

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2007

Asymmetric Hydrogenation of a-Primary and Secondary Amino Ketones: Efficient Asymmetric Syntheses of (-)-Arbutamine and (-)-Denopamine

Gao Shang^[a,b], Duan Liu^[a], Scott E. Allen^[a], Qin Yang^[a] and Xumu Zhang^{*[b,c]}

[a] G. Shang, Dr. D. Liu, S. E. Allen and Dr. Q. Yang Department of Chemistry The Pennsylvania State University 104 Chemistry Building, University Park, PA 16802, USA [b] G. Shang and Prof. X. Zhang Ernest Mario School of Pharmacy Department of Pharmaceutical Chemistry Rutgers, The State University of New Jersey 160 Frelinghuysen Road Piscataway, NJ 08854-8020 *Fax:* (+1)732 445 6312 Email: xumu@rci.rutgers.edu [c] Prof. X. Zhang Department of Chemistry and Chemical Biology Center of Molecular Catalysis Rutgers, The State University of New Jersey 610 Taylor Road Piscataway, NJ 08854-8066

Supporting Information

Asymmetric Syntheses of (-)-Denopamine and (-)-Arbutamine.

The synthesis of (-)-Denapomine:

HO **2-Bromo-1-(4-hydroxy-phenyl)-ethanone**.^[1] Similar method for the synthesis of 2-Bromo-1-(3,4-dimethoxy-phenyl)-ethanone was used to prepare this compound. White solid, 75% yield, m.p. $125-126^{[2]}$ °C. ¹H NMR (300 MHz, CDCl₃): d 7.91 (d, 2H, J = 5.9 Hz), 6.84 (d, 2H, J = 5.9 Hz), 4.54 (s, 2H); ¹³C NMR (75 MHz, CDCl₃): d 192.3, 164.4, 132.8, 127.1, 116.5, 31.9.

2-[2-(3,4-Dimethoxy-phenyl)-ethylamino]-1-(4-

hydroxy-phenyl)-ethanone hydrochloride (1).^[3] This compound was prepared in a similar manner to the general procedure for the preparation of a-secondary amino ketones. After the reaction was completed, the solvent was not evaporated and HCl was added directly. White crystalline solid, 56% yield. ¹H NMR (300 MHz, CDCl₃): d 7.91 (d, 2H, J = 6.9 Hz), 6.96-6.82 (m, 5H), 4.67 (s, 2H), 3.84 (s, 3H), 3.80 (s, 3H), 3.37-3.31 (m, 2H), 3.08-2.97 (m, 2H); ¹³C NMR (75 MHz, CDCl₃): d 190.7, 165.3, 150.8, 149.8, 132.0, 130.3, 126.6, 122.2, 116.7, 113.7, 113.4, 56.5, 53.4, 50.0, 32.9, one peak around 56.5 was obscured. The two enantiomers could be separated by chiral HPLC (Chiralpak AD column, hexanes:iso-propanol = 90:10); $[\alpha]^{24}_{D} = 16.697^{\circ}$ (c = 0.20, CHCl₃).

4-{2-[2-(3,4-Dimethoxy-phenyl)-ethylamino]-1-

hydroxy-ethyl}-phenol (Denopamine).^[4] This compound was prepared in a similar

manner to the general procedure for the preparation of 1,2-amino alcohols. White solid, m.p. 160-161^[5]°C. ¹H NMR (300 MHz, CDCl₃): d 7.16-7.09 (m, 2H), 6.83-6.54 (m, 5H), 4.69-4.60 (m, 1H), 3.77 (s, 3H), 3.75 (s, 3H), 2.87-2.65 (m, 6H); ¹³C NMR (75 MHz, CDCl₃): d 158.1, 150.4, 148.9, 134.9, 133.5, 128.3, 121.9, 116.2, 113.5, 113.1, 72.9, 57.6, 56.5, 56.4, 51.6, 36.0.

