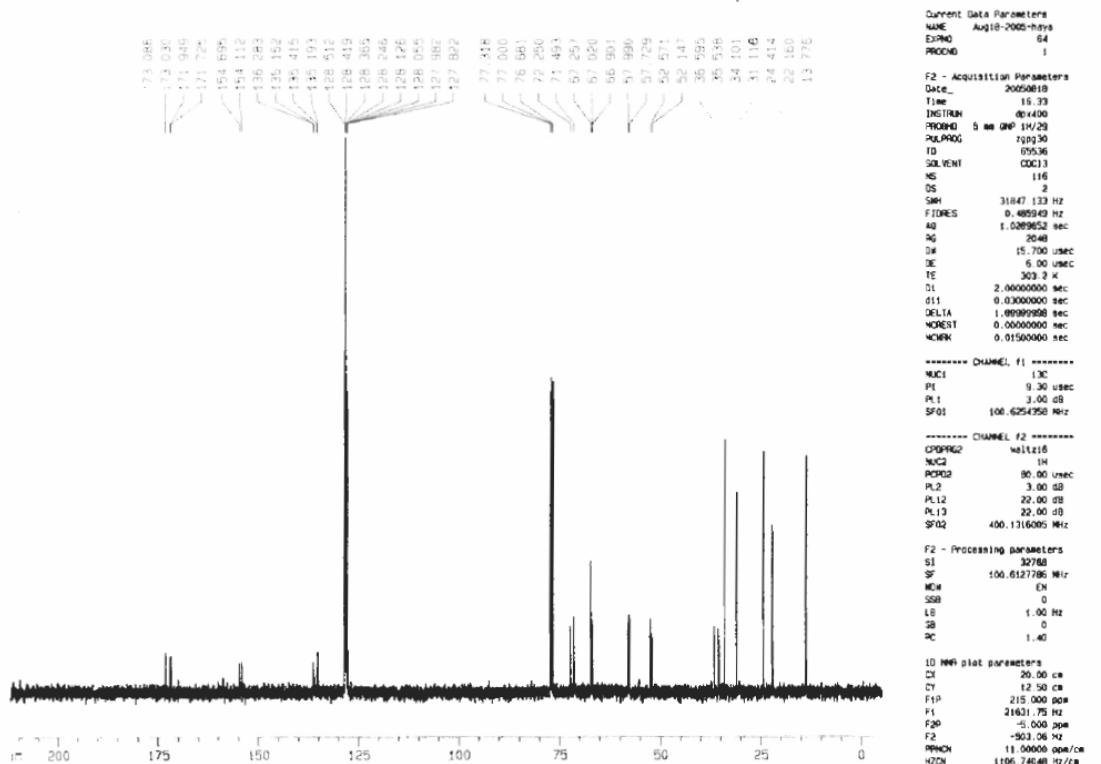
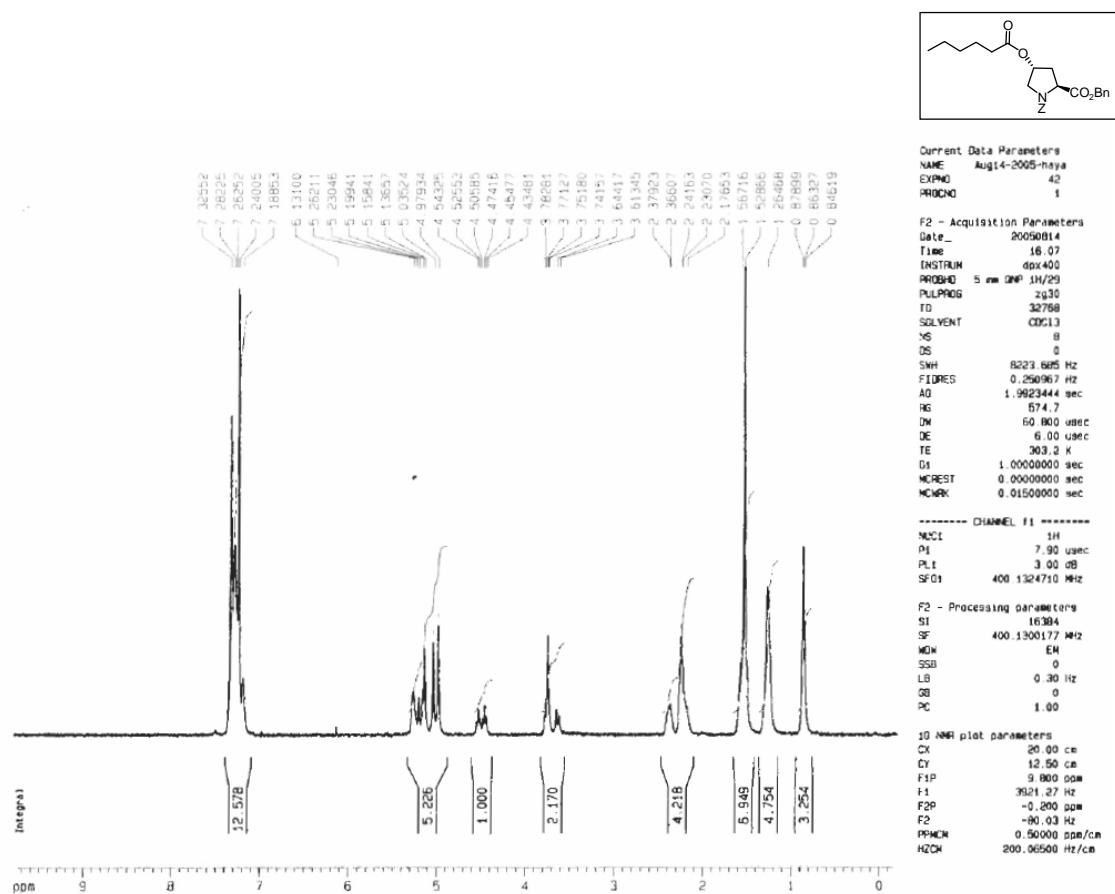

(2*S*, 1*R*)-2-(Hydroxynaphthalen-2-ylmethyl)cyclohexan-1-one

¹H NMR (CDCl₃): δ 1.23-1.40 (1H, m), 1.42-1.61 (2H, m), 1.62-1.79 (2H, m), 2.07 (1H, ddd, *J*=13.2, 6.6, 3.2 Hz), 2.36 (1H, td, *J*=13.2, 5.8 Hz), 2.49 (1H, br-d, *J*= 13.8 Hz), 2.64-2.74 (1H, m), 4.02 (1H, br-s), 4.95 (1H, d, *J*=8.6 Hz), 7.41-7.50 (3H, m), 7.73 (1H, s), 7.77-7.86 (3H, m);
¹³C NMR (CDCl₃): δ 24.6, 27.7, 30.8, 42.6, 57.3, 74.8, 124.6, 125.9, 126.1, 126.2, 127.6, 127.9, 128.2, 133.0, 133.1, 138.2, 215.5; IR (neat): ν 3354, 3055, 2933, 2854, 1695, 1444, 1309, 1122, 1057, 833 cm⁻¹; HRMS (FAB): calcd for [C₁₇H₁₈O₂]: 254.1307, found: 254.1311; [α]_D²²+7.4 (*c* = 1.07, CHCl₃). (mixture of diastereomers, *anti:syn*=19:1, 97% ee for *anti*-isomer.) Enantiomeric excess was determined by HPLC with a Chiralpak AS-H column (*i*PrOH/hexane 1/50, 1.0 mL/min; major enantiomer tr =17.6 min, minor enantiomer tr =20.5 min).

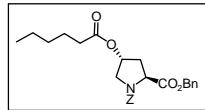
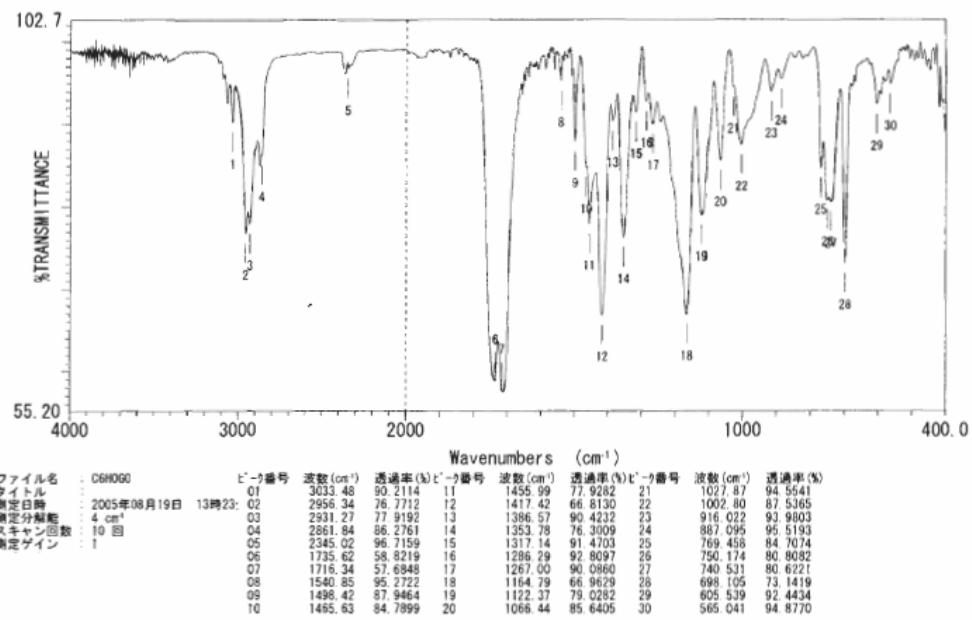
(2*S*, 1*R*)-2-(Hydroxypyridin-4-ylmethyl)cyclohexan-1-one

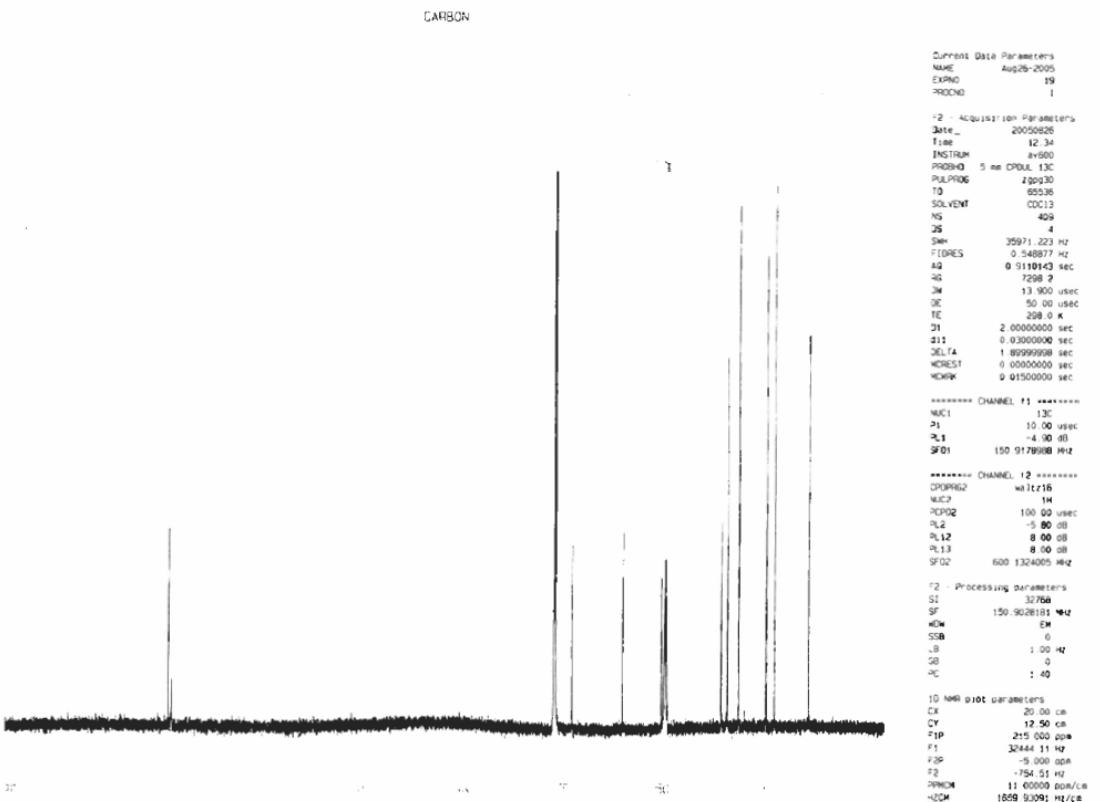
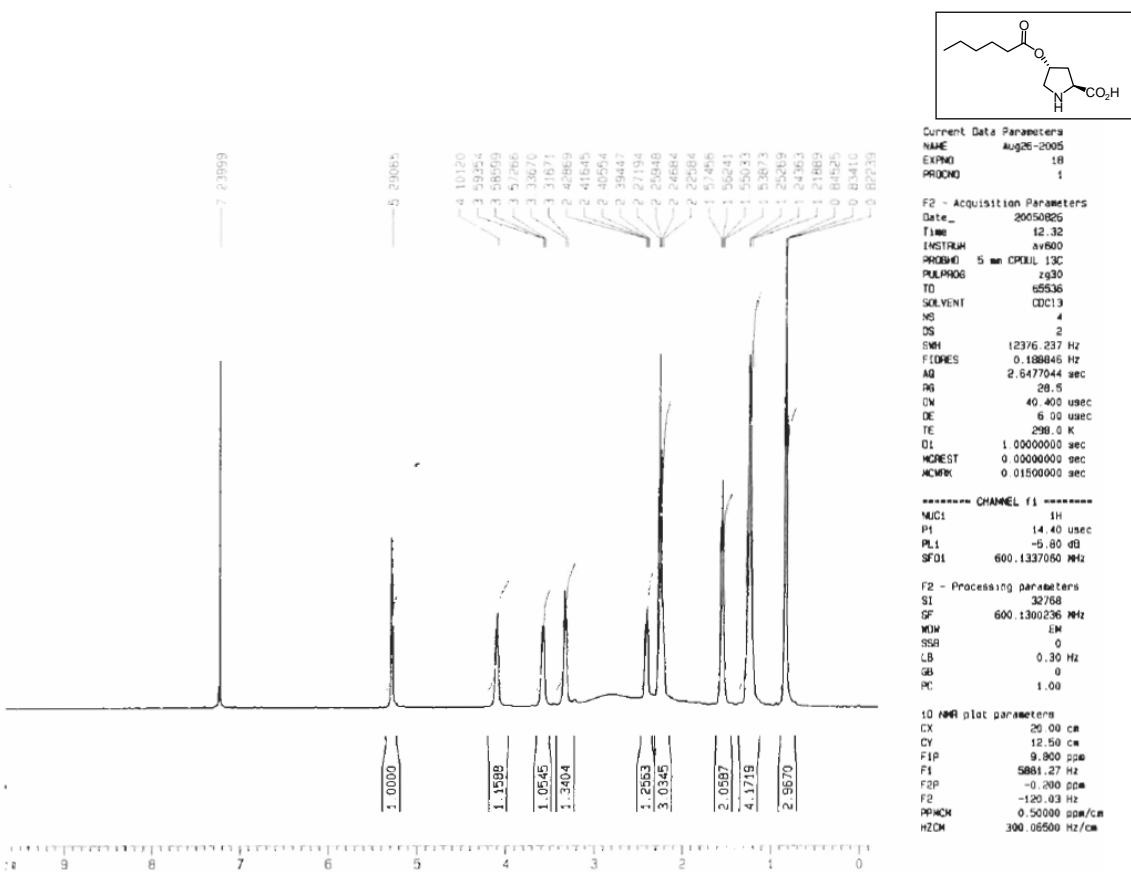
¹H NMR (CDCl₃): δ 1.38 (1H, qd, *J*=12.8, 3.8 Hz), 1.47-1.73 (3H, m), 1.77-1.86 (1H, m), 2.04-2.14 (1H, m), 2.34 (1H, td, *J*=13.3, 6.2 Hz), 2.42-2.50 (1H, m), 2.56 (1H, ddd, *J*=13.5, 8.2, 3.5 Hz), 3.97 (1H, br-s), 4.75 (1H, d, *J*=8.2 Hz), 7.23 (2H, d, *J*=5.7 Hz), 8.56 (2H, d, *J*=5.7 Hz);
¹³C NMR (CDCl₃): δ 24.6, 27.7, 30.7, 42.6, 56.8, 73.5, 122.0, 149.7, 149.8, 214.7; IR (KBr): ν 3140, 2860, 2738, 1711, 1606, 1415, 1300, 1128, 1047, 835 cm⁻¹; HRMS (FAB): [M+H] calcd for [C₁₂H₁₆NO₂]: 206.1181, found: 206.1177; [α]_D²¹+15.8 (*c* = 1.02, CHCl₃). (mixture of diastereomers, *anti:syn*=12:1, 95% ee for *anti*-isomer.) Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (*i*PrOH/hexane 1/10, 1.0 mL/min; major enantiomer tr = 22.5 min, minor enantiomer tr = 20.7 min).

