

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2007

Efficient Tandem Process for the Catalytic Deprotection of *N*-Allyl Amides and Lactams in Aqueous Media: A Novel Application of the Bis(allyl)-Ruthenium(IV) Catalysts [Ru(**h**³:**h**²:**h**³-C₁₂H₁₈)Cl₂] and [{Ru(**h**³:**h**³-C₁₀H₁₆)(**m**Cl)Cl}₂]

Victorio Cadierno,* José Gimeno,* Noel Nebra

Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles" (Unidad Asociada al CSIC), Facultad de Química, Universidad de Oviedo, Julián Clavería 8, E-33006 Oviedo, Spain

PREPARATION OF THE STARTING MATERIALS

General methods: Infrared spectra were recorded on a Perkin-Elmer

1720-XFT spectrometer. NMR spectra were recorded on a Bruker DPX-300 instrument at 300 MHz (¹H), or 75.4 MHz (¹³C) or a Bruker AC-400 instrument at 400.1 MHz (¹H), or 100.6 MHz (¹³C). Chemical shifts are referred to the residual peak of the deuterated solvent used

(CDCl₃). DEPT experiments have been carried out for all the compounds reported. GC/MS measurements were performed on a

Agilent 6890N equipment coupled to a 5973 mass detector (70eV electron impact ionization) using a HP-1MS column. High-resolution mass spectra were recorded on a Finnigan-Mat 95 spectrometer. Flash chromatography was performed using Merck silica gel 60 (230-400 mesh). Compounds 3a,^[1] 3c,^[2] 3d,^[2] 3e,^[1] 3g,^[3] 3i,^[4] 3j,^[5] 4a,^[6] 4d,^[7] 4f,^[8] 4g,^[9] 5a,^[10] 5g,^[2] 5h,^[11] 5j,^[12] 5k,^[13] 5l,^[14] 6a,^[15] 6b,^[16] 6c,^[15] 6f,^[17] and 7^[18] were prepared by following the methods reported in the literature.

Synthesis of *N*-allyl amides 3b,f,h,k: To a solution of the appropriate acid chloride (5 mmol) in 50 mL of toluene was added allylamine (0.750 mL, 10 mmol) at 0°C. The reaction mixture was allowed to stir for 12 h at room temperature, and then filtered to remove the solid precipitate. The filtrate was concentrated under reduced pressure and the resulting residue purified by flash chromatography on silica gel using a 25% ethyl acetate/hexanes mixture as eluent. Spectroscopic data are as follows: *N*-Allyl-2-fluorobenzamide (3b): Pale-yellow oil; yield: 0.833 g (93%); IR (Nujol): $\mathbf{n} = 1646$ (s, C=O), 3346 (s, N-H) cm⁻¹; ¹H NMR (CDCl₃): $\mathbf{d} = 4.07$ (m, 2H, NCH₂), 5.12-5.26 (m, 2H, =CH₂), 5.90 (m, 1H, =CH), 6.84 (br, 1H, NH), 7.07, 7.23, 7.42 and 8.04 (m, 1H each, C₆H₄F); ¹³C{¹H} NMR (CDCl₃): $\mathbf{d} = 41.9$ (s, NCH₂), 115.6 (d, J = 24.9 Hz, CH of C₆H₄F), 116.0 (s, =CH₂), 120.6 (d, J = 11.7 Hz, C of C₆H₄F), 124.4 (d, J = 2.9 Hz, CH of C₆H₄F), 131.6 (s, =CH), 132.8 (d, J = 8.8 Hz, CH of C₆H₄F), 133.5 (s, CH of C₆H₄F), 160.2 (d, J = 247.3 Hz, C of C₆H₄F), 162.8 (s, C=O); MS (EI 70eV): m/z (%) = 179 (10) [M^+], 165 (20) [M^+ -CH₂], 123 (100) [M^+ -NHCH₂CH=CH₂], 95 (20) [M^+ -

m/z = 179.07420, calcd. for C₁₀H₁₀FNO: 179.07409.