N-[2-(3,4-Dimethoxy-phenyl)-ethyl]-N-[2-

hydroxy-2-(4-hydroxy-phenyl)-ethyl]-acetamide. This compound was prepared in a similar manner to the general procedure for the derivatization of 1,2-amino alcohols. White solid. Mixture of rotamers. ¹H NMR (300 MHz, CDCl₃): d 7.15-7.00 (m, 2H), 6,79-6.54 (m, 5H), 4.88-4.80 (m, 0.7H), 4.78-4.70 (m, 0.3H), 3.82-3.72 (m, 6H), 3.58-3.30 (m, 4H), 2.75-2.62 (m, 2H), 1.85 (s, 0.9H), 1.82 (s, 2.1H); ¹³C NMR (75 MHz, CDCl₃): d 173.5, 172.2, 156.6, 156.3, 148.9, 148.6, 147.7, 147.3, 133.0, 132.5, 131.5, 130.2, 127.0, 126.9, 120.7, 120.6, 115.5, 115.3, 111.9, 111.8, 111.4, 111.2, 73.0, 71.9, 56.4, 55.8, 55.73, 55.69, 54.7, 52.2, 48.0, 34.1, 33.0, 20.9, 19.0. APCI-HRMS Calcd. for $C_{20}H_{26}NO_5$ [M+H⁺]: 360.1811, found 360.1817.

The synthesis of (-)-Arbutamine:

4-(4-Methoxy-phenyl)-4-oxo-butyric acid.^[6] AlCl₃ (26 g, 0.19 mol) was added in small portions into the 1-nitropropane solution of anisole (10 g, 0.092 mol) and succinic anhydride (9.7 g, 0.097 mol) at 0 °C. The solution was stirred at r.t. for 12 h then hydrolyzed with ice water and 1 N HCl. The white solid was filtered and directly used for the next step. White solid, m.p. 144.5-146.5^[7] °C, >95% yield. ¹H NMR (400 MHz, CD₃OD): d 7.99 (d, 2H, J = 4.8 Hz), 7.01 (d, 2H, J = 4.8 Hz), 3.87 (s, 3H), 3.26 (t, 3H, J = 6.5 Hz), 2.68 (t, 2H, J = 6.2 Hz).

COOH

4-(4-Methoxy-phenyl)-butyric acid.^[8] To a 500 mL round bottom flask was added 40 g amalgated zinc followed by 30 mL water, 70 mL conc. HCl, 80 mL toluene and 4-(4-Methoxy-phenyl)-4-oxo-butyric acid (20 g, 0.96 mol). A condenser and a gas absorption tube was attached. The mixture was heated to reflux for 24 h with the addition of 20 mL conc. HCl every 6 h. The solution was cooled to r.t. and the solid was filtered. The aqueous layer was separated and extracted with ether (3 × 50 mL). The organic phase was combined and washed with water followed by brine. The solution was dried over NaSO₄ and the solvent was evaporated to yield a light yellow solid. Light yellow solid, m.p. 47-48^[9] °C, 83% yield. ¹H NMR (300 MHz, CD₃OD): d 7.10 (d, 2H, *J* = 8.6 Hz), 6.84 (d, 2H, *J* = 8.6 Hz), 3.79 (s, 3H), 2.62 (t, 2H, *J* = 7.7 Hz), 2.36 (t, 2H, *J* = 7.4 Hz), 1.98-1.89 (m, 2H).

4-(4-Methoxy-phenyl)-butan-1-ol.^[10] 4-(4-Methoxy-

phenyl)-butyric acid (7.5 g, 0.039 mol) was dissolved in dry ether and borane-dimethyl sulphide complex (4.22 mL, 0.044 mol) was added under N₂. The mixture was gently refluxed for 1 h. After cooled to r.t. 20 mL MeOH was added dropwise to quench the reaction. The solvent was evaporated to yield a thick oil. Colorless oil, 94% yield. ¹H NMR (300 MHz, CDCl₃): d 7.11 (d, 2H, J = 5.8 Hz), 6.84 (d, 2H, J = 5.8 Hz), 3.80 (s, 3H), 3.66 (t, 2H, J = 6.2 Hz), 2.60 (t, 2H, J = 7.4 Hz), 1.70-1.58 (m, 4H), 1.41 (br 1H).

1-(4-Chloro-butyl)-4-methoxy-benzene.^[11] The carbon tetrachloride solution of triphenylphosphine (7.4 g, 28.2 mmol), 4-(4-Methoxy-phenyl)-butan-1-ol (3.9 g, 21.7 mmol) was heated to reflux and monitored by TLC. After completion (4-6 h) the solution was cooled to r.t. and hexanes was added to precipitate the phosphine oxide. The solid was filtered and the organic phase was washed with water then dried over NaSO₄. The solvent was removed under vacuum to yield the crude product. Little remaining phosphine oxide could be removed by passing a short silica gel plug (hexanes:ethylacetate = 4:1). Clear oil, 68% yield. ¹H NMR (400 MHz, CDCl₃): d

7.11 (d, 2H, J = 6.7 Hz), 6.85 (d, 2H, J = 6.7 Hz), 3.80 (s, 3H), 3.55 (t, 2H, J = 6.5 Hz), 2.60 (d, 2H, J = 7.0 Hz), 1.84-1.73 (m, 4H). ¹³C NMR (100 MHz, CDCl₃): d 157.8, 133.9, 129.2, 113.7, 55.2, 44.9, 34.1, 32.0, 28.8.