Typical procedure for the synthesis of (2*R*, 1'S)-2-(hydroxyphenylmethyl)cyclohexan-1-one

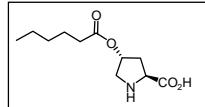
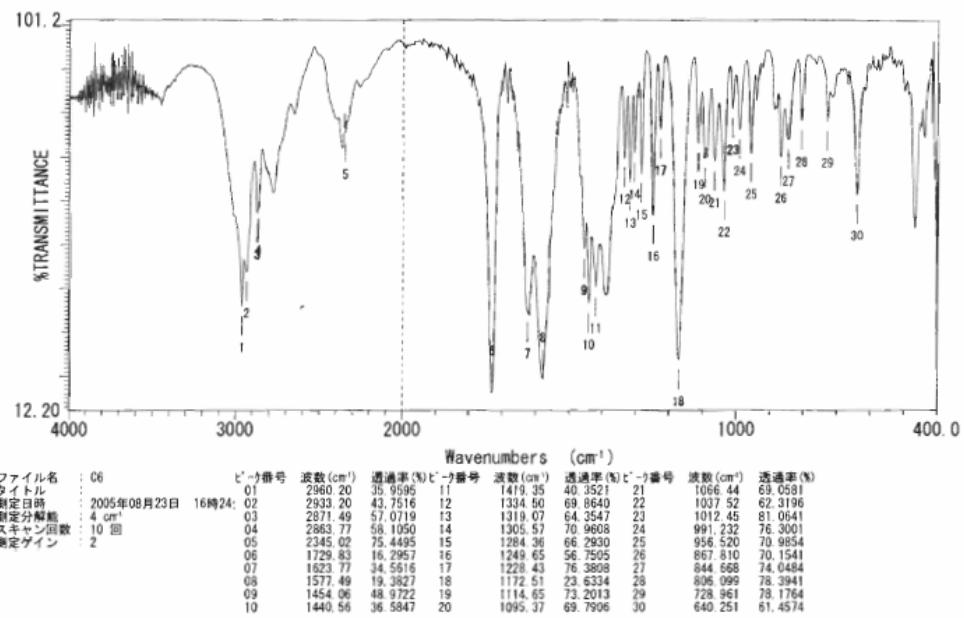


Catalyst **17** (14.8 mg, 0.04 mmol) was added to a mixture of benzaldehyde (40.6 μL, 0.4 mmol) and cyclohexanone (207 μL, 2.0 mmol) in water (0.13 mL) at room temperature. The reaction mixture was stirred for 18 h at this temperature, then the reaction was quenched by addition of phosphate buffer (pH7.0). Organic materials were extracted three times with ethyl acetate, and the combined organic phases were dried over anhydrous Na₂SO₄, and concentrated in vacuo after filtration. Purification by silica gel column chromatography (ethyl acetate:hexane=1:10 ~ 1:3) gave 2-(hydroxyphenylmethyl)cyclohexan-1-one (63.7 mg, 78%) as a clear oil: *anti:syn* =>20:1 (by ¹H NMR spectroscopy of the crude mixture), 98% ee (by HPLC on a chiralcel OD-H column, λ=213 nm, *i*PrOH/hexane 1/100, 1.0 mL/min; tr=25.9 min (major), 19.4 min (minor)).

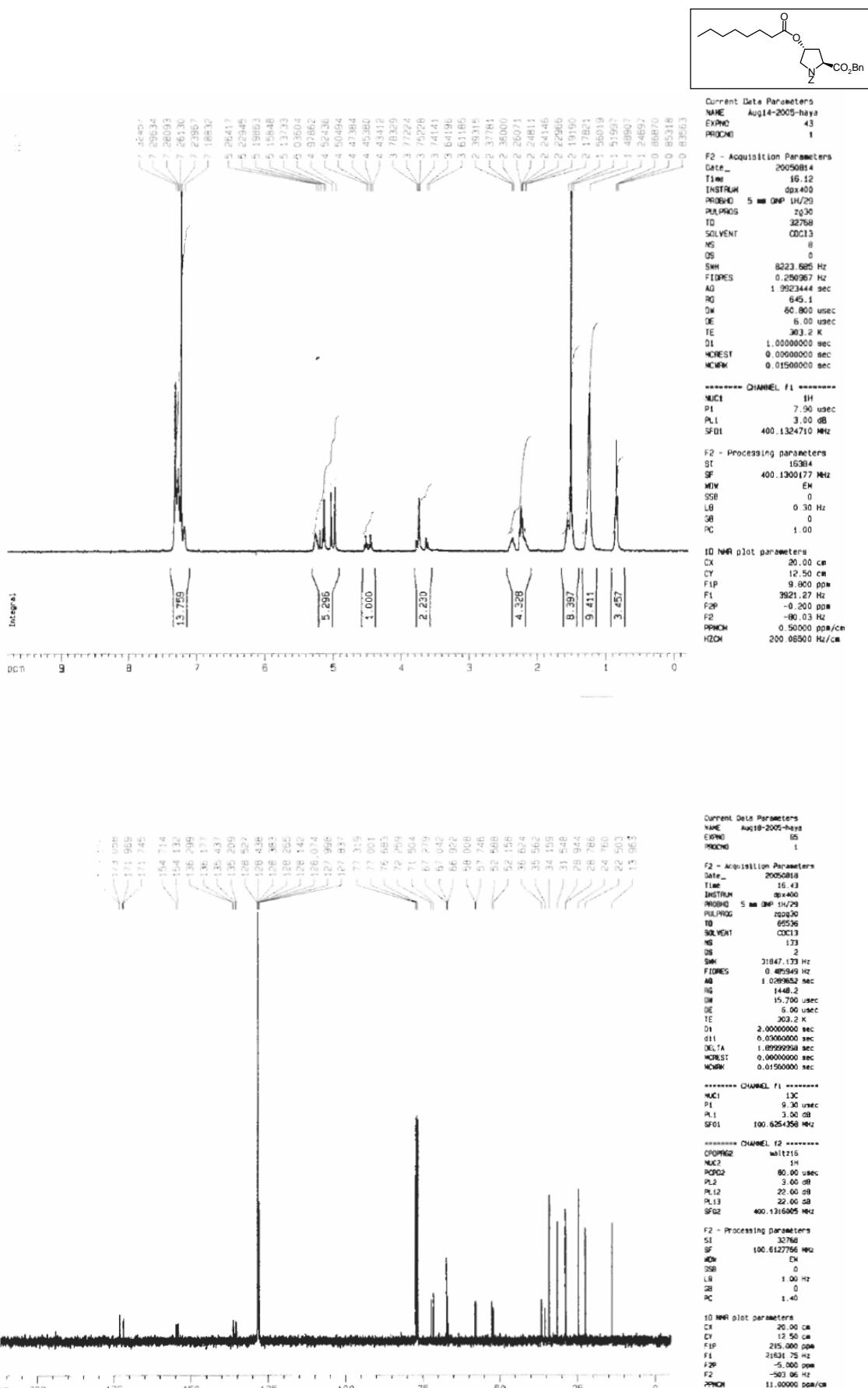
**Large scale preparation of (2S, 1'R)-2-(hydroxyphenylmethyl)cyclohexan-1-one.
(Used when the product is liquid)**

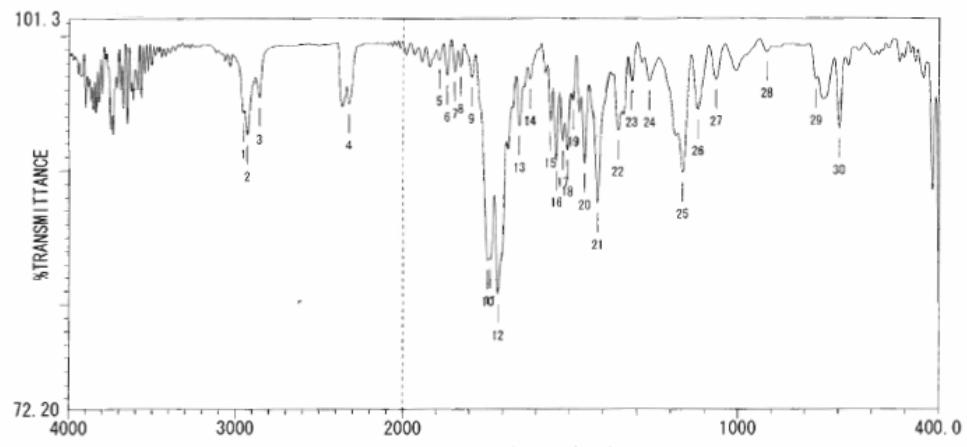


Catalyst **7c** (259 mg, 0.74 mmol) was added to a mixture of benzaldehyde (7.4 g, 74.4 mmol) and cyclohexanone (13.7 g, 149 mmol) in water (3.8 mL) at room temperature. The reaction mixture was stirred for 48h, then silica gel (2.5 g) was added to the reaction mixture. The mixture was filtered through silica gel using ethyl acetate (60 mL), and the crude organic materials were purified by distillation to afford 2-(hydroxyphenylmethyl)cyclohexan-1-one (10.0 g, 70%) as a colorless oil: *anti:syn* = 10:1 (by ¹H NMR spectroscopy of distilled product), >99% ee (by HPLC on a chiralcel OD-H column, λ =213 nm, ²PrOH/hexane 1/100, 1.0 mL/min; *tr*=19.4 min (major), 25.9 min (minor))



References

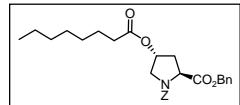
- ¹ Ohtake, H.; Imada, Y.; Murahashi, S. *Bull. Chem. Soc. Jpn.* **1999**, *72*, 2737.
- ² Tamaki, M.; Han, G.; Hruby, V. J. *J. Org. Chem.* **2001**, *66*, 1038.
- ³ Cobb, A. J. A.; Shaw, D. M.; Longbottom, D. A.; Gold, J. B.; Ley, S. V. *Org. Biomol. Chem.* **2005**, *3*, 84.
- ⁴ Yanagisawa, A.; Nakatsuka, Y.; Asakawa, K.; Wadamoto, M.; Kageyama, H.; Yamamoto, H. *Bull. Chem. Soc. Jpn.* **2001**, *74*, 1477.
- ⁵ Kawai, M.; Onaka, M.; Izumi, Y. *Bull. Chem. Soc. Jpn.* **1988**, *61*, 1237.
- ⁶ Bahmanyar, S.; Houk, K. N.; Martin, H. J.; List, B. *J. Am. Chem. Soc.* **2003**, *125*, 2475.
- ⁷ Denmark, S. E.; Stavenger, R. A.; Wong, K.; Su, X. *J. Am. Chem. Soc.* **1999**, *121*, 4982.
- ⁸ Sato, S.; Matsuda, I.; Izumi, Y. *Tetrahedron Lett.* **1986**, *27*, 5517.
- ⁹ Denmark, S. E.; Stavenger, R. A.; K. Wong *Tetrahedron* **1998**, *54*, 10389.
- ¹⁰ Enders, D.; Prokopenko, O. F.; Raabe, G.; Runsink, J. *Synthesis* **1996**, 1095.
- ¹¹ Ishikawa, S.; Hamada, T.; Manabe, K.; Kobayashi, S. *J. Am. Chem. Soc.* **2004**, *126*, 12236.
- ¹² Peter, K.; Iveta, K.; Battsengel, G.; Stefan, T.; Eva, S. *Chem. Commun.* **2002**, 2510.
- ¹³ Notz, W.; List, B. *J. Am. Chem. Soc.* **2000**, *122*, 7386.
- ¹⁴ Wang, M.; Yang, X.-F.; Li, C.-J. *Eur. J. Org. Chem.* **2003**, 998.