N-Allyl-3-methoxybenzamide (3f): Colourless oil; yield: 0.841 g (88%);
IR (Nujol): *n* = 1641 (s, C=O), 3313 (s, N-H) cm⁻¹; ¹H NMR (CDCl₃): *d* = 3.79 (s, 3H, OCH₃), 4.05 (m, 2H, NCH₂), 5.12-5.24 (m, 2H, =CH₂),
5.88 (m, 1H, =CH), 6.56 (br, 1H, NH), 6.99 (m, 1H, C₆H₄OMe), 7.26-7.36 (m, 3H, C₆H₄OMe); ¹³C{¹H} NMR (CDCl₃): *d* = 42.1 (s, NCH₂),
55.0 (s, OCH₃), 112.0, 117.3, 118.4 and 129.1 (s, CH of C₆H₄OMe),
116.2 (s, =CH₂), 133.8 (s, =CH), 135.6 and 159.4 (s, C of C₆H₄OMe),
166.9 (s, C=O); MS (EI 70eV): *m/z* (%) = 191 (20) [*M*⁺], 176 (5) [*M*⁺-Me], 135 (100) [*M*⁺-NHCH₂CH=CH₂], 107 (25) [*M*⁺-

CONHCH₂CH=CH₂], 92 (10) [M^+ -Me-CONHCH₂CH=CH₂]; HR-MS: m/z = 191.09347, calcd. for C₁₁H₁₃O₂N: 191.09408.

N-Allyl-hexanamide (3h): Colourless oil; yield: 0.698 g (90%); IR (Nujol): **n** = 1644 (s, C=O), 3289 (s, N-H) cm⁻¹; ¹H NMR (CDCl₃): **d** = 0.88 (t, *J* = 6.5 Hz, 3H, CH₃), 1.30 (m, 4H, CH₂), 1.64 (m, 2H, CH₂), 2.18 (t, *J* = 7.7 Hz, 2H, CH₂CO), 3.87 (m, 2H, NCH₂), 5.12 (m, 2H, =CH₂), 5.77 (m, 2H, =CH and NH); ¹³C{¹H} NMR (CDCl₃): d = 13.8 (s, CH₃), 22.3, 25.4, 31.4 and 36.7 (s, CH₂), 41.8 (s, NCH₂), 116.1 (s, =CH₂), 134.3 (s, =CH), 173.0 (s, C=O); MS (EI 70eV): m/z (%) = 155 (2) [M^+], 140 (2) [M^+ -Me], 126 (10) [M^+ -Et], 112 (10) [M^+ -nPr], 99 (100) [M^+ -NHCH₂CH=CH₂], 84 (30) [M^+ -nPent], 71 (10) [M^+ -CONHCH₂CH=CH₂], 57 (70) [M^+ -nPent-CH=CH₂]; HR-MS: m/z = 155.13016, calcd. for C₉H₁₇NO: 155.13046.

N-Allyl-cyclopentanepropanamide (3k): Colourless oil; yield: 0.761 g (84%); IR (Nujol): $\mathbf{m} = 1645$ (s, C=O), 3286 (s, N-H) cm⁻¹; ¹H NMR (CDCl₃): $\mathbf{d} = 1.05$ (m, 2H, CH₂), 1.45-1.71 (m, 9H, CH₂ and CH), 2.17 (t, J = 7.8 Hz, 2H, CH₂CO), 3.81 (m, 2H, NCH₂), 5.08 (m, 2H, =CH₂), 5.79 (m, 1H, =CH), 6.02 (br, 1H, NH); ¹³C{¹H} NMR (CDCl₃): $\mathbf{d} = 24.7$, 31.6, 32.1 and 35.6 (s, CH₂), 39.4 (s, CH), 41.5 (s, NCH₂), 115.7 (s, =CH₂), 134.0 (s, =CH), 172.9 (s, C=O); MS (EI 70eV): m/z (%) = 181 (2) $[M^+]$, 125 (5) $[M^+$ -NHCH₂CH=CH₂], 112 (40) $[M^+$ -C₅H₉], 99 (100) $[M^+$ -CH₂C₅H₉], 84 (20) $[M^+$ -CH₂CH₂C₅H₉], 57 (40) $[M^+$ -COCH₂CH₂C₅H₉]; HR-MS: m/z = 181.14639, calcd. for C₁₁H₁₉NO: 181.14666.