2-[4-(4-Methoxy-phenyl)-butyl]-isoindole-1,3-

dione.^[12] The DMF solution of 1-(4-Chloro-butyl)-4-methoxy-benzene (4.4 g, 22.2 mmol), potassium phathalimide (8.2 g, 44.4 mmol) and KI (cat) was heated to reflux for 12 h. The solvent was evaporated under vacuum and ethyl acetate was added to dissolve the residue. The organic phase was washed with 0.1 N K₂CO₃ and dried over NaSO₄. the solvent was then removed to yield the product. Light yellow solid, >95% yield, m.p. 102- $103^{[13]}$ °C. ¹H NMR (300 MHz, CDCl₃): d 7.90-7.66 (m, 4H), 7.07 (d, 2H, *J* = 9.0 Hz), 6.80 (d, 2H, *J* = 9.0 Hz), 3.77 (s, 3H), 3.70 (t, 2H, *J* = 7.1 Hz), 2.59 (t, 2H, *J* = 7.1 Hz), 1.77-1.57 (m, 4H).

4-(4-Methoxy-phenyl)-butylamine.^[14] Hydrazine

monohydrate (7.9 mL, 0.16 mol) was added to the ethanol solution of 2-[4-(4-Methoxyphenyl)-butyl]-isoindole-1,3-dione (5 g, 16 mmol) at r.t. The solution was heated to reflux for 12 h. After cooled to r.t. the solid was filtered and the solution was acidified to pH = 1 by conc. HCl. Solid precipitate was filtered and 2N NaOH was added to the solution until pH = 12. The mixture was extracted with CH₂Cl₂ (3 × 40 mL) and the combined the organic phase was washed with brine and then dried over NaSO₄. The solvent was then evaporated to yield the product as light yellow oil. Light yellow oil, >95% yield. ¹H NMR (300 MHz, CDCl₃): d 7.09 (d, 2H, *J* = 4.5 Hz), 6.82 (d, 2H, *J* = 4.5 Hz), 3.78 (s, 3H), 2.70 (t, 2H, *J* = 6.8 Hz), 2.57 (t, 2H, *J* = 7.7 Hz), 1.67-1.55 (m, 2H), 1.55-1.42 (m, 2H), 1.35 (br, 1H); ¹³C NMR (75 MHz, CDCl₃): d 157.7, 134.6, 129.2, 113.7, 55.2, 42.1, 34.8, 33.4, 28.9.

2-Bromo-1-(3,4-dimethoxy-phenyl)-ethanone.^[15] To a acetic acid solution (30 mL) of 1-(3,4-Dimethoxy-phenyl)-ethanone (5 g, 27.8 mmol) was added Br₂ (1.5 mL, 29.2 mmol, 1.05 equiv.) dropwise. The reaction mixture was gently heated to initiate when the first few drops of Br₂ was added. The mixture was stirred at r.t. for 6 h and N₂ gas was blown into the solution to remove the HBr gas. The mixture was poured into 50 mL ice water and the aqueous phase was extracted with CH₂Cl₂ (3×40 mL). The organic phase was washed with brine and dried over Na₂SO₄. Evaporation of the solvent under vacuum gave the crude product which was purified by flash column chromatography. White solid, m.p. 80-81^[16] °C, 74% yield. ¹H NMR (300 MHz, CDCl₃): d 7.63-7.58 (m, 1H), 7.54-7.49 (m, 1H), 6.92-6.85 (m, 1H), 4.39 (s, 2H), 3.94 (s, 3H), 3.92 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): d 190.0, 153.9, 194.2, 126.9, 123.8, 110.7, 110.0, 56.1, 56.0, 30.4.