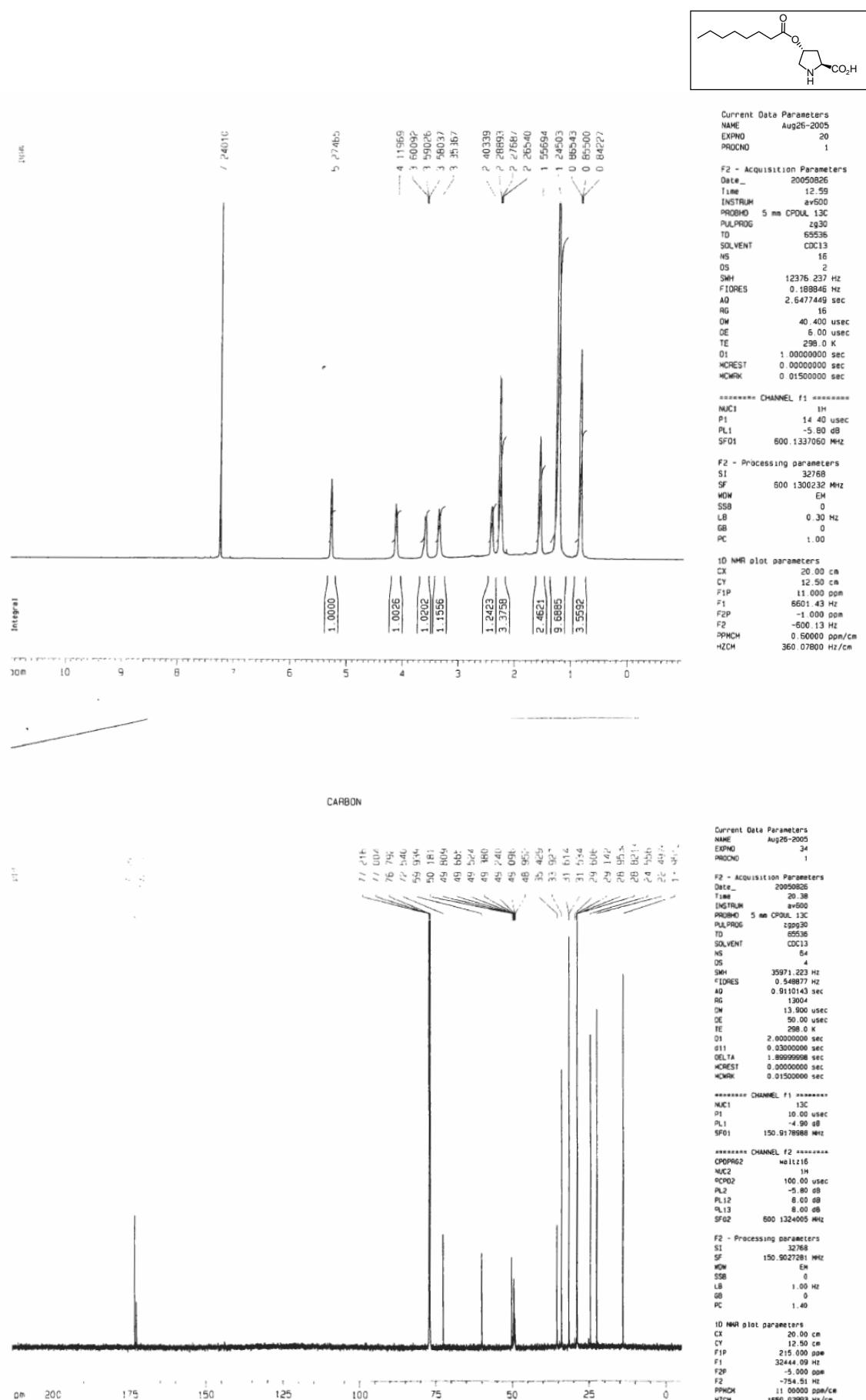




HORIBA FT-IR for Windows(TM) Ver.4.07
FTIR system for Windows

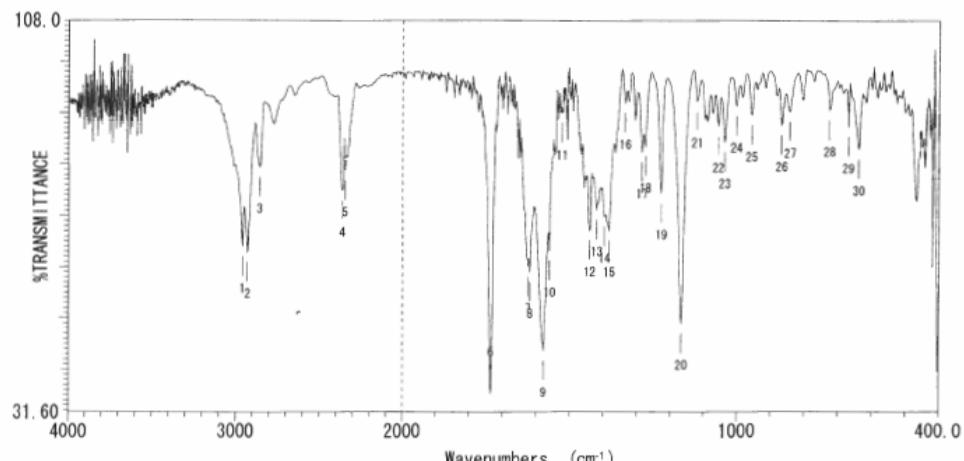


HORIBA FT-IR for Windows(TM) Ver.4.07
FTIR system for Windows

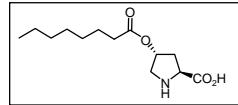


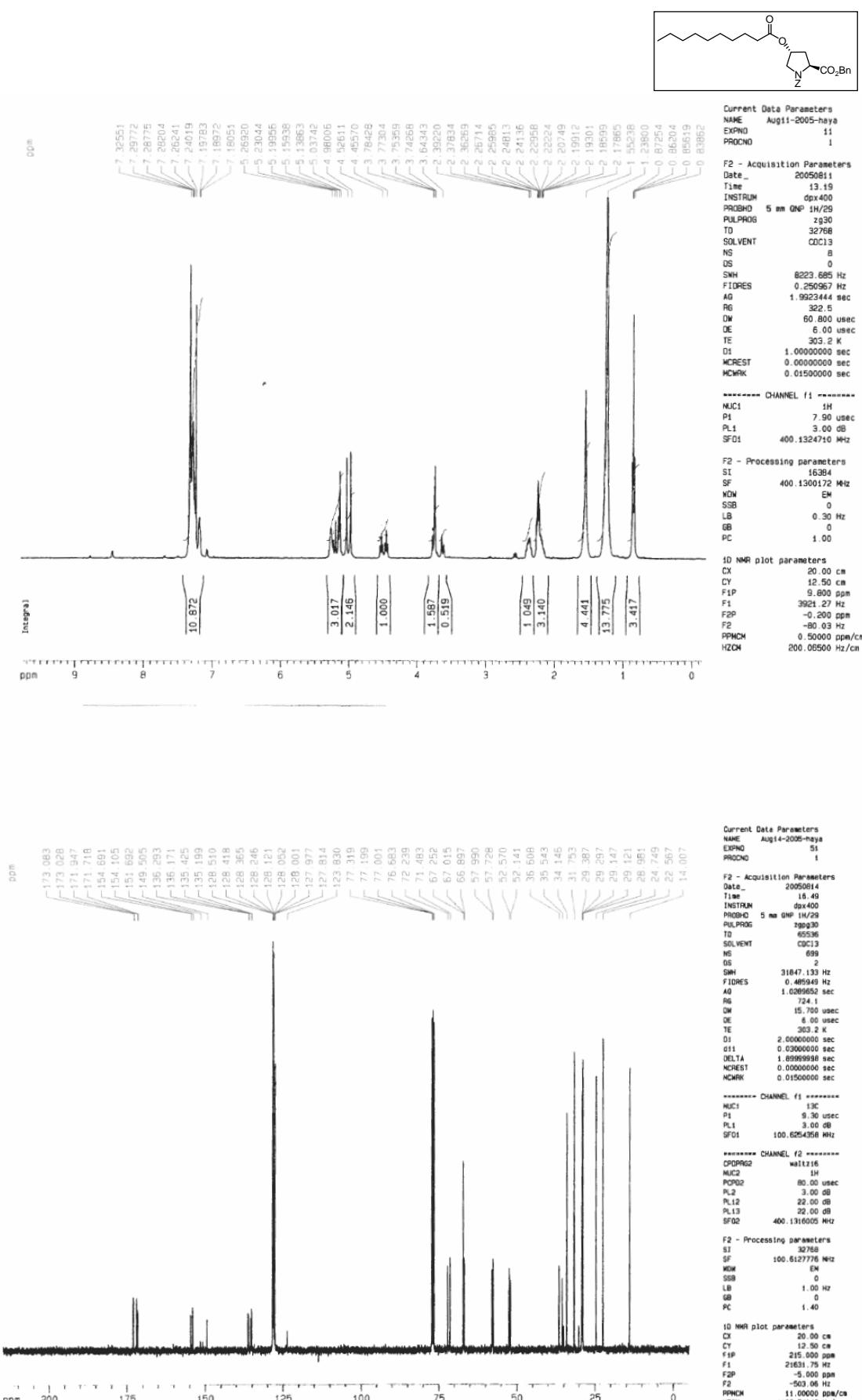


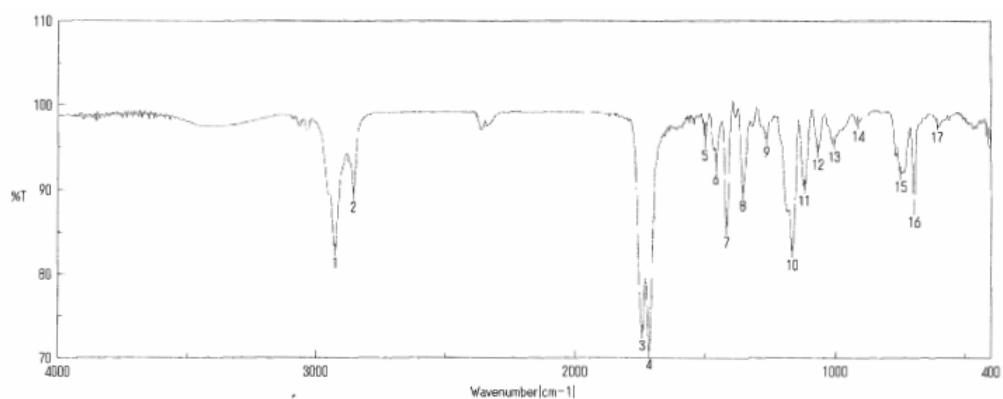
HORIBA FT-IR for Windows(TM) Ver.4.07
FTIR system for Windows



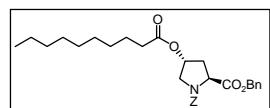
ファイル名	C8H10O2	ビーカ番号	波数(cm⁻¹)	透過率(%)	ビーカ番号	波数(cm⁻¹)	透過率(%)	ビーカ番号	波数(cm⁻¹)	透過率(%)
タイムスタンプ		01	2954.41	94.2923	11	1737.56	83.3725	21	1417.42	87.5327
測定日時	2005年08月19日 14時05分	02	2929.34	92.6314	12	1714.41	80.7664	22	1357.64	92.9896
測定分解能	4 cm⁻¹	03	2856.06	95.3819	13	1650.77	93.2910	23	1317.14	96.8497
スキャン回数	10 (3)	04	2323.80	94.9390	14	1619.91	96.7509	24	1285.07	96.6348
測定ゲイン	1	05	1891.83	98.2188	15	1558.20	93.6159	25	1164.79	89.8390
		06	1868.68	97.0506	16	1540.85	90.6975	26	1120.44	94.5001
		07	1845.54	97.2931	17	1521.56	92.1795	27	1066.44	96.7340
		08	1828.19	97.6593	18	1508.06	91.5178	28	914.093	98.8208
		09	1795.40	96.9024	19	1490.70	95.2266	29	767.530	96.7854
		10	1745.26	83.2676	20	1455.99	90.4983	30	698.105	93.1060

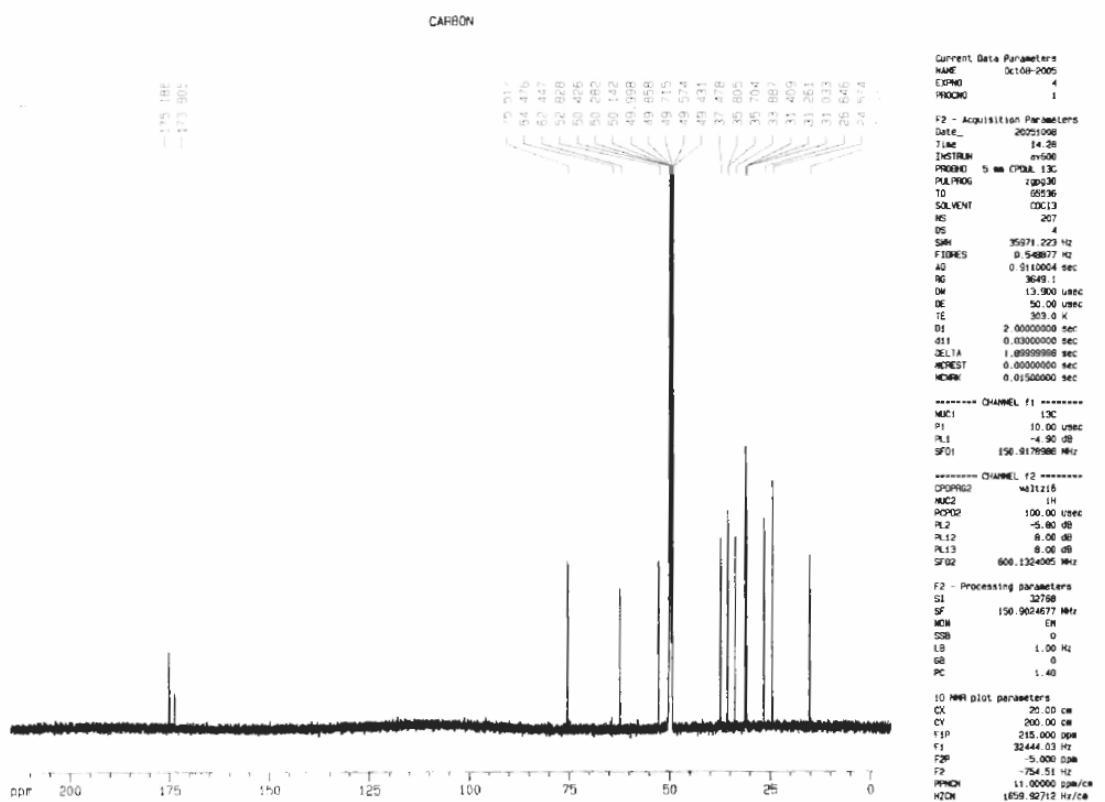
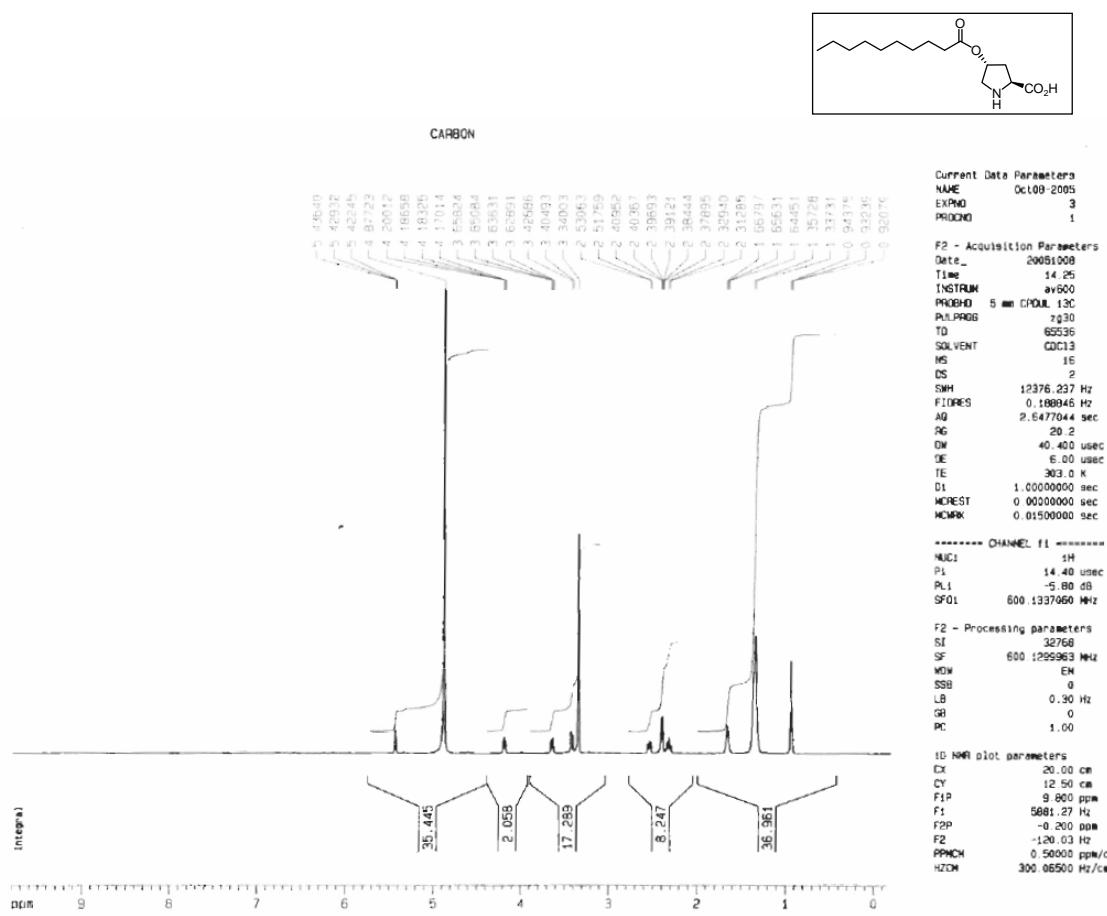