Synthesis of *N*-allyl amides 4b,c,e,h: To a solution of the appropriate *NH*-amide (5 mmol) and allyl bromide (0.606 mL, 7 mmol) in 50 mL of acetonitrile was added NaOH (0.280 g, 7 mmol) at room temperature. The reaction mixture was allowed to stir for 20 h, and then filtered to remove the solid precipitate. The filtrate was concentrated under reduced pressure and the resulting residue purified by flash chromatography on silica gel using a 25% ethyl acetate/hexanes mixture as eluent. Spectroscopic data are as follows:

N-Allyl-N-methyl-hexanamide (4b): Colourless oil; yield: 0.803 g (95%); IR (Nujol): $\mathbf{n} = 1661$ (s, C=O) cm⁻¹; MS (EI 70eV): m/z (%) = 169 (5) $[M^+]$, 154 (10) $[M^+-Me]$, 140 (15) $[M^+-Et]$, 126 (60) $[M^+-nPr]$, 112 (50) $[M^+-nBu]$, 98 (100) $[M^+-nPent]$, 70 (100) $[M^+-CO-nPent]$; HR-MS: m/z = 169.14666, calcd. for C₁₀H₁₉NO: 169.14681; Two rotamers are observed in solution.^[19] NMR data for the major rotamer: ¹H NMR (CDCl₃): **d** = 0.74 (br, 3H, CH₃), 1.17 (m, 4H, CH₂), 1.49 (m, 2H, CH₂), 2.15 (m, 2H, CH₂CO), 2.80 (s, 3H, NCH₃), 3.77 (br, 2H, NCH₂), 4.99 (m, 2H, =CH₂), 5.63 (m, 1H, =CH); ${}^{13}C{}^{1}H$ NMR (CDCl₃): d = 13.7 (s, CH₃), 22.3, 24.6, 31.4 and 33.3 (s, CH₂), 34.5 (s, NCH₃), 51.9 (s, NCH₂), 116.7 (s, =CH₂), 132.5 (s, =CH), 172.7 (s, C=O); NMR data for the minor rotamer: ¹H NMR (CDCl₃): **d** = 0.74 (br, 3H, CH₃), 1.17 (m, 4H, CH₂), 1.49 (m, 2H, CH₂), 2.15 (m, 2H, CH₂CO), 2.76 (s, 3H, NCH₃), 3.84 (br, 2H, NCH₂), 4.99 (m, 2H, =CH₂), 5.63 (m, 1H, =CH); ¹³C{¹H} NMR (CDCl₃): **d** = 13.7 (s, CH₃), 22.3, 24.9, 31.4 and 32.6 (s, CH₂), 34.5 (s, NCH₃), 49.7 (s, NCH₂), 116.2 (s, =CH₂), 133.0 (s, =CH), 173.2 (s, C=O).

N-Allyl-*N*-methyl-cyclopentanepropanamide (4c): Colourless oil; yield: 0.791 g (81%); IR (Nujol): $\mathbf{n} = 1651$ (s, C=O) cm⁻¹; MS (EI 70eV): m/z(%) = 195 (2) $[M^+]$, 180 (2) $[M^+$ -Me], 126 (70) $[M^+$ -C₅H₉], 113 (70) $[M^+$ -CH₂C₅H₉], 98 (100) $[M^+$ -CH₂CH₂C₅H₉], 70 (60) $[M^+$ -COCH₂CH₂CH₂C₅H₉], 55 (50) $[M^+$ -Me-COCH₂CH₂C₅H₉]; HR-MS: m/z = 195.16231, calcd. for C₁₂H₂₁NO: 195.16263; Two rotamers are observed in solution.^[19] *NMR data for the major rotamer:* ¹H NMR (CDCl₃): $\mathbf{d} = 1.05$ (m, 2H, CH₂), 1.46-1.72 (m, 9H, CH₂ and CH), 2.27 (m, 2H, CH₂CO), 2.90 (s, 3H, NCH₃), 3.86 (m, 2H, NCH₂), 5.09 (m, 2H, =CH₂), 5.70 (m, 1H, =CH); ¹³C{¹H} NMR (CDCl₃): $\mathbf{d} = 25.0$, 31.5, 32.1 and 32.4 (s, CH₂), 33.5 (s,

NCH₃), 39.7 (s, CH), 49.8 (s, NCH₂), 116.4 (s, =CH₂), 132.6 (s, =CH), 173.1 (s, C=O); *NMR data for the minor rotamer:* ¹H NMR (CDCl₃): *d*= 1.05 (m, 2H, CH₂), 1.46-1.72 (m, 9H, CH₂ and CH), 2.27 (m, 2H, CH₂CO), 2.86 (s, 3H, NCH₃), 3.94 (m, 2H, NCH₂), 5.09 (m, 2H, =CH₂), 5.70 (m, 1H, =CH); ¹³C{¹H} NMR (CDCl₃): **d** = 25.0, 31.2, 32.4 and 32.7 (s, CH₂), 34.7 (s, NCH₃), 39.7 (s, CH), 52.1 (s, NCH₂), 116.9 (s, =CH₂), 132.9 (s, =CH), 173.6 (s, C=O).