1-(3,4-Dimethoxy-phenyl)-2-[4-(4-methoxy-

phenyl)-butylamino]-ethanone hydrochloride (2). This compound was prepared in a similar manner to the general procedure for the preparation of a-secondary amino ketones. After the reaction was completed, the solvent was not evaporated and was added HCl directly. White crystalline solid, 65% yield. ¹H NMR (400 MHz, CDCl₃): d 7.71-7.64 (m, 1H), 7.58-7.51 (m, 1H), 7.15-7.05 (m, 3H), 6.85-6.79 (m, 2H), 4.69 (s, 2H), 3.91 (s, 3H), 3.88 (s, 3H), 3.74 (s, 3H), 3.12 (t, 2H, J = 8.0 Hz), 2.63 (t, 2H, J = 7.0 Hz), 1.83-1.67 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): d 191.1, 159.5, 156.4, 150.8, 134.8, 130.4, 127.9, 124.7, 114.9, 112.0, 111.4, 56.7, 56.6, 55.7, 53.4, 35.2, 29.6, 26.6. APCI-HRMS Calcd. for C₂₁H₂₈NO₄ [M+H⁺]: 358.2018, found 358.2025.

1-(3,4-Dimethoxy-phenyl)-2-[4-(4-methoxy-

phenyl)-butylamino]-ethanol. This compound was prepared in a similar manner to the general procedure for the preparation of 1,2-amino alcohols. White solid. ¹H NMR (300 MHz, CDCl₃): d 7.06-6.98 (m, 2H), 6.92-6.88 (m, 1H), 6.86-6.73 (m, 4H), 4.70-4.64 (m, 1H), 3.82 (s, 3H), 3.80 (s, 3H), 3.71 (m, 3H), 3.68-3.40 (br, 2H), 2.70-2.64 (m, 2H), 2.59-2.43 (m, 4H), 1.57-1.40 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): d 157.3, 148.6, 147.9, 135.7, 134.0, 128.9, 117.6, 113.3, 110.6, 108.6, 71.2, 57.0, 55.52, 55.45, 54.8, 49.1, 34.4, 29.0, 28.9. APCI-HRMS Calcd. for $C_{21}H_{30}NO_4$ [M+H⁺]: 360.2175, found 360.2173.

N-[2-(3,4-Dimethoxy-phenyl)-2-hydroxy-

ethyl]-*N*-[**4**-(**4**-**methoxy-phenyl**)-**butyl]-acetamide**. This compound was prepared in a similar manner to the general procedure for the derivatization of 1,2-amino alcohols. White solid. Mixture of rotamers. ¹H NMR (300 MHz, CDCl₃): d 7.04-6.96 (m, 2H), 6.89 (s, 0.7H), 6.85 (s, 0.3H), 6.79-6.70 (m, 4H), 4.82-4.76 (m, 0.7H), 4.75-4.68 (m, 0.4H), 3.80 (s, 3H), 3.78 (s, 3H), 3.69 (s, 3H), 3.60-3.04 (m, 4H), 2.52-2.44 (m, 3H), 2.01 (s, 2.3H), 1.92 (s, 0.8H), 1.51-1.63 (m, 4H); ¹³C NMR (75 MHz, CDCl₃): d 172.6, 171.0, 157.5, 157.3, 148.7, 148.6, 148.2, 147.9, 135.0, 134.5, 133.9, 133.2, 128.9, 128.8, 117.8, 117.6, 113.5, 113.3, 110.7, 110.6, 108.6, 73.2, 71.4, 55.8, 55.52, 55.50, 55.3, 54.8, 50.4, 45.6, 34.3, 34.1, 28.6, 28.2, 27.6, 26.5, 21.4, 21.3, some minor rotamer peaks are obscured by the major rotamer. APCI-HRMS Calcd. for C₂₃H₃₂NO₅ [M+H⁺]: 402.2280, found 402.2272. The two enantiomers could be separated by chiral HPLC (Chiralpak AD column, hexanes:iso-propanol = 90:10); [α]²⁴_D = 15.876[°] (c = 0.25, CHCl₃).

4-{1-Hydroxy-2-[4-(4-hydroxy-phenyl)-

butylamino]-ethyl}-benzene-1,2-diol (Abutamine).^[4] ¹H NMR (300 MHz, CDCl₃): d

6.95-6.87 (m, 2H), 6.64-6.56 (m, 2H), 6.53-6.51 (m, 1H), 6.49-6.42 (m, 2H), 4.69-4.60 (m, 1H), 2.99-2.82 (m, 4H), 2.53-2.42 (m, 2H), 1.62-1.45 (m, 4H).