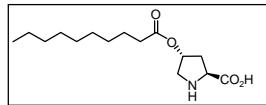
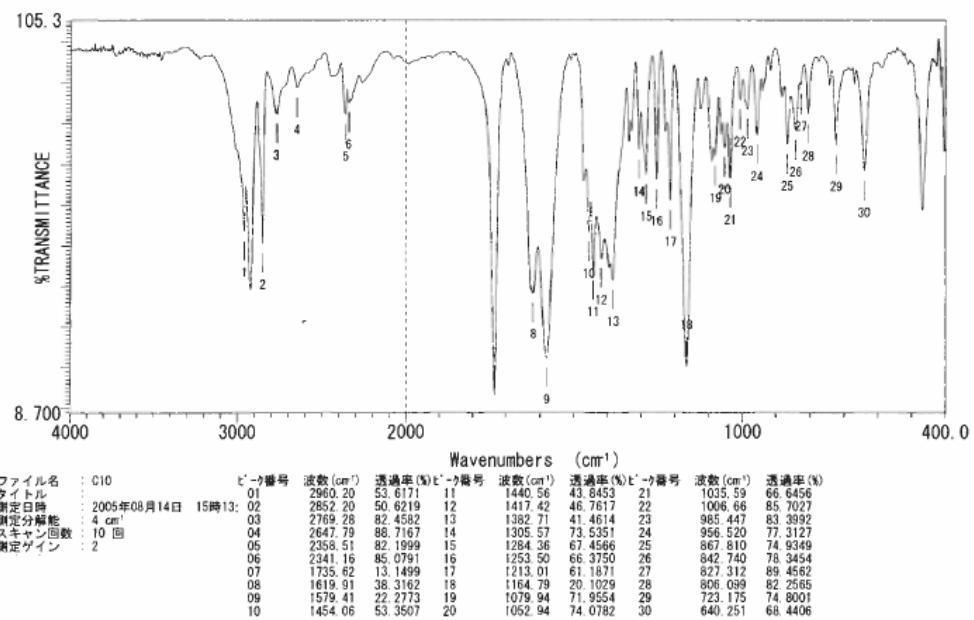

HORIBA FT-IR for Windows(TM) Ver.4.07
FTIR system for Windows

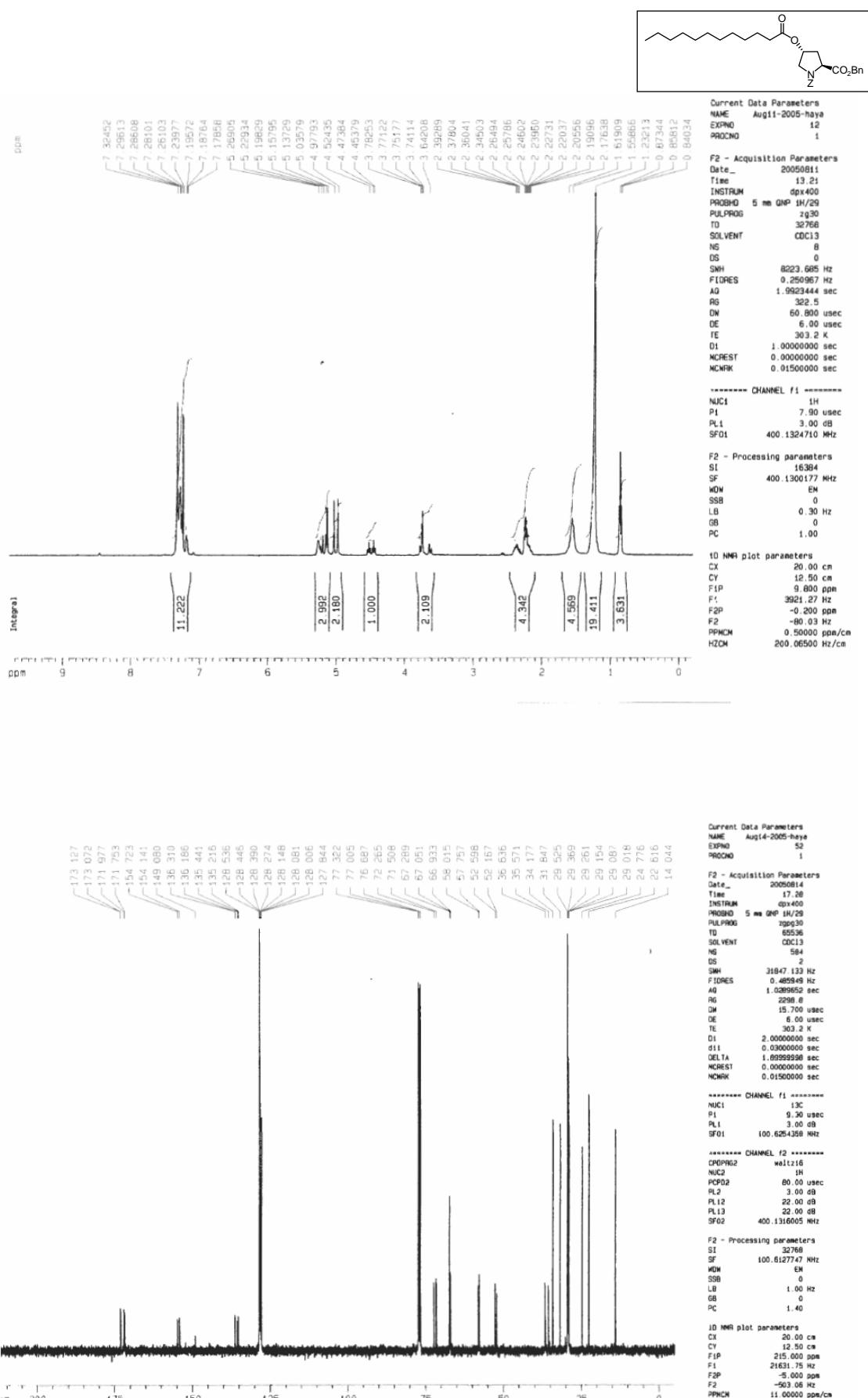
ファイル名	C8	t'-ケ番号	波数(cm ⁻¹)	透過率(%)	t'-ケ番号	波数(cm ⁻¹)	透過率(%)	t'-ケ番号	波数(cm ⁻¹)	透過率(%)
タイトル		01	2960.20	63.8256	11	1523.49	89.8910	21	1220.44	92.2562
測定日時	2005年08月23日 16時44分	02	2929.34	62.7062	12	1441.56	67.7772	22	1098.80	81.3853
測定分解能	4 cm ⁻¹	03	2857.49	70.7113	13	1419.45	71.0006	23	1037.92	84.3655
スケーリング回数	10 回	04	2360.44	74.7761	14	1386.21	69.6653	24	1002.80	91.2856
測定ゲイン	1	05	2345.02	78.6539	15	1382.71	66.9819	25	956.520	89.5164
		06	1735.62	35.1618	16	1334.50	91.9063	26	867.810	87.5541
		07	1623.77	59.9214	17	1284.36	82.2975	27	842.740	90.2551
		08	1617.98	58.9011	18	1274.72	83.4110	28	725.104	90.5148
		09	1577.49	43.5351	19	1226.50	74.2872	29	669.178	87.2533
		10	1560.13	63.0276	20	1166.72	48.8115	30	638.323	82.8969

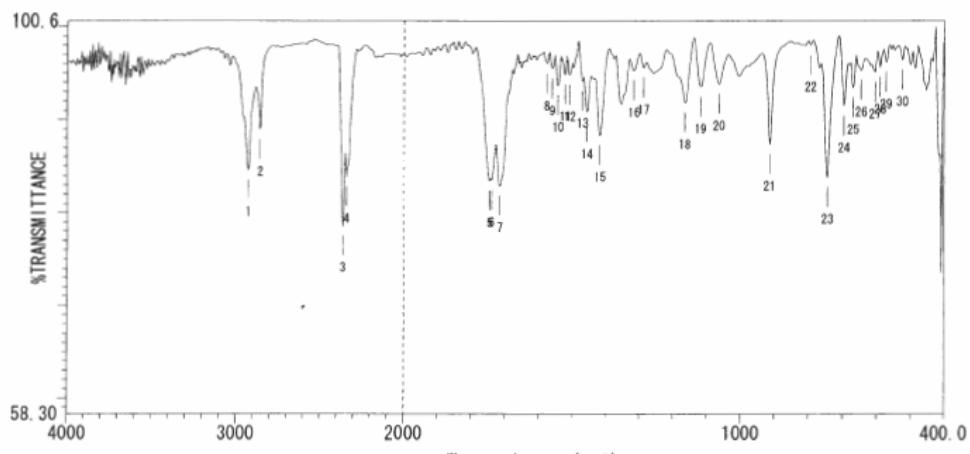

積算回数
ゼロフィリング
ゲイン
日時
測定番号
ファイル名
サンプル名
コメント



32
ON
1
10/01/23 18:43
Memory#5 C:/a/gsc
background

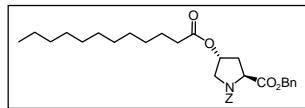
分解
アボダイゼーション
スキャンスピード

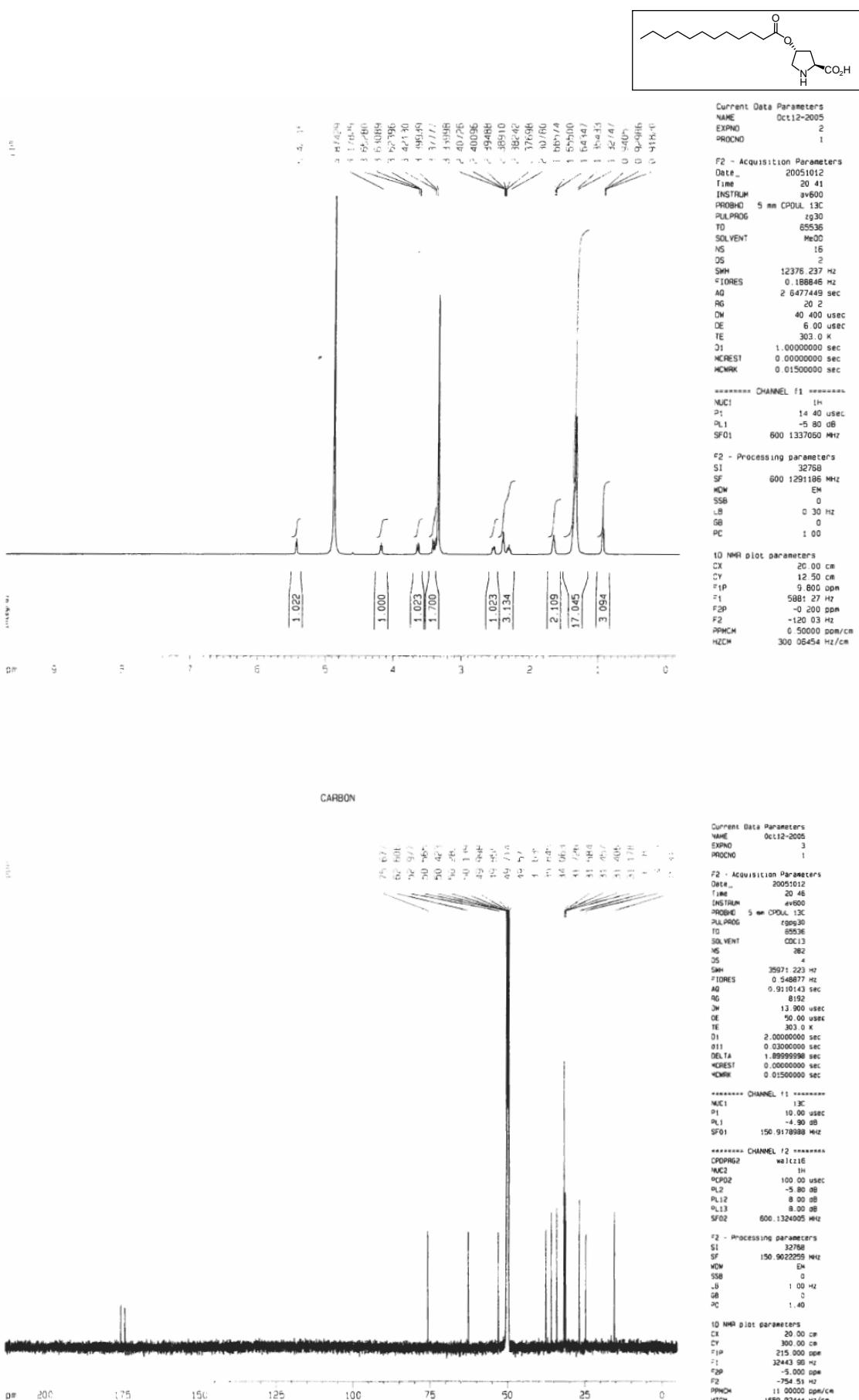


4 cm⁻¹
Cosine
2 mm/sec


1: 2926.45, 82.9220	2: 2854.13, 89.5407	3: 1739.48, 73.1552	4: 1714.41, 70.8629
5: 1498.42, 95.6313	6: 1455.99, 92.8165	7: 1416.46, 85.3886	8: 1353.78, 89.7088
9: 1264.11, 96.0973	10: 1164.79, 82.7263	11: 1119.48, 90.3480	12: 1066.44, 94.5772
13: 1004.73, 95.4964	14: 911.20, 97.9362	15: 749.21, 91.9878	16: 697.14, 87.6351
17: 609.40, 97.8557			