N-Allyl-*N*-methyl-2-methoxybenzamide (4e): Colourless oil; yield: 0.903 g (88%); IR (Nujol): $\mathbf{n} = 1651$ (s, C=O) cm⁻¹; MS (EI 70eV): m/z

 $(\%) = 205 (10) [M^+], 174 (10) [M^+-OMe], 135 (100) [M^+-$

NMeCH₂CH=CH₂], 70 (15) $[M^+$ -COC₆H₄OMe]; HR-MS: m/z =

205.11021, calcd. for C₁₂H₁₅O₂N: 205.10973; Two rotamers are observed in solution.^[19] *NMR data for the major rotamer:* ¹H NMR

(CDCl₃): **d** = 3.00 (s, 3H, NCH₃), 3.66 (br, 2H, NCH₂), 3.76 (s, 3H,

OCH₃), 5.05-5.26 (m, 2H, =CH₂), 5.62 (m, 1H, =CH), 6.84-6.96 and 7.14-7.31 (m, 2H each, C₆H₄OMe); ¹³C{¹H} NMR (CDCl₃): d= 35.6 (s, NCH₃), 53.5 (s, NCH₂), 55.4 (s, OCH₃), 110.8, 120.6, 127.5 and 130.2 (s, CH of C₆H₄OMe), 117.5 (s, =CH₂), 125.9 and 155.1 (s, C of C₆H₄OMe),

133.2 (s, =CH), 169.5 (s, C=O); NMR data for the minor rotamer: ¹H

NMR (CDCl₃): d = 2.73 (s, 3H, NCH₃), 3.78 (s, 3H, OCH₃), 4.13 (br, 2H, NCH₂), 5.05-5.26 (m, 2H, =CH₂), 5.79 (m, 1H, =CH), 6.84-6.96 and 7.14-7.31 (m, 2H each, C₆H₄OMe); ¹³C{¹H} NMR (CDCl₃): d = 32.1 (s, NCH₃), 49.2 (s, NCH₂), 55.4 (s, OCH₃), 110.8, 120.8, 127.7 and 130.2 (s, CH of C₆H₄OMe), 116.8 (s, =CH₂), 126.2 and 155.1 (s, C of C₆H₄OMe), 132.5 (s, =CH), 169.1 (s, C=O).

2-[Allyl(2-fluorobenzoyl)amino]-benzoic acid ethyl ester (4h): Yellow oil; yield: 1.293 g (79%); IR (Nujol): \mathbf{n} = 1652 and 1721 (s, C=O) cm⁻¹;

¹H NMR (CDCl₃): **d** = 1.36 (t, J = 7.2 Hz, 3H, CH₃), 3.90 (m, 2H, NCH₂), 4.32 (q, J = 7.2 Hz, 2H, OCH₂), 5.13 (m, 2H, =CH₂), 5.97 (m,

1H, =CH), 6.70-7.73 (m, 8H, C₆H₄F and C₆H₄CO₂Et); ¹³C{¹H} NMR (CDCl₃): d = 13.8 (s, CH₃), 52.4 (s, NCH₂), 61.1 (s, OCH₂), 117.9 (s, =CH₂), 115.6 (d, J = 21.6 Hz, CH of C₆H₄F), 123.3 (d, J = 2.4 Hz, CH of C₆H₄F), 124.6 (d, J = 17.5 Hz, C of C₆H₄F), 127.6, 130.4, 131.0 and 132.2 (s, CH of C₆H₄CO₂Et), 128.4 (d, J = 2.9 Hz, CH of C₆H₄F), 129.8 and 141.1 (s, C of C₆H₄CO₂Et), 130.6 (d, J = 8.1 Hz, CH of C₆H₄F), 132.5 (s, =CH), 157.5 (d, J = 248.4 Hz, C of C₆H₄F), 165.0 and 165.5 (s, C=O); MS (EI 70eV): m/z (%) = 327 (2) [M^+], 282 (10) [M^+ -Et], 254 (10) [M^+ -CO₂Et], 204 (100) [M^+ -COC₆H₄F], 158 (100) [M^+ -CO₂Et-C₆H₄F], 123 (90) [M^+ -N(CH₂CH=CH₂)C₆H₄CO₂Et], 95 (30) [M^+ -CON(CH₂CH=CH₂)C₆H₄CO₂Et]; HR-MS: m/z = 327.12617, calcd. for C₁₉H₁₈O₃FN: 327.12652.