 Table 1. Catalyst Screening of the Hydrogenation of Amino ketone 1 and 2.

entry ^[a]	catalyst	ee (%) ^[b]		
		ketone 1	ketone 2	
1	[Rh(S-Binapine)(cod)]BF ₄ (5)	20	74	
2	[Rh(S,S-Me-DuPhos)(cod)]BF ₄ (9)	86	90	
3	[Rh(S,S-Et-DuPhos)(cod)]BF ₄ (10)	0	93	
4	$[Rh(R,R,S,S-DuanPhos)(nbd)]SbF_6$ (11)	20	88	
5	[Rh(<i>S,S,R,R</i> -TangPhos)(cod)]BF ₄	14	68	
6	[Rh(S-f-Binaphane)(cod)]BF ₄	0	16	

[a] The hydrogenation was carried out under optimized conditions for each entry with 1 mol% of Rh-precatalyst and 0.5 equiv. K_2CO_3 at 50 °C following the general procedure for 12 h. >95% yield was achieved with all the catalsyts screened. Estimated yields based on ¹H NMR of crude product. [b] The enantiomeric excess of the products was determined by chiral HPLC after conversion to the correspondig *N*-acyl derivatives (Cf. Experimental Section).

Asymmetric Hydrogenation of **a**-Secondary Amino Ketones.

HHCI

2-Methylamino-1-phenyl-ethanone hydrochloride (3a).^[7] ¹H

NMR (360 MHz, CD₃OD): d 8.05-8.00 (m, 2H), 7.75-7.68 (m, 1H), 7.62-7.54 (m, 1H), 4.75 (s, 1H), 2.83 (s, 1H); ¹³C NMR (90 MHz, CD₃OD): d 192.9, 135.94, 134.92, 130.2, 129.3, 55.3, 33.6.

1-(2-Methoxy-phenyl)-2-methylamino-ethanone hydrochloride (3b). ¹H NMR (300 MHz, CD₃OD): d 7.98 (dd, 1H, J = 1.8, 1.9 Hz), 7.69-7.62 (m, 1H), 7.26-7.20 (m, 1H), 7.14-7.07 (m, 1H), 4.56 (s, 2H), 4.02 (s, 3H), 2.79 (s, 3H); ¹³C NMR (75 MHz, CD₃OD): d 192.5, 161.9, 137.7, 131.7, 124.2, 122.1, 113.5, 59.6, 56.5, 33.3. APCI-HRMS Calcd. for C₁₀H₁₄NO₂ [M+H⁺]: 180.1025, found 180.1022.

1-(3-Methoxy-phenyl)-2-methylamino-ethanone hydrochloride (**3c**). ¹H NMR (300 MHz, CD₃OD): d 7.63-7.57 (m, 1H), 7.59-7.45 (m, 2H), 7.30-7.24 (m, 2H), 4.73 (s, 1H), 3.86 (s, 1H), 2.81 (s, 1H); ¹³C NMR (75 MHz, CD₃OD): d 192.8, 161.7, 136.2, 131.4, 122.0, 121.7, 113.7, 56.1, 55.4, 33.6. APCI-HRMS Calcd. for C₁₀H₁₄NO₂ [M+H⁺]: 180.1025, found 180.1029.

1-(4-Methoxy-phenyl)-2-methylamino-ethanone hydrochloride (**3d**).^{[9] 1}H NMR (300 MHz, CD₃OD): d 8.00 (d, 2H, J = 9.0 Hz), 7.07 (d, 2H, J = 9.0 Hz), 4.69 (s, 2H), 3.89 (s, 3H), 2.82 (s, 3H); ¹³C NMR (75 MHz, CD₃OD): d 191.1, 166.4, 131.8, 127.7, 115.4, 56.3, 55.0, 33.6.

¹H NMR (400 MHz, CD₃OD): d 7.92-7.86 (m, 1H), 7.63-7.54 (m, 2H), 7.54-7.46 (m, 1H), 4.72 (s, 2H), 2.83 (s, 3H); ¹³C NMR (75 MHz, CD₃OD): d 193.9, 135.4, 135.0, 133.5, 132.5, 131.8, 128.6, 57.7, 33.5. APCI-HRMS Calcd. for C₉H₁₀NONaCl [M+Na⁺]: 206.0349, found 206.0345.

1-(3-Chloro-phenyl)-2-methylamino-ethanone hydrochloride (**3f**). ¹H NMR (400 MHz, CD₃OD): d 8.05-7.93 (m, 2H), 7.76-7.70 (m, 1H), 7.62-7.54 (m, 1H), 4.75 (s, 2H), 2.83 (s, 3H); ¹³C NMR (100 MHz, CD₃OD): d 192.1, 136.6, 136.4, 135.7, 131.9, 129.0, 127.8, 55.4, 33.6. APCI-HRMS Calcd. for C₉H₁₀NONaCl [M+Na⁺]: 206.0349, found 206.0341.