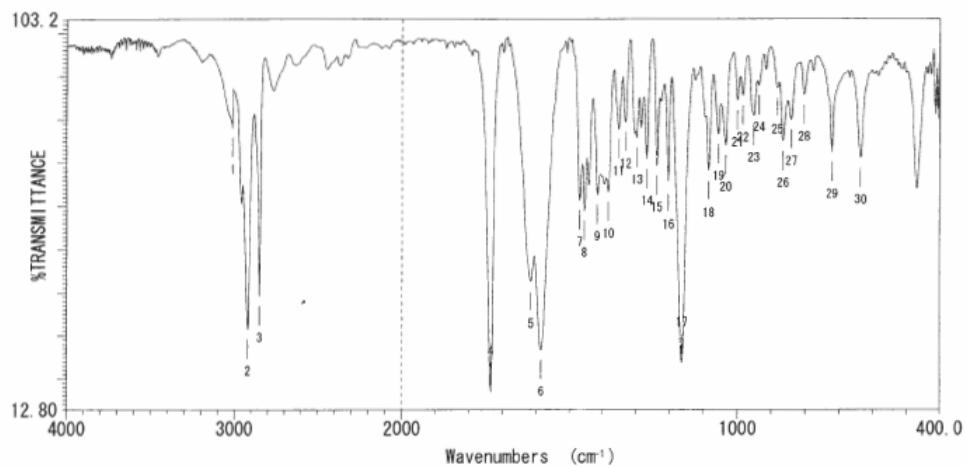


HORIBA FT-IR for Windows(TM) Ver 4.07
FT-IR system for Windows

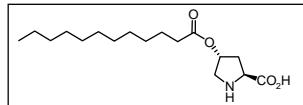


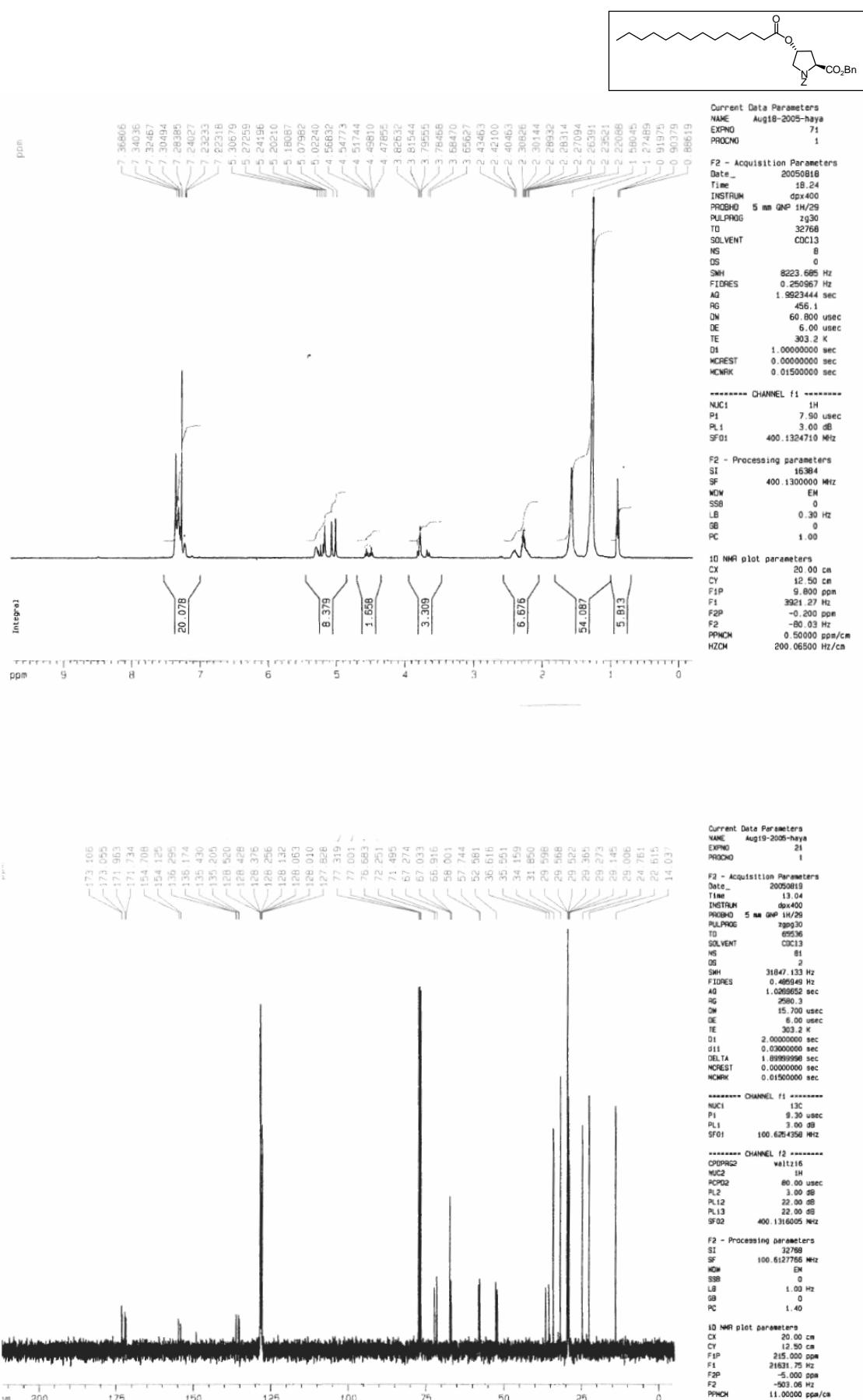


HORIBA FT-IR for Windows(TM) Ver.4.07
FTIR system for Windows

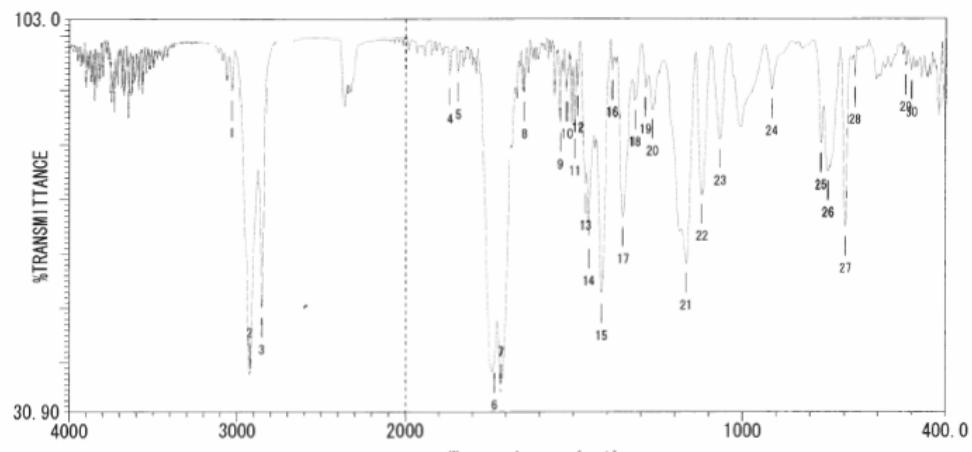


ファイル名	C12H000	t'-ケ番号	波数(cm ⁻¹)	透過率(%)	t'-ケ番号	波数(cm ⁻¹)	透過率(%)	t'-ケ番号	波数(cm ⁻¹)	透過率(%)
タイトル		01	2925.48	84.5962	11	1521.56	94.8172	21	914.093	87.3375
測定日時		02	2854.13	88.9339	12	1508.06	94.7975	22	794.528	98.0034
測定分解能		03	2360.44	78.5612	13	1469.49	94.1016	23	744.388	83.7764
スキヤン回数		04	2264.76	83.3077	14	1454.99	90.1779	24	694.178	91.1684
測定ゲイン		05	1745.26	88.4083	15	1417.42	98.2860	25	663.178	93.4370
		06	1739.48	83.4426	16	1317.14	95.2348	26	645.236	95.3013
		07	1714.41	82.8546	17	1288.22	95.5551	27	605.539	95.1088
		08	1575.56	95.9489	18	1164.79	91.8092	28	590.111	95.6242
		09	1560.13	95.4188	19	1118.51	93.4863	29	572.755	96.1685
		10	1542.77	93.6509	20	1064.51	93.8132	30	524.543	96.4143

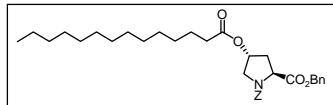


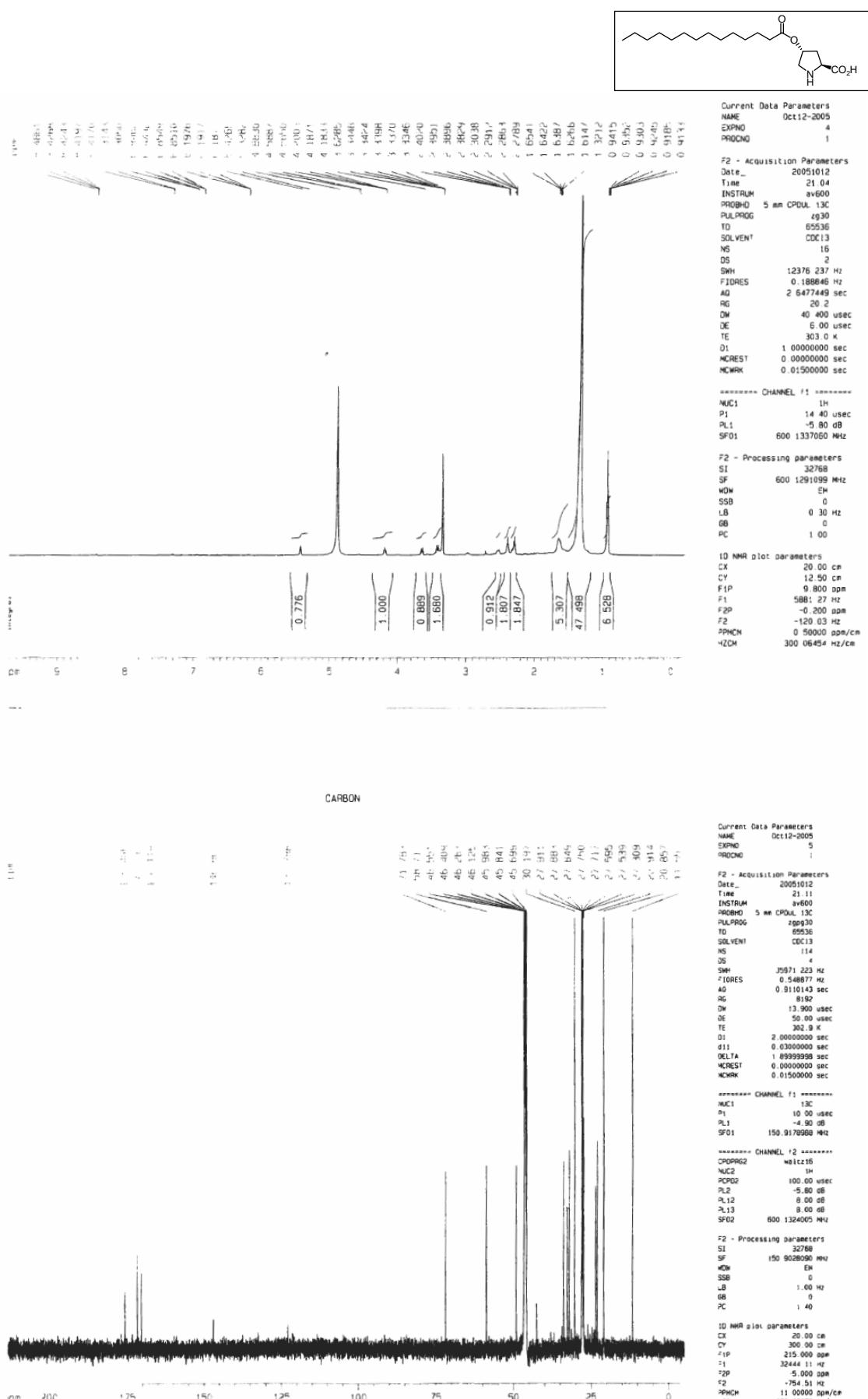


HORIBA FT-IR for Windows(TM) Ver.4.07
FTIR system for Windows

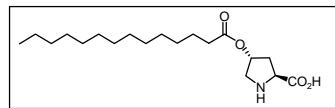
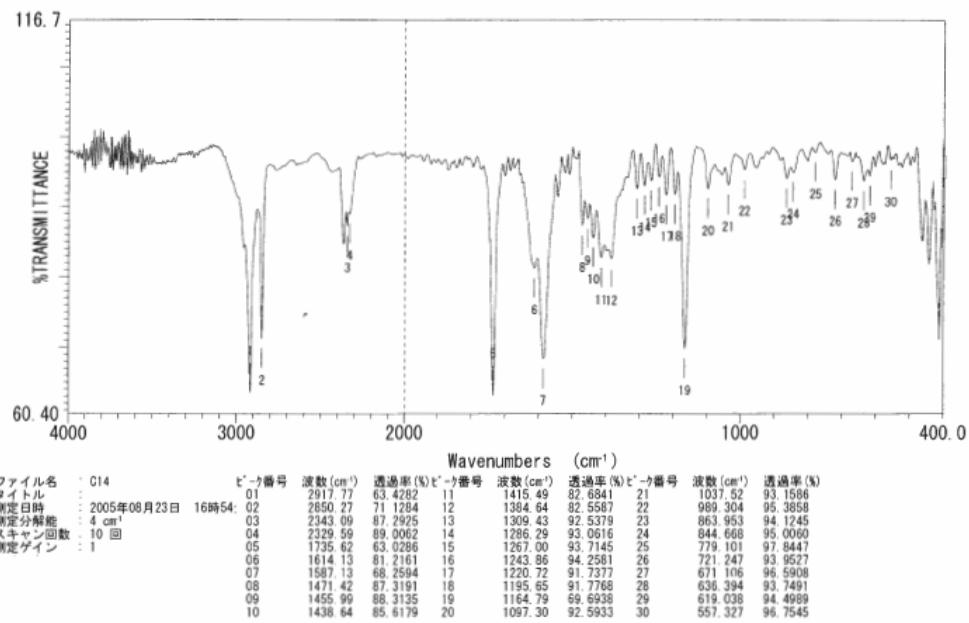