Synthesis of *N*,*N*-diallyl amides 5b,c,d,e,f,i: To a solution of the appropriate acid chloride (5 mmol) in 50 mL of toluene was added diallylamine (1.234 mL, 10 mmol) at 0°C. The reaction mixture was allowed to stir for 12 h at room temperature, and then filtered to remove the solid precipitate. The filtrate was concentrated under reduced pressure and the resulting residue purified by flash chromatography on silica gel using a 25% ethyl acetate/hexanes mixture as eluent. Spectroscopic data are as follows:

N,N-Diallyl-2-fluorobenzamide (5b): Pale-yellow oil; yield: 0.932 g (85%); IR (Nujol): $\mathbf{n} = 1655$ (s, C=O) cm⁻¹; ¹H NMR (CDCl₃): $\mathbf{d} = 3.72$ and 4.12 (br, 2H each, NCH₂), 5.03-5.22 (m, 4H, =CH₂), 5.61 and 5.80 (m, 1H each, =CH), 7.09 and 7.30 (m, 2H each, C₆H₄F); ¹³C{¹H} NMR (CDCl₃): $\mathbf{d} = 46.1$ and 50.3 (s, NCH₂), 115.4 (d, J = 21.2 Hz, CH of C₆H₄F), 117.1 and 117.7 (s, =CH₂), 124.1 and 128.1 (s, CH of C₆H₄F),

124.3 (br, C of C₆H₄F), 130.6 (d, J = 8.0 Hz, CH of C₆H₄F), 131.9 and 132.5 (s, =CH), 157.7 (d, J = 247.4 Hz, C of C₆H₄F), 166.3 (s, C=O); MS (EI 70eV): m/z (%) = 219 (5) [M^+], 178 (15) [M^+ -CH₂CH=CH₂], 123 (100) [M^+ -N(CH₂CH=CH₂)₂], 95 (25) [M^+ -CON(CH₂CH=CH₂)₂], 75 (5) [M^+ -F-CON(CH₂CH=CH₂)₂]; HR-MS: m/z = 218.09742 (M^+ -H), calcd. for C₁₃H₁₃FNO: 218.09756.

N,*N*-Diallyl-3-fluorobenzamide (5c): Pale-yellow oil; yield: 0.953 g (87%); IR (Nujol): $\mathbf{n} = 1652$ (s, C=O) cm⁻¹; ¹H NMR (CDCl₃): $\mathbf{d} = 3.79$ and 4.09 (br, 2H each, NCH₂), 5.20 (m, 4H, =CH₂), 5.69 and 5.80 (br, 1H each, =CH), 7.04-7.20 (m, 3H, C₆H₄F), 7.33 (m, 1H, C₆H₄F); ¹³C{¹H} NMR (CDCl₃): $\mathbf{d} = 46.9$ and 50.5 (s, NCH₂), 113.8 (d, J = 22.7 Hz, CH of C₆H₄F), 116.6 (d, J = 20.9 Hz, CH of C₆H₄F), 117.7 (s, =CH₂), 122.1 (s, CH of C₆H₄F), 130.1 (d, J = 7.6 Hz, CH of C₆H₄F), 132.4 and 132.8 (s, =CH), 138.0 (d, J = 1.3 Hz, C of C₆H₄F), 162.3 (d, J = 247.5 Hz, C of C₆H₄F), 170.2 (s, C=O); MS (EI 70eV): m/z (%) = 219 (10) [M^+], 178 (15) [M^+ -CH₂CH=CH₂], 123 (100) [M^+ -N(CH₂CH=CH₂)₂], 95 (30) [M^+ -CON(CH₂CH=CH₂)₂], 75 (5) [M^+ -F-CON(CH₂CH=CH₂)₂]; HR-MS: m/z = 218.09755 (M^+ -H), calcd. for C₁₃H₁₃FNO: 218.09756.