2-Methylamino-1-naphthalen-2-yl-ethanone hydrochloride (**3h**). ¹H NMR (300 MHz, CD₃OD): d 8.65 (s, 1H), 8.12-7.92 (m, 4H), 7.73-7.60 (m, 2H), 4.86 (s, 2H), 2.87 (s, 3H); ¹³C NMR (75 MHz, CD₃OD): d 192.8, 137.7, 133.9, 132.2, 131.9, 130.9, 130.6, 130.1, 129.0, 128.4, 123.9, 55.4, 33.7. APCI-HRMS Calcd. for $C_{13}H_{14}NO [M+H^+]$: 200.1075, found 200.1076.

2-Methylamino-1-phenyl-ethanol (4a).^[18] ¹H NMR (300 MHz, CDCl₃): d 7.38-7.23 (m, 5H), 4.76 (dd, 1H, J = 4.5, 8.2 Hz), 3.18 (br, 2H), 2.81-2.65 (m, 2H), 2.41 (s, 1H); ¹³C NMR (75 MHz, CDCl₃): d 142.9, 128.3, 127.4, 125.8, 71.5, 59.2, 35.9.

1-(2-Methoxy-phenyl)-2-methylamino-ethanol (**4b**).^[19] ¹H NMR (300 MHz, CDCl₃): d 7.45 (dd, 1H, J = 1.5, 7.5Hz), 7.23-7.13 (m, 1H), 6.96-6.79 (m, 1H), 6.83-6.76 (m, 1H), 5.10 (dd, 1H, J = 3.0, 8.7Hz), 3.74 (s, 3H), 3.66 (br, 2H), 2.81-2.72 (m, 1H), 2.67-2.57 (m, 1H), 2.34 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): d 155.8, 131.2, 127.8, 126.4, 120.4, 109.8, 66.4, 57.3, 54.9, 35.5.

OH H 1-(3-Met

OH

OH

1-(3-Methoxy-phenyl)-2-methylamino-ethanol (**4**c).^[19] ¹H NMR (360 MHz, CDCl₃): d 7.23-7.17 (m, 1H), 6.93-6.84 (m, 2H), 6.79-6.72 (m, 1H), 4.75-4.67 (m, 1H), 3.80 (br, 2H), 3.75 (s, 1H), 2.67-2.61 (m, 2H), 2.31 (s, 1H); ¹³C NMR (90 MHz, CDCl₃): d 159.5, 145.0, 129.2, 118.0, 112.7, 111.1, 71.3, 59.0, 55.00, 54.95, 35.6.

1-(4-Methoxy-phenyl)-2-methylamino-ethanol (4d).^[18] ¹H NMR (300 MHz, CDCl₃): d 7.27 (d, 2H, J = 8.0 Hz), 6.87 (d, 2H, J = 8.0 Hz), 4.72-4.64

(m, 1H), 3.78 (s, 3H), 2.93 (br, 2H), 2.71-2.66 (m, 2H), 2.40 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): d 159.0, 135.0, 127.0, 113.7, 71.2, 59.2, 55.2, 35.9.

1-(2-Chloro-phenyl)-2-methylamino-ethanol (4e). ¹H NMR (400 MHz, CDCl₃): d 7.64-7.58 (m, 1H), 7.30-7.20 (m, 2H), 7.19-7.11 (m, 1H), 5.19 (dd, 1H, *J* = 2.7, 9.2 Hz), 4.03 (br, 2H), 2.81-2.74 (m, 1H), 2.58-2.49 (m, 1H), 2.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): d 140.8, 131.4, 129.0, 128.1, 127.3, 126.8, 67.9, 57.1, 35.5.

1-(3-Chloro-phenyl)-2-methylamino-ethanol (4f).^[20] ¹H NMR (300 MHz, CDCl₃): d 7.33 (s, 1H), 7.28-7.14 (m, 3H), 4.68 (dd, 1H, *J* = 4.3, 8.4 Hz), 3.41 (br, 2H), 2.72-2.55 (m, 2H), 2.34 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): d 145.3, 134.2, 129.6, 127.5, 125.9, 123.9, 70.9, 59.0, 35.8.