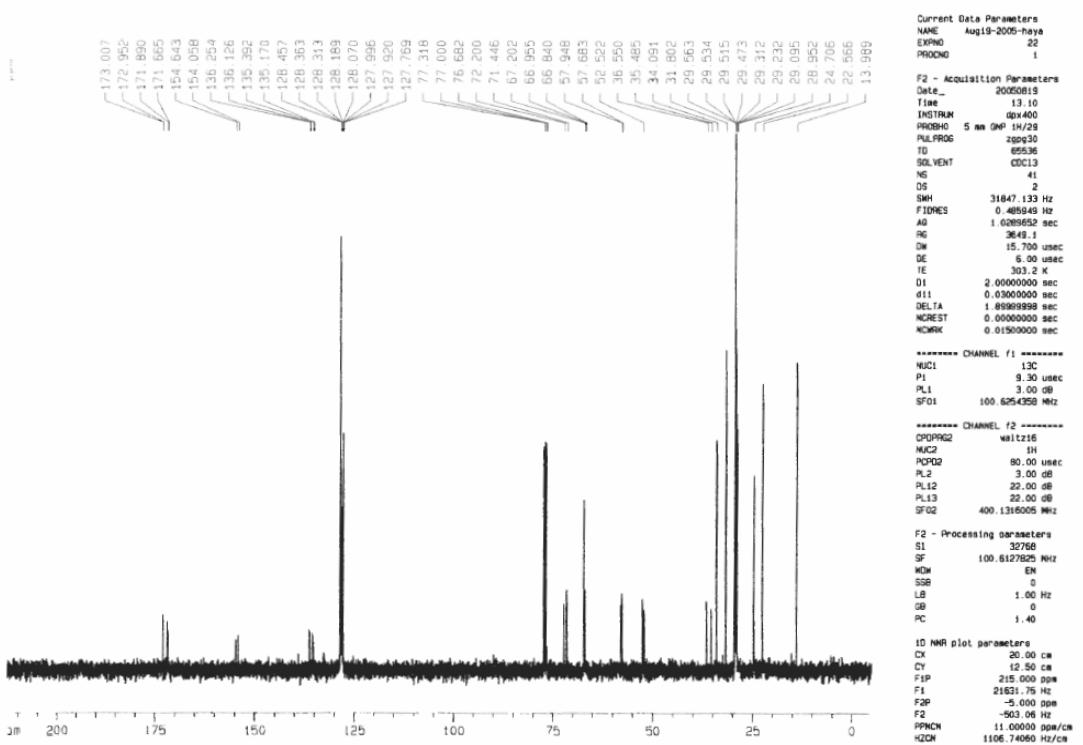
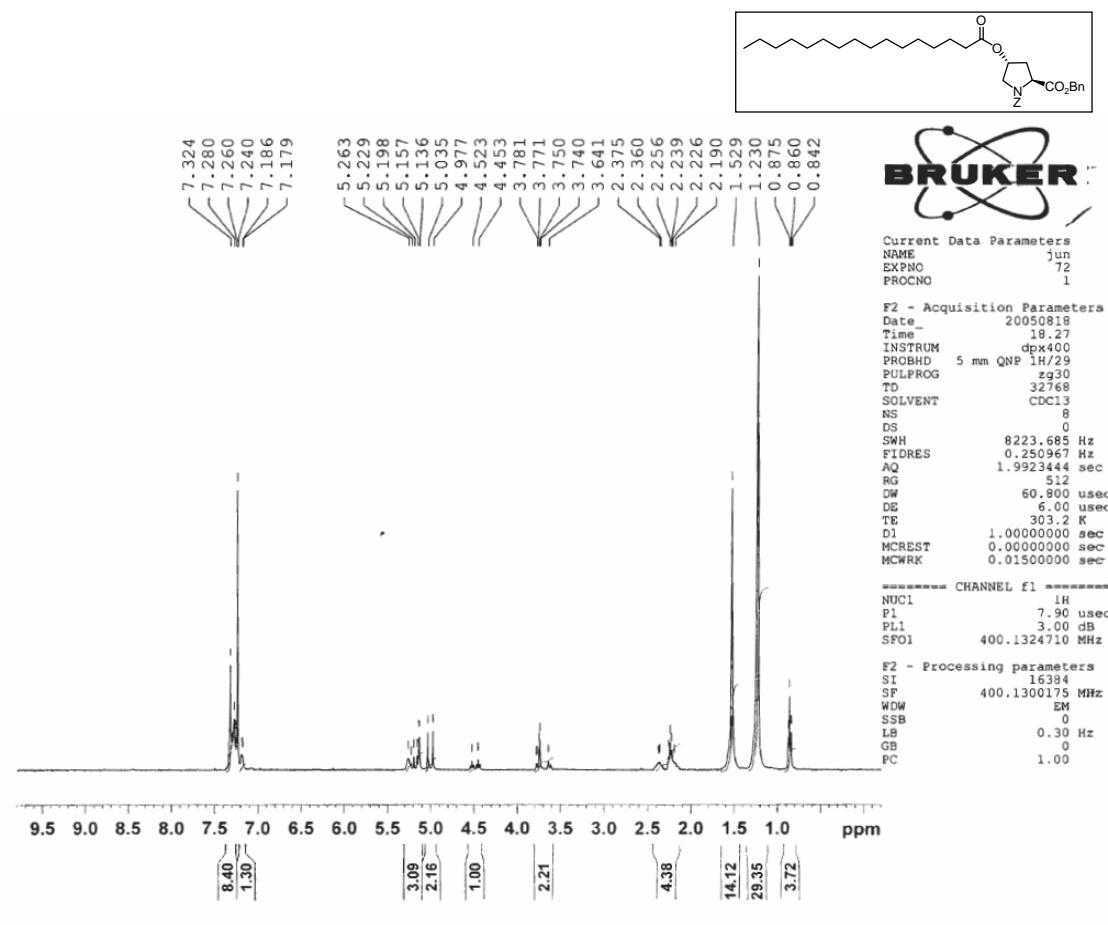
ファイル名	: C12	t'->番号	波数(cm ⁻¹)	透過率(%)	t'->番号	波数(cm ⁻¹)	透過率(%)	t'->番号	波数(cm ⁻¹)	透過率(%)
タイトル		01	3012.27	78.0972	11	1353.78	77.7170	21	1000.87	84.3388
測定日時	: 2005年08月14日 15時31:02	02	2919.70	31.3808	12	1332.57	79.4061	22	985.447	85.4656
測定分解能	4 cm ⁻¹	03	2850.27	39.1254	13	1299.79	75.7146	23	952.663	80.8460
スキャン回数	10 回	04	1735.62	16.9540	14	1268.93	70.8401	24	937.235	87.8566
測定ゲイン	2	05	1616.06	42.4084	15	1240.00	69.3218	25	883.238	87.3021
		06	1585.20	26.6267	16	1205.29	65.3720	26	865.882	74.9395
		07	1469.49	61.2860	17	1164.79	23.5389	27	840.812	79.9529
		08	1455.99	58.8338	18	1085.73	68.0102	28	804.171	85.6780
		09	1417.42	62.5318	19	1056.80	76.5819	29	721.247	72.4102
		10	1384.64	63.2448	20	1035.59	74.0067	30	636.394	71.0923

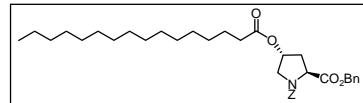
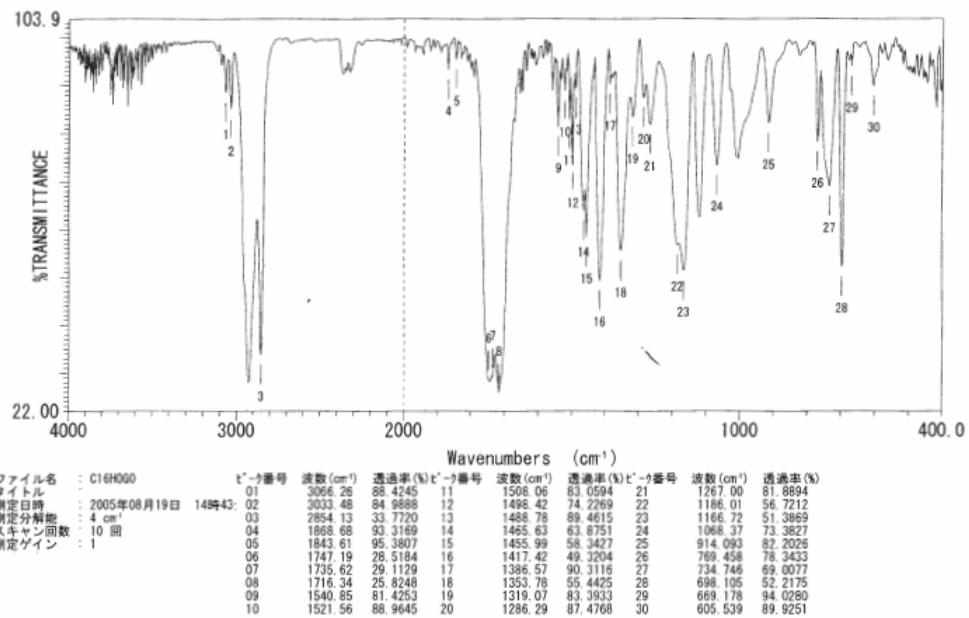


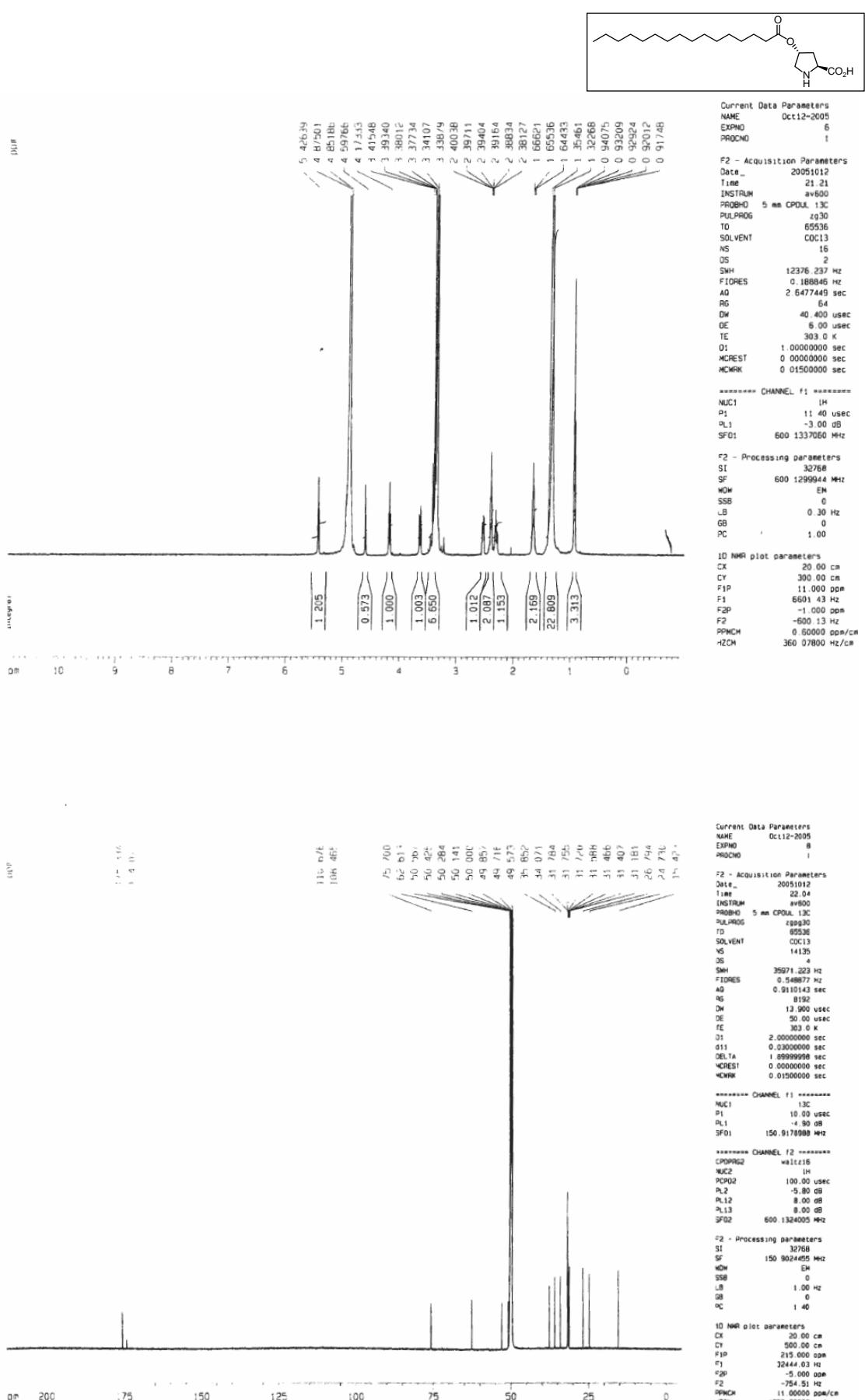


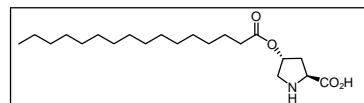
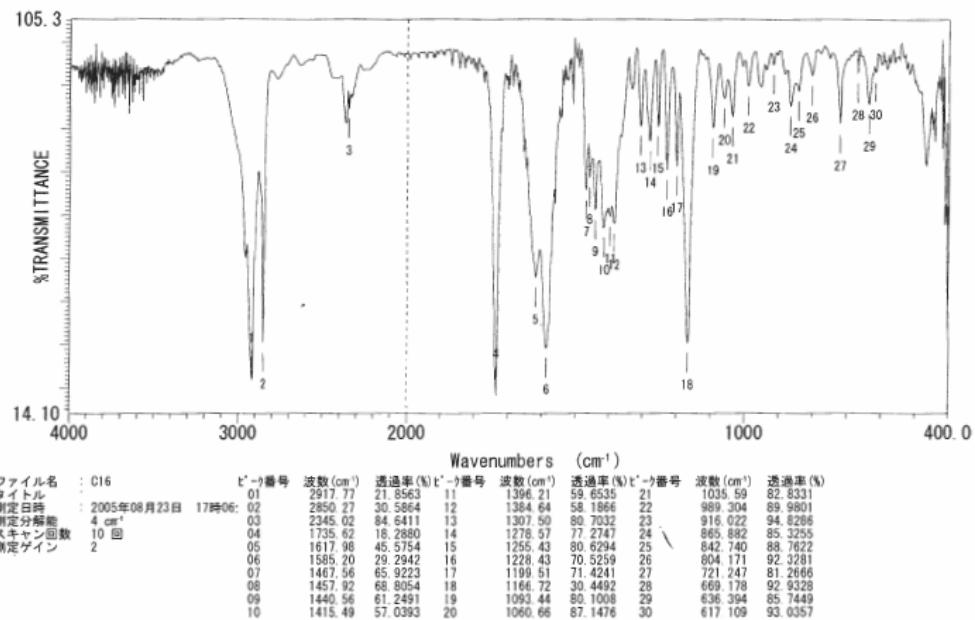
HORIBA FT-IR for Windows(TM) Ver.4.07
FTIR system for Windows

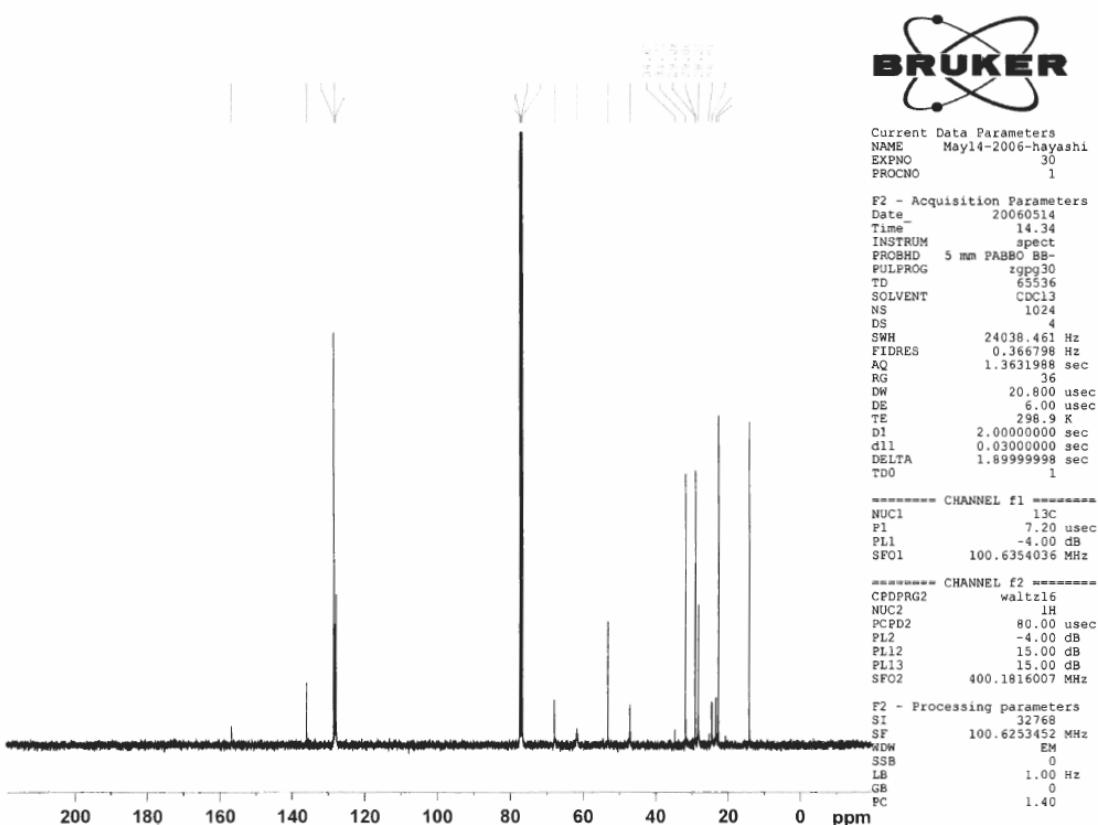
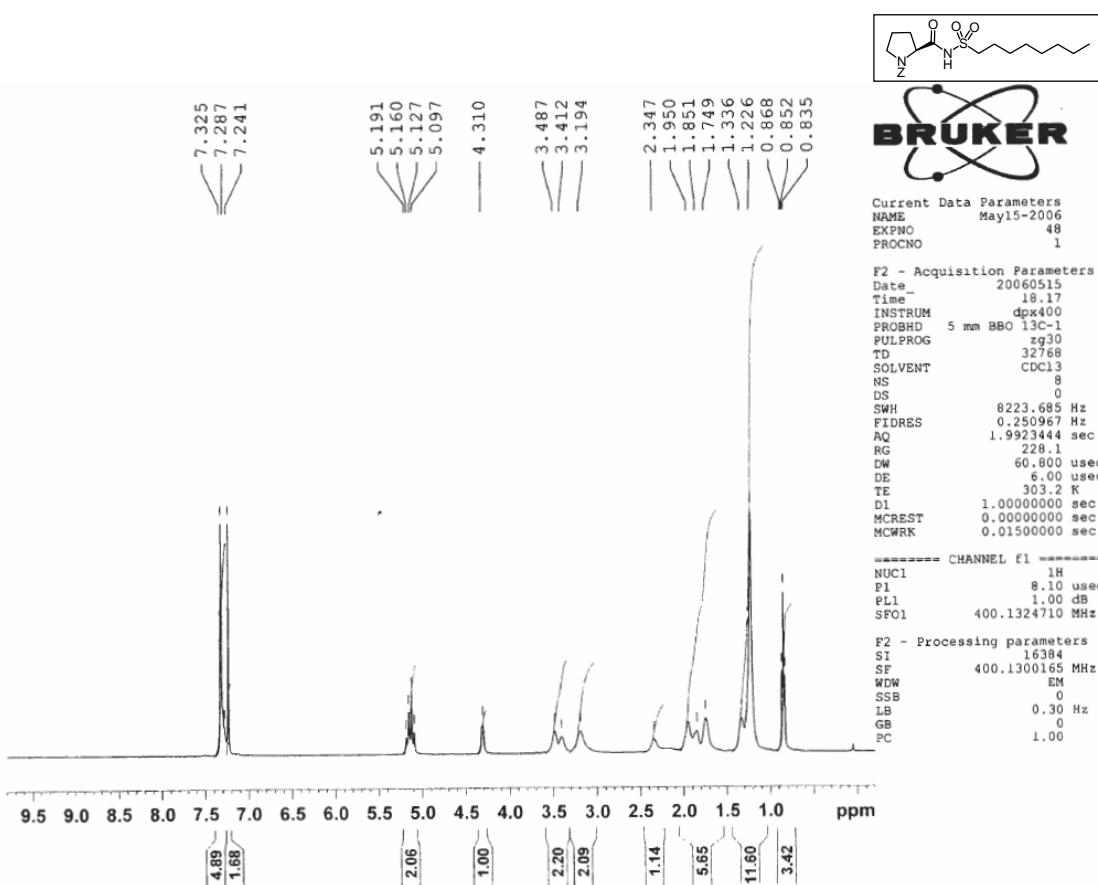