N,*N*-Diallyl-4-fluorobenzamide (5d): Pale-yellow oil; yield: 1.019 g (93%); IR (Nujol): $\mathbf{n} = 1639$ (s, C=O) cm⁻¹; ¹H NMR (CDCl₃): $\mathbf{d} = 3.82$ and 4.09 (br, 2H each, NCH₂), 5.19 (m, 4H, =CH₂), 5.79 (br, 2H, =CH),

7.05 and 7.43 (m, 2H each, C_6H_4F); ¹³C{¹H} NMR (CDCl₃): **d** = 47.1

and 50.6 (s, NCH₂), 115.3 (d, J = 21.5 Hz, CH of C₆H₄F), 117.6 (s, =CH₂), 128.8 (d, J = 8.1 Hz, CH of C₆H₄F), 132.1 (s, C of C₆H₄F), 132.6 and 132.9 (s, =CH), 163.3 (d, J = 249.2 Hz, C of C₆H₄F), 170.7 (s, C=O); MS (EI 70eV): m/z (%) = 219 (5) [M^+], 178 (10) [M^+ -CH₂CH=CH₂], 123 (100) [M^+ -N(CH₂CH=CH₂)₂], 95 (25) [M^+ -CON(CH₂CH=CH₂)₂], 75 (5)

$[M^+$ -F-CON(CH₂CH=CH₂)₂]; HR-MS: $m/z = 218.09731 (M^+$ -H), calcd. for C₁₃H₁₃FNO: 218.09756.

N,*N*-Diallyl-2-methoxybenzamide (5e): Colourless oil; yield: 1.016 g (88%); IR (Nujol): $\mathbf{n} = 1649$ (s, C=O) cm⁻¹; ¹H NMR (CDCl₃): $\mathbf{d} = 3.68$ and 4.13 (m, 2H each, NCH₂), 3.80 (s, 3H, OCH₃), 5.02-5.28 (m, 4H, =CH₂), 5.61 and 5.83 (m, 1H each, =CH), 6.87-6.96 (m, 2H, C₆H₄OMe), 7.18-7.34 (m, 2H, C₆H₄OMe); ¹³C{¹H} NMR (CDCl₃): $\mathbf{d} = 45.9$ and 50.5 (s, NCH₂), 55.4 (s, OCH₃), 110.8, 120.7, 127.5 and 130.2 (s, CH of C₆H₄OMe), 116.7 and 117.5 (s, =CH₂), 126.0 and 155.0 (s, C of C₆H₄OMe), 132.6 and 133.4 (s, =CH), 169.2 (s, C=O); MS (EI 70eV): *m*/*z* (%) = 231 (5) [*M*⁺], 190 (10) [*M*⁺-CH₂CH=CH₂], 135 (100) [*M*⁺-N(CH₂CH=CH₂)₂], 92 (10) [*M*⁺-Me-CON(CH₂CH=CH₂)₂], 77 (20) [*M*⁺-OMe-CON(CH₂CH=CH₂)₂]; HR-MS: *m*/*z* = 230.11765 (*M*⁺-H), calcd. for C₁₄H₁₆O₂N: 230.11755.

N,*N*-Diallyl-3-methoxybenzamide (5f): Colourless oil; yield: 0.958 g (83%); IR (Nujol): $\mathbf{n} = 1643$ (s, C=O) cm⁻¹; ¹H NMR (CDCl₃): $\mathbf{d} = 3.77$ (s, 3H, OCH₃), 3.80 and 4.09 (m, 2H each, NCH₂), 5.13-5.22 (m, 4H, =CH₂), 5.71-5.83 (m, 2H =CH), 6.94 (m, 3H, C₆H₄OMe), 7.25 (m, 1H, C₆H₄OMe); ¹³C{¹H} NMR (CDCl₃): $\mathbf{d} = 46.8$ and 50.6 (s, NCH₂), 55.2 (s, OCH₃), 111.7, 115.5, 118.5 and 129.4 (s, CH of C₆H₄OMe), 117.5 (s, =CH₂), 132.6 and 133.2 (s, =CH), 137.4 and 159.4 (s, C of C₆H₄OMe), 171.4 (s, C=O); MS (EI 70eV): m/z (%) = 231 (10) [M^+], 190 (10) [M^+ -