Cl **1-(4-Chloro-phenyl)-2-methylamino-ethanol (4g)**.^[21] ¹H NMR (300 MHz, CDCl₃): d 7.33-7.22 (m, 4H), 4.69 (dd, 1H, J = 4.0, 8.6 Hz), 2.95 (br, 2H), 2.79-2.60 (m, 2H), 2.41 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): d 141.5, 133.1, 128.4, 127.1, 70.9, 59.1, 35.9.

2-Ethylamino-1-phenyl-ethanol (4i).^{[22] 1}H NMR (300 MHz, CDCl₃): d 7.36-7.18 (m, 5H), 4.70 (dd, 1H, *J* = 9.0, 3.8 Hz), 3.12 (br, 2H), 2.81-2.54 (m, 4H), 1.03 (t, 3H, *J* = 7.1 Hz); ¹³C NMR (75 MHz, CDCl₃): d 143.1, 128.3, 127.3, 125.7, 71.7, 57.0, 43.6, 15.1.

Derivatization of 1,2-Amino Alcohols.

N-(2-Hydroxy-2-phenyl-ethyl)-*N*-methyl-acetamide.^[23]

Mixture of rotamers. ¹H NMR (300 MHz, CDCl₃): d 7.42-7.25 (m, 5H), 4.98-4.93 (m, 0.75H), 4.93-4.87 (m, 0.25H), 4.52-4.48 (m, 1H), 3.68-3.49 (m, 1.5H), 3.38-3.25 (m, 0.5H), 2.96 (s, 0.75H), 2.87 (s, 2.25H), 2.09 (s, 2.25H), 2.00 (s, 0.75H); ¹³C NMR (75 MHz, CDCl₃): d 173.4, 171.6, 142.3, 141.7, 128.7, 128.4, 128.1, 127.5, 125.8, 125.7, 73.6, 71.9, 58.5, 57.4, 38.4, 34.2, 21.7, 21.4; $[\alpha]^{24}{}_{D} = 66.7^{\circ}$ (c = 0.26, CHCl₃, 95% *ee*). The two enantiomers could be separated by chiral HPLC (Chiralpak AS column, hexanes:iso-propanol = 90:10).

N-[2-Hydroxy-2-(2-methoxy-phenyl)-ethyl]-*N*-methyl-acetamide.

Mixture of rotamers. ¹H NMR (300 MHz, CDCl₃): d 7.48-7.41 (m, 1H), 7.22-7.13 (m, 1H), 6.95-6.86 (m, 1H), 6.81-6.74 (m, 1H), 5.18-5.08 (m, 1H), 4.47 (br, 1H), 3.77 (s, 1.7H), 3.75 (s, 1.3H), 3.74-3.63 (m, 0.7H), 3.48-3.33 (m, 1.3H), 2.91 (s, 1.4H), 2.79 (s, 1.6H), 2.02-1.95 (m, 3H); ¹³C NMR (75 MHz, CDCl₃): d 173.2, 171.4, 155.5, 155.4, 129.9, 128.2, 128.0, 126.5, 126.3, 120.5, 120.4, 109.7, 109.6, 68.9, 67.0, 56.9, 55.04, 54.96, 54.90, 37.8, 34.2, 21.3, 21.0; APCI-HRMS Calcd. for $C_{12}H_{18}NO_3$ [M+H⁺]: 224.1287, found 224.1295; $[\alpha]^{24}_{D} = 151.1^{\circ}$ (c = 0.13, CHCl₃, 84% *ee*). The two enantiomers could be separated by chiral HPLC (Chiralpak AS column, hexanes:iso-propanol:CH₃CN = 90:10:1);.

N-[2-Hydroxy-2-(3-methoxy-phenyl)-ethyl]-*N*-methyl-

acetamide.^[24] Mixture of rotamers. ¹H NMR (400 MHz, CDCl₃): d 7.18-7.10 (m, 1H), 6.88-6.77 (m, 2H), 6.73-6.67 (m, 1H), 4.82-4.76 (m, 0.6H), 4.73-4.68 (m, 0.4H), 3.68 (s, 3H), 3.48-3.39 (m, 1.6H), 3.23-3.15 (m, 0.4H), 2.81 (s, 1.2H), 2.78 (s, 1.8H), 1.93 (s, 1.8H), 1.85 (s, 1.2H); ¹³C NMR (75 MHz, CDCl₃): d 172.5, 171.5, 159.35, 159.28, 143.9, 143.5, 129.1, 129.0, 117.8, 112.74, 112.70, 111.0, 110.8, 72.4, 70.9, 58.3, 56.6, 54.81, 54.79, 38.1, 33.9, 21.3, 21.0; $[\alpha]^{24}{}_{D} = 53.6^{\circ}$ (c = 0.11, CHCl₃, 92% *ee*). The two enantiomers could be separated by chiral HPLC (Chiralpak AS column, hexanes:isopropanol = 80:20).