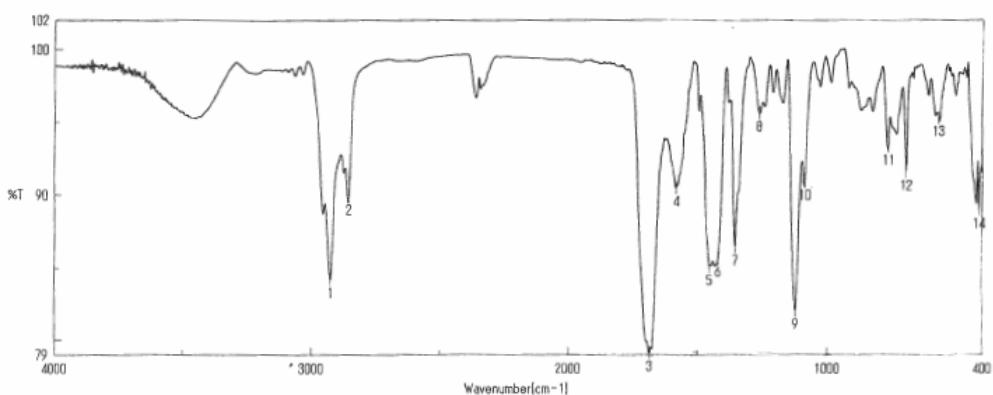


ファイル名	C14H0GO	波数 (cm ⁻¹)	透過率 (%)							
タイトル		01	3033.48	89.8256	11	1498.42	82.7801	21	1166.72	58.1070
測定日時	2005年08月19日 14時34:02	02	2925.48	37.8132	12	1488.78	90.6975	22	1120.44	70.8482
測定分解能	4 cm ⁻¹	03	2854.13	49.9966	13	1465.63	72.7715	23	1066.44	80.9960
測定分解能	4 cm ⁻¹	04	1868.68	92.3511	14	1455.95	82.5984	24	914.0289	90.0000
スキャン回数	10 回	05	1843.41	92.0553	15	1417.42	82.4342	25	703.5658	80.2212
測定ゲイン	1	06	1735.62	39.7956	16	1386.57	93.4879	26	748.245	75.1024
		07	1716.34	34.2902	17	1353.78	66.6324	27	698.195	64.9272
		08	1646.91	89.6056	18	1319.07	88.0972	28	669.178	92.2321
		09	1540.85	83.9992	19	1288.22	90.4285	29	518.758	94.4572
		10	1521.56	89.6150	20	1267.00	86.4725	30	501.401	93.5020

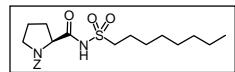

HORIBA FT-IR for Windows(TM) Ver.4.07
FTIR system for Windows

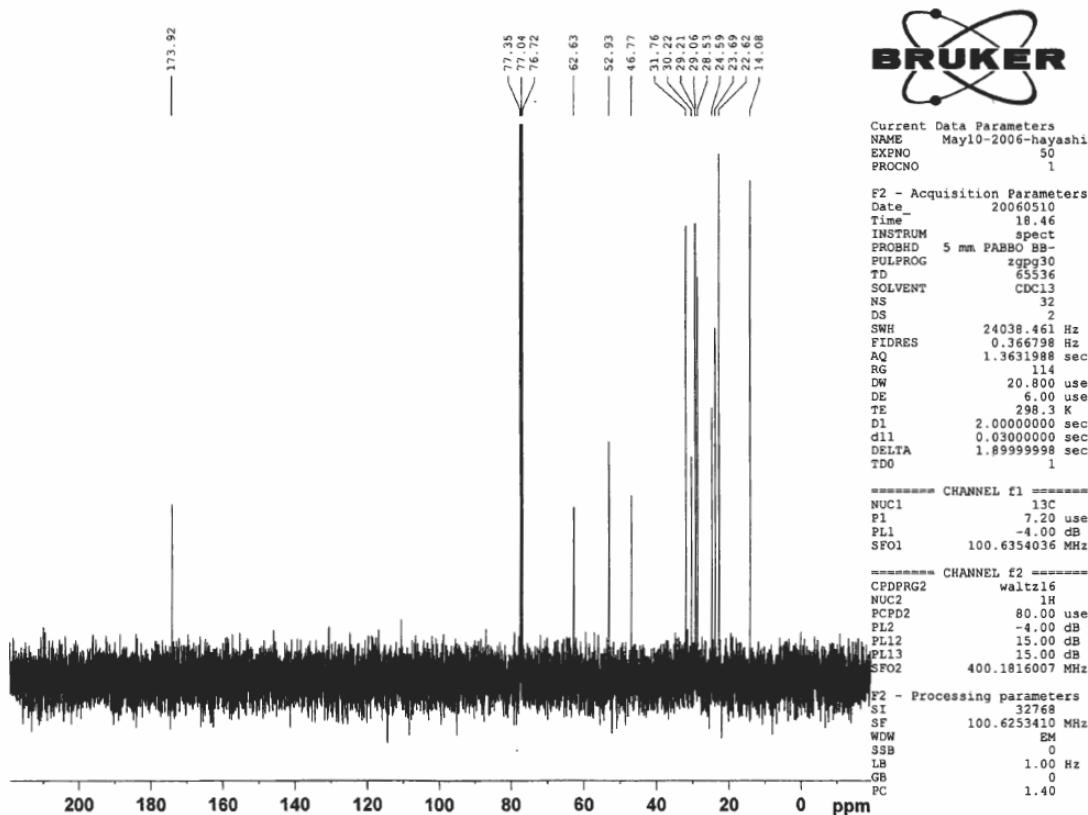
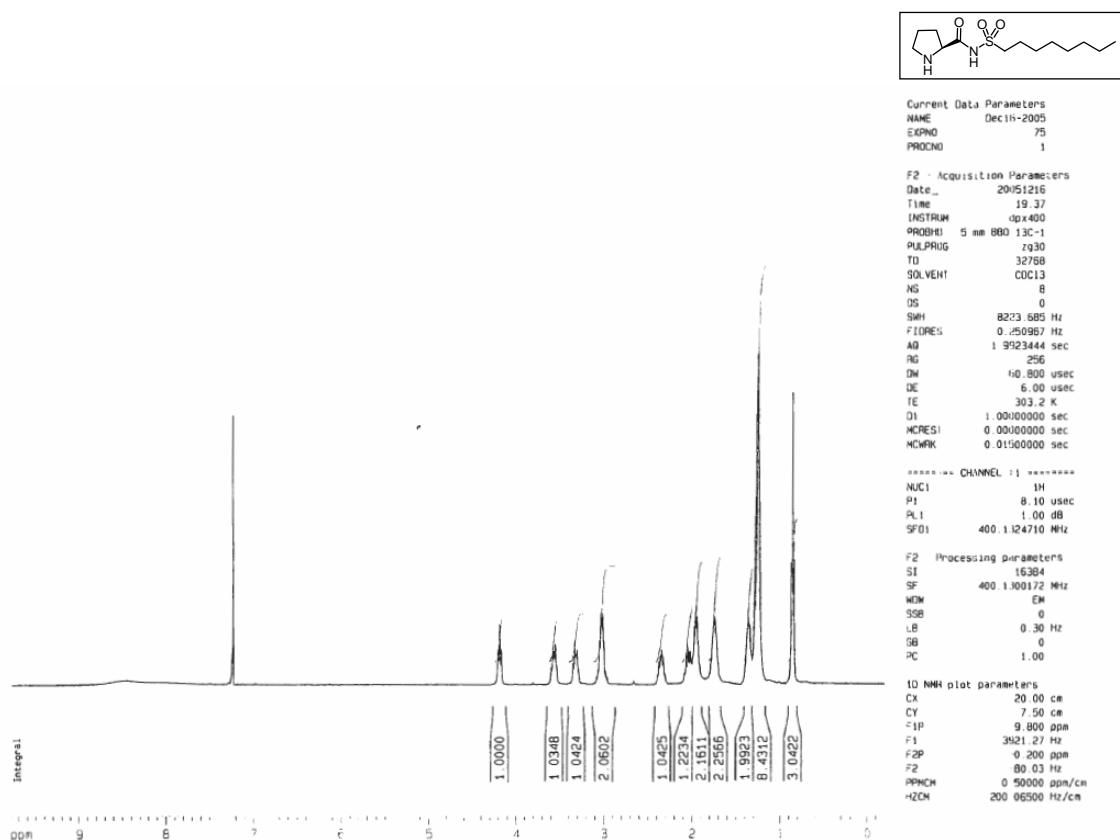



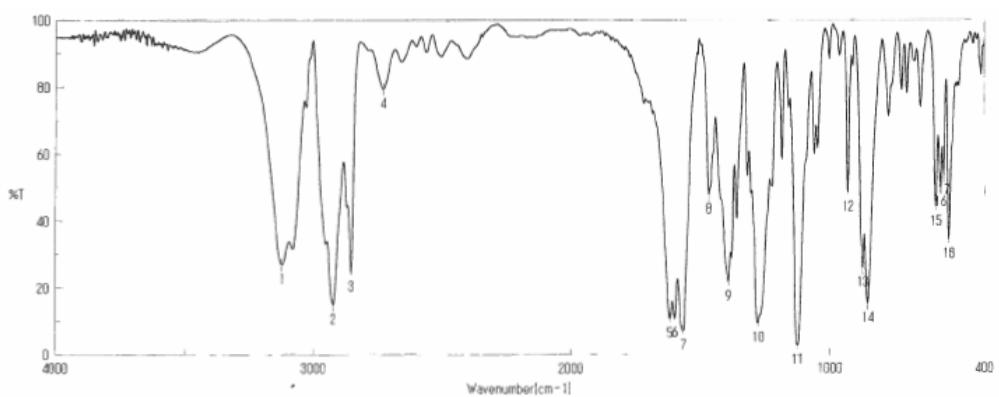


HORIBA FT-IR for Windows(TM) Ver.4.07
FTIR system for Windows



HORIBA FT-IR for Windows(TM) Ver.4.07
FTIR system for Windows




計算回数: 16
 ゼロフィリング: ON
 ゲイン: 1
 日時: 106/05/15 16:55
 測定者: Memory#3
 ファイル名: サンプル名
 コメント:

分解: アボダイゼーション
 スキャンスピード: 4 cm⁻¹
 Cosine
 2 mm/sec

1: 2825.48, 84.2428 2: 2852.20, 89.9583 3: 1685.48, 79.1575 4: 1584.24, 90.5256
 5: 1455.99, 85.0004 6: 1422.24, 89.5694 7: 1337.64, 88.4462 8: 1284.11, 95.6602
 9: 1124.30, 82.0730 10: 1087.66, 90.9633 11: 780.57, 93.3643 12: 697.14, 91.6168
 13: 571.79, 95.3065 14: 413.66, 89.0084