CH₂CH=CH₂], 135 (100) $[M^+$ -N(CH₂CH=CH₂)₂], 107 (20) $[M^+$ -CON(CH₂CH=CH₂)₂], 92 (10) $[M^+$ -Me-CON(CH₂CH=CH₂)₂], 77 (10) $[M^+$ -OMe-CON(CH₂CH=CH₂)₂]; HR-MS: $m/z = 230.11725 (M^+$ -H), calcd. for C₁₄H₁₆O₂N: 230.11755. *N*,*N*-Diallyl-hexanamide (5i): Colourless oil; yield: 0.887 g (91%); IR (Nujol): $\mathbf{n} = 1656$ (s, C=O) cm⁻¹; ¹H NMR (CDCl₃): $\mathbf{d} = 0.87$ (t, J = 6.3Hz, 3H, CH₃), 1.29 (m, 4H, CH₂), 1.62 (m, 2H, CH₂), 2.28 (t, J = 7.1 Hz, 2H, CH₂CO), 3.85 (d, J = 2.8 Hz, 2H, NCH₂), 3.96 (d, J = 5.7 Hz, 2H, NCH₂), 5.06-5.19 (m, 4H, =CH₂), 5.69-8.20 (m, 2H, =CH); ¹³C{¹H} NMR (CDCl₃): $\mathbf{d} = 13.9$ (s, CH₃), 22.4, 24.9, 31.5 and 32.9 (s, CH₂), 47.7 and 49.0 (s, NCH₂), 116.4 and 116.9 (s, =CH₂), 132.9 and 133.4 (s, =CH), 173.1 (s, C=O); MS (EI 70eV): m/z (%) = 195 (5) [M^+], 180 (5) [M^+ -Me], 166 (10) [M^+ -Et], 152 (40) [M^+ -nPr], 139 (40) [M^+ -nBu], 124 (30) [M^+ -nPent], 96 (20) [M^+ -nPentCO], 82 (40) [M^+ -nPentCO-CH₂CH=CH₂], 70 (40) [M^+ -CON(CH₂CH=CH₂)₂]; HR-MS: m/z =195.16183, calcd. for C₁₂H₂₁NO: 195.16176.

Synthesis of *N*-allyl lactams 6d-e: To a solution of the appropriate *NH*lactam (5 mmol) and allyl bromide (0.606 mL, 7 mmol) in 50 mL of acetonitrile was added NaOH (0.280 g, 7 mmol) at room temperature. The reaction mixture was allowed to stir for 20 h, and then filtered to remove the solid precipitate. The filtrate was concentrated under reduced pressure and the resulting residue purified by flash chromatography on silica gel using a 25% ethyl acetate/hexanes mixture as eluent. Spectroscopic data are as follows:

N-Allyl-2-azocanone (6d): Colourless oil; yield: 0.753 g (90%); IR (Nujol): **n** = 1642 (s, C=O) cm⁻¹; ¹H NMR (CDCl₃): **d** = 1.36-1.76 (m, 8H, CH₂), 2.44 (m, 2H, CH₂CO), 3.38 (m, 2H, NCH₂), 3.89 (d, *J* = 6.0 Hz, 2H, NCH₂), 5.04-5.11 (m, 2H, =CH₂), 5.73 (m, 1H, =CH); ¹³C{¹H} NMR (CDCl₃): **d** = 24.2, 26.1, 28.6, 28.8 and 33.6 (s, CH₂), 46.0 and 47.3 (s, NCH₂), 117.0 (s, =CH₂), 133.5 (s, =CH), 174.6 (s, C=O); MS (EI

70eV): m/z (%) = 168 (2) $[M^+]$, 153 (5) $[M^+-CH_2]$, 140 (5) $[M^+-CH_2]$, 126 (5) $[M^+-CH_2CH=CH_2]$, 112 (30) $[M^+-NCH_2CH=CH_2]$, 99 (100) $[M^+-CH_2NCH_2CH=CH_2]$, 84 (30) $[M^+-CH_2CH_2CH=CH_2]$, 57 (80) $[M^+-CH_2CH_2CH_2CH_2CH_2CH_2CH=CH_2]$; HR-MS: m/z = 167.13064, calcd. for $C_{10}H_{17}NO$: 167.13046.