積算回数

16

ゼロフリーリング

ON

ゲイン

4

日時

105/12/14 22:14

測定者

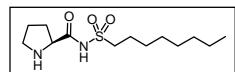
Memory#13

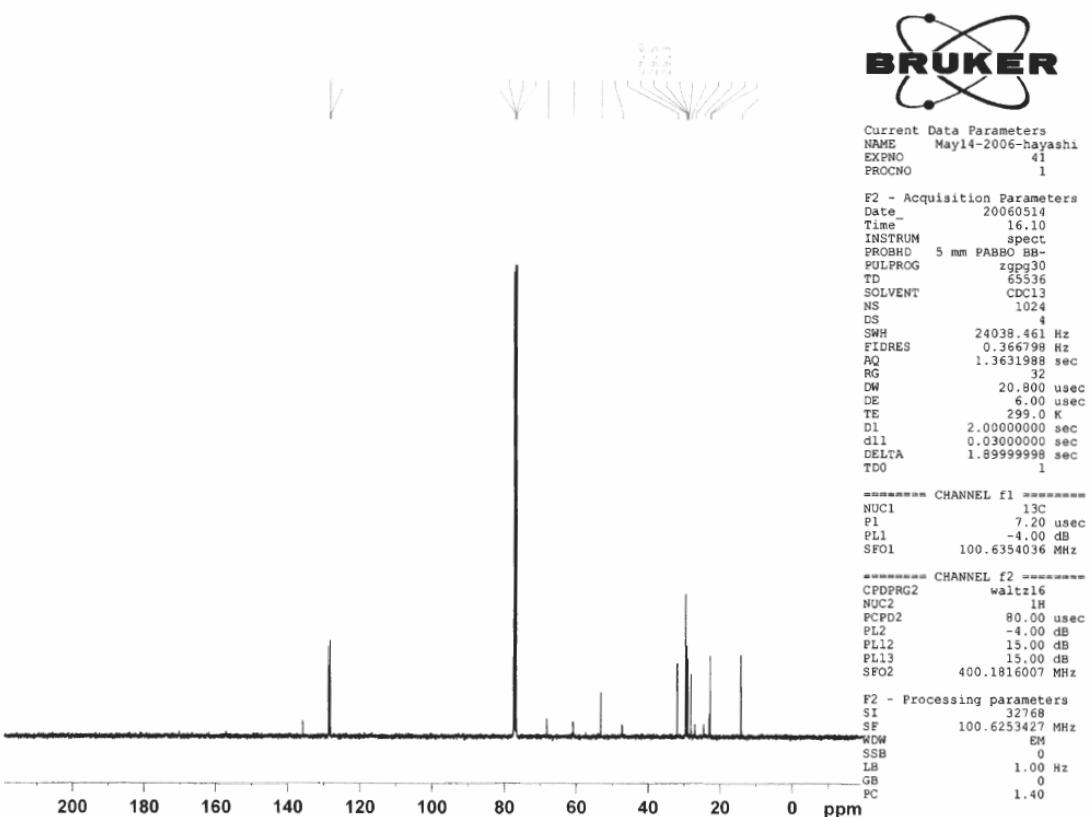
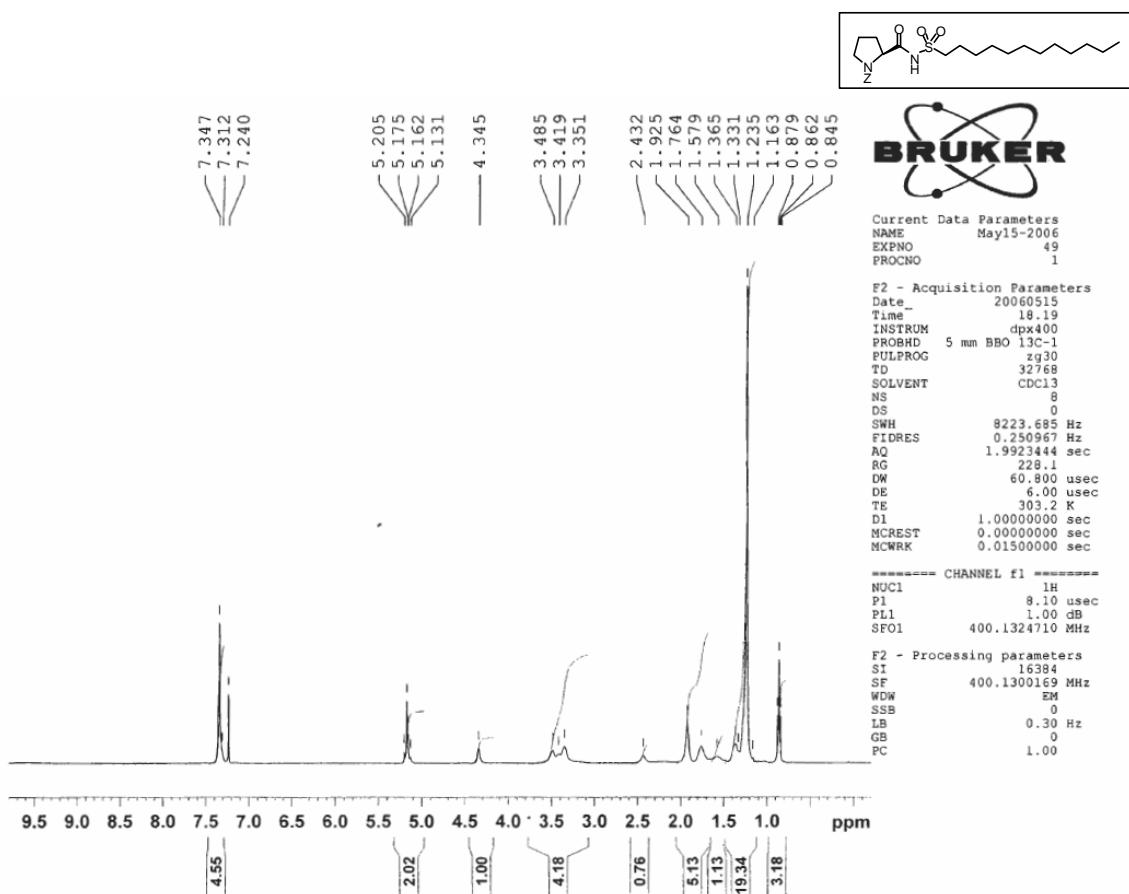
ファイル名

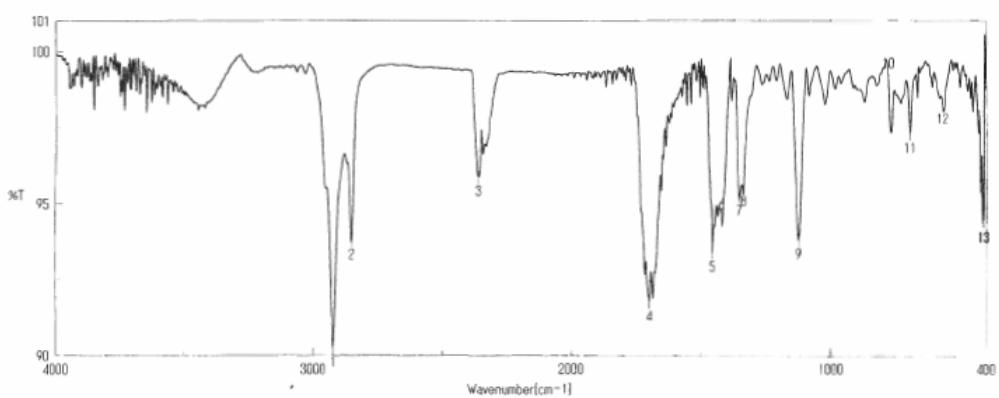
コメント

分解

アボダイゼーション

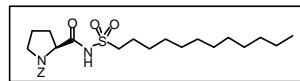

スキャンスピード

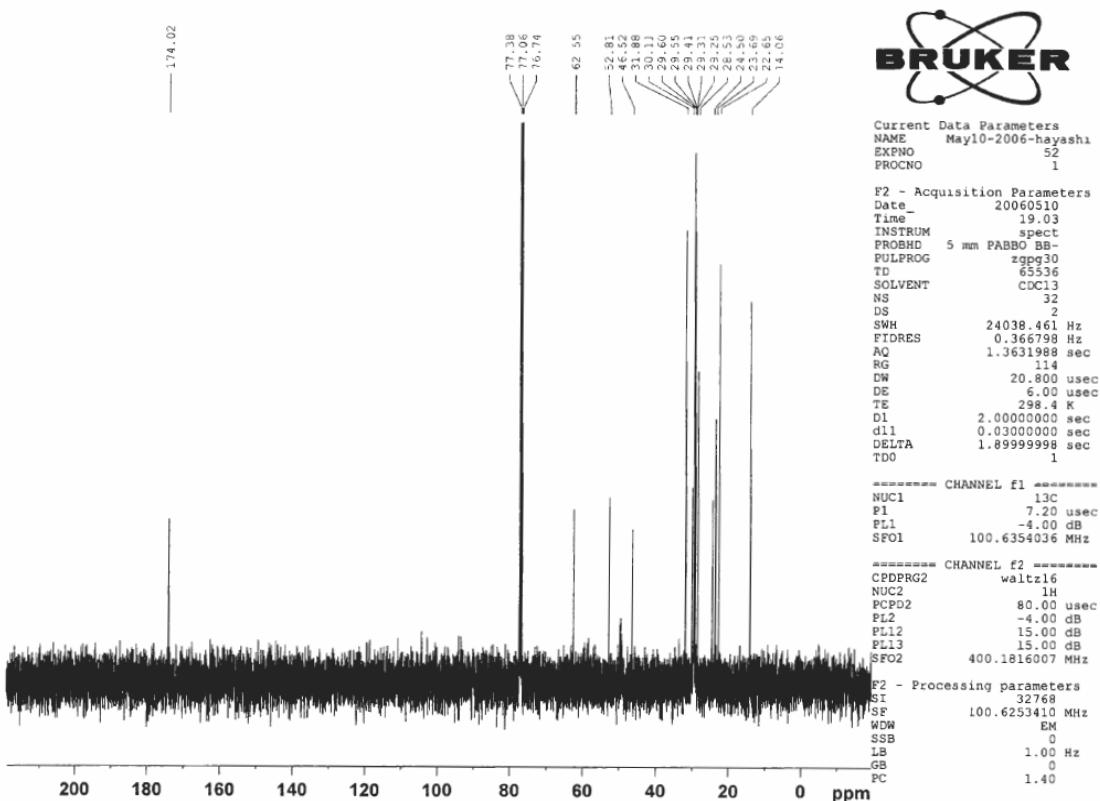
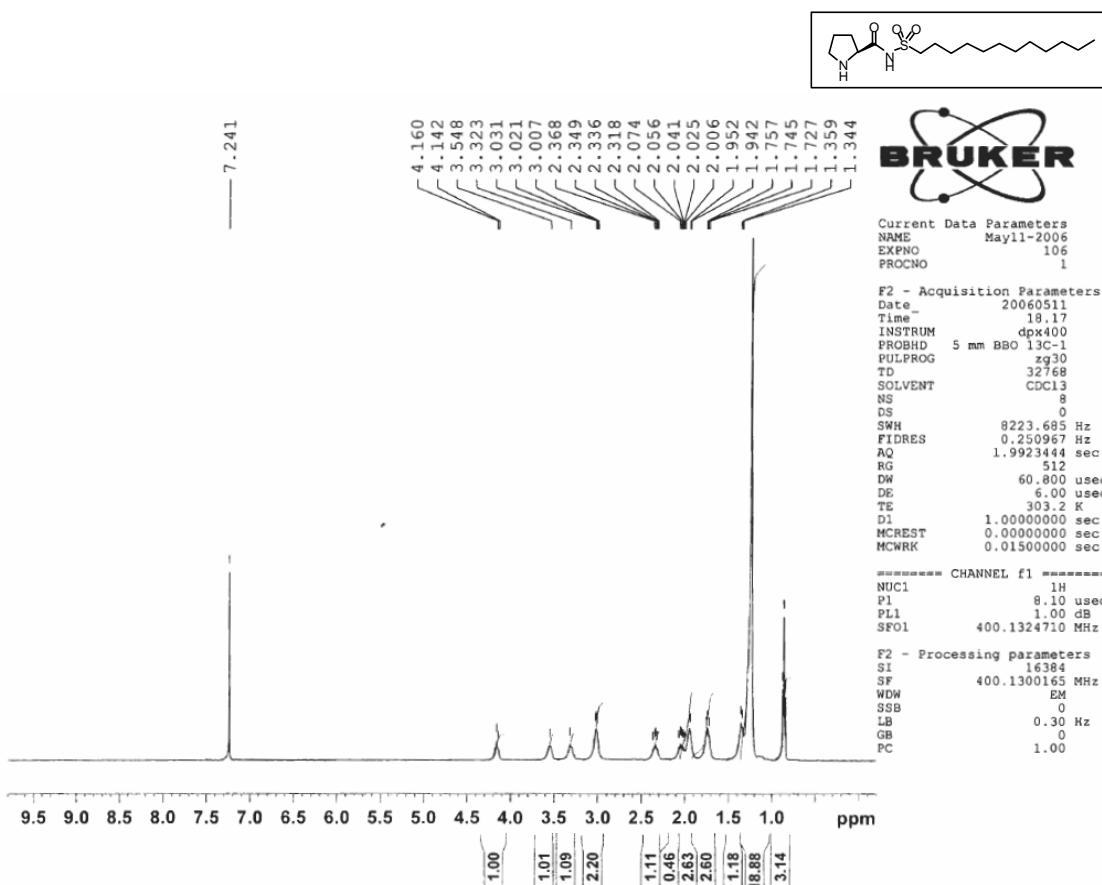


4 cm⁻¹

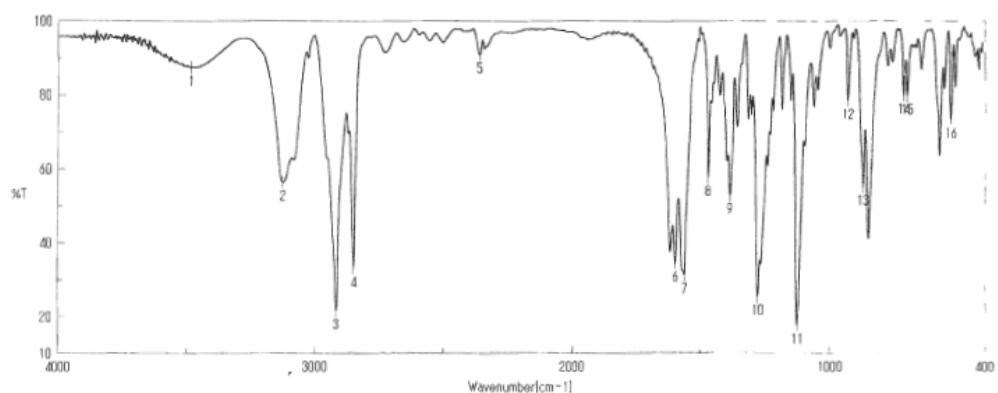

Cosine

2 mm/sec

1: 3122, 19, 26. 9267 2: 2923, 56, 14. 8422 3: 2853, 17, 24. 6351 4: 2728, 78, 79. 4310
 5: 1616, 06, 10. 7798 6: 1596, 77, 10. 9194 7: 1563, 99, 7. 1479 8: 1465, 63, 47. 8763
 9: 1389, 46, 21. 7825 10: 1278, 65, 9. 3906 11: 1125, 28, 2. 6630 12: 930, 49, 48. 4796
 13: 622, 63, -25. 9249 14: 854, 31, 15. 2961 15: 589, 15, 44. 1661 16: 570, 83, 49. 8835
 17: 508, 28, 30. 4903 18: 538, 04, 34. 3882

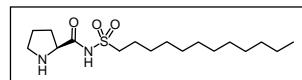

積算回数
ゼロフリング
ゲイン
日時
測定者
ファイル名
サンプル名
コメント



16
ON
1
106/05/15 17:04
Memory#5
コメント


分解
アボダイゼーション
スキャンスピード

4 cm⁻¹
Cosine
2 mm/sec

1 2923 56, 90 2355 2: 2852 20, 93 7818 3: 2360 44, 95 9663 4: 1698 98, 91 7625
5 1456 96, 93 3915 6: 1422 24, 94 5240 7: 1356 68, 95 2308 8: 1338 36, 95 5344
9 1125 28, 93 8016 10: 781 03, 99 1476 11: 697 14, 97 2661 12: 571 79, 98 2343
13 411 73, 94 3371



積算回数
 ゼロフィリング
 ゲイン
 日時
 測定者
 ファイル名
 サンプル名
 コメント

64
 ON
 2
 106/05/10 20:45
 Memory#3

分解
 アボダイゼーション
 スキャンスピード
 4 cm⁻¹
 Cosine
 2 mm/sec

1	3482, 81, 87, 4057	2:	3124, 12, 56, 4276	3	2917, 77, 21, 5764	4	2850, 27, 33, 0005
5	2360, 44, 90, 9796	6:	1597, 73, 34, 5923	7:	1562, 06, 31, 3863	8	1471, 42, 57, 8547
9	1386, 57, 53, 0097	10:	1278, 57, 25, 4868	11:	1128, 22, 17, 6268	12	931, 45, 76, 6234
13	873, 60, 55, 2465	14:	717, 39, 80, 0190	15:	702, 93, 79, 8932	16	534, 19, 73, 3892