N-Allyl-caprylolactam (6e): Colourless oil; yield: 0.788 g (87%); IR (Nujol): $\mathbf{n} = 1639$ (s, C=O) cm⁻¹; ¹H NMR (CDCl₃): $\mathbf{d} = 1.45-1.82$ (m, 10H, CH₂), 2.49 (m, 2H, CH₂CO), 3.44 (m, 2H, NCH₂), 3.95 (d, J = 5.9 Hz, 2H, NCH₂), 5.14 (m, 2H, =CH₂), 5.76 (m, 1H, =CH); ¹³C{¹H} NMR (CDCl₃): $\mathbf{d} = 22.0$, 24.7, 25.5, 26.5, 28.3 and 34.6 (s, CH₂), 47.2 and 47.4 (s, NCH₂), 117.2 (s, =CH₂), 133.4 (s, =CH), 175.0 (s, C=O); MS (EI 70eV): m/z (%) = 181 (2) $[M^+]$, 167 (5) $[M^+-CH_2]$, 152 (20) $[M^+-2CH_2]$, 138 (20) $[M^+-3CH_2]$, 124 (10) $[M^+-4CH_2]$, 112 (15) $[M^+-5CH_2]$, 96 (10) $[M^+-6CH_2]$, 84 (10) $[M^+-7CH_2]$, 70 (100) $[M^+-8CH_2]$, 55 (20) $[M^+-7CH_2-CH=CH_2]$; HR-MS: m/z = 181.14577, calcd. for C₁₁H₁₉NO: 181.14611.

- [1] L. E. Fischer, J. M. Muchowski, R. D. Clark, J. Org. Chem. 1992, 57, 2700-2705.
- [2] V. C. Agwada, J. Chem. Eng. Data **1984**, 29, 231-235.
- [3] D. F. Harvey, D. M. Sigano, J. Org. Chem. 1996, 61, 2268-2272.
- [4] P. A. Grieco, D. S. Clark, G. P. Withers, J. Org. Chem. 1979, 44, 2945-2947.
- [5] M. A. Walters, A. B. Hoem, C. S. McDonough, J. Org. Chem. 1996, 61, 55-62.
- [6] T. Sato, Y. Wada, M. Nishimoto, H. Ishibashi, M. Ikeda, J. Chem. Soc., Perkin Trans. 1 1989, 879-886.

- [7] N. Cholleton, S. Z. Zard, Tetrahedron Lett. 1998, 39, 7295-7298.
- [8] B. Neugnot, J.-C. Cintrat, B. Rousseau, Tetrahedron 2004, 60, 3575-3579.
- [9] R. K. Thalji, K. A. Ahrendt, R. G. Bergman, J. A. Ellman, J. Am. Chem. Soc. 2001, 123, 9692-9693.
- [10] N. O. Brace, J. Org. Chem. **1971**, 36, 3187-3191.
- [11] E. Schmitz, U. Heuck, D. Habisch, J. Prakt. Chem. 1976, 318, 471-478.
- [12] O. Kitagawa, T. Hanano, T. Hirata, T. Inoue, T. Taguchi, Tetrahedron Lett. 1992, 33, 1299-1302.
- [13] G. R. Stephenson, N. J. Bunce, R. I. Makowski, J. C. Curry, J. Agric. Food Chem. 1978, 26, 137-140.
- [14] W. A. Nugent, J. Feldman, J. C. Calabrese, J. Am. Chem. Soc. 1995, 117, 8992-8998.
- [15] Y. Inoue, M. Taguchi, H. Hashimoto, Bull. Chem. Soc. Jpn. 1985, 58, 2721-2722.
- [16] S. F. Donaldson, S. C. Bergmeier, J. V. Hines, M. S. Gerdeman, Nucleosides, Nucleotides & Nucleic Acids 2002, 21, 111-123.
- [17] S. W. Shalaby, G. E. Babbitt, R. L. Lapinski, Spectrosc. Lett. 1973, 6, 231-237.
- [18] C. A. Tarling, A. B. Holmes, R. E. Markwell, N. D. Pearson, J. Chem. Soc., Perkin Trans. 1 1999, 1695-1702.
- [19] The existence in solution of conformational isomerism for tertiary N-allyl amides is a well-known phenomena. See for example: S. Krompiec, M. Pigulla, N. Kuznik, M. Krompiec, B. Marciniec, D. Chadyniak, J. Kasperczyk, J. Mol. Catal. A: Chem. 2005, 225, 91-101.