N-[2-Hydroxy-2-(4-methoxy-phenyl)-ethyl]-N-methyl-

acetamide. Mixture of rotamers. ¹H NMR (360 MHz, CDCl₃): d 7.22-7.15 (m, 2H), 6.82-6.75 (m, 2H), 4.82-4.75 (m, 0.6H), 4.75-4.67 (m, 0.4H), 4.55 (br, 1H), 3.70 (s, 3H), 3.54-3.35 (m, 1.6H), 3.23-3.14 (m, 0.4H), 3.82 (s, 1.2H), 2.79 (s, 1.8H), 1.95 (s, 1.8H), 1.86 (s, 1.2H); ¹³C NMR (90 MHz, CDCl₃): d 172.5, 117.4, 158.9, 158.7, 134.3, 134.0, 126.8, 126.7, 113.4, 72.3, 70.8, 58.4, 56.8, 55.0, 54.9, 38.1, 34.0, 21.4, 21.1; $[\alpha]^{24}{}_{D} = 89.2^{\circ}$ (c = 0.11, CHCl₃, 91% *ee*). The two enantiomers could be separated by chiral HPLC (Chiralpak AS column, hexanes:iso-propanol = 80:20).

N-[2-(2-Chloro-phenyl)-2-hydroxy-ethyl]-*N*-methyl-acetamide.

Mixture of rotamers. ¹H NMR (400 MHz, CDCl₃): d 7.68-7.60 (m, 1H), 7.30-7.22 (m, 2H), 7.21-7.13 (m, 1H), 5.30-5.21 (m, 1H), 3.81-3.71 (m, 0.6H), 3.49-3.34 (m, 1.4H), 2.97 (s, 1.2H), 2.85 (s, 1.8H), 2.07 (s, 1.4H), 2.03 (s, 1.6H); ¹³C NMR (100 MHz, CDCl₃): d 173.7, 171.8, 139.3, 139.2, 131.04, 131.02, 128.88, 128.85, 128.5, 128.4, 127.5, 127.3,

127.0, 126.9, 70.3, 67.9, 56.7, 55.0, 37.8, 33.9, 21.33, 21.27; $[\alpha]^{24}{}_{\rm D} = 47.6^{\circ}$ (c = 0.33, CHCl₃, 41% *ee*). The two enantiomers could be separated by chiral HPLC (Chiralpak AS column, hexanes:iso-propanol = 95:5).

N-[2-(3-Chloro-phenyl)-2-hydroxy-ethyl]-*N*-methyl-acetamide.

Mixture of rotamers. ¹H NMR (400 MHz, CDCl₃): d 7.34 (s, 1H), 7.26-7.14 (m, 3H), 4.89-4.81 (m, 0.7H), 4.81-4.76 (m, 0.3H), 3.52-3.45 (m, 1.7H), 3.27-3.22 (m, 0.3H), 2.89 (s, 1H), 2.86 (s, 2H), 2.01 (s, 2H), 1.97 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): d 173.0, 171.7, 144.5, 144.1, 134.3, 134.1, 129.7, 129.5, 127.7, 127.4, 125.8, 123.90, 123.85, 72.45, 72.42, 70.5, 58.5, 56.9, 38.4, 34.0, 21.5, 21.3; $[\alpha]^{24}_{D} = 64.2^{\circ}$ (c = 0.15, CHCl₃, 84% *ee*). The two enantiomers could be separated by chiral HPLC (Chiralpak AS column, hexanes:iso-propanol = 95:5).

Cl N-[2-(4-Chloro-phenyl)-2-hydroxy-ethyl]-N-methyl-acetamide. Mixture of rotamers. ¹H NMR (360 MHz, CDCl₃): d 7.32-7.24 (m, 4H), 4.95-4.88 (m, 0.8H), 4.89-4.81 (m, 0.2H), 3.62-3.47 (m, 1.8H), 3.31-3.21 (m, 0.2H), 2.93 (s, 0.7H), 2.84 (s, 2.3H), 2.07 (s, 2.2H), 2.01 (s, 0.8); ¹³C NMR (90 MHz, CDCl₃): d 173.4, 171.7, 140.8, 140.3, 133.6, 133.1, 128.7, 128.5, 127.1, 72.8, 70.8, 59.5, 57.3, 38.5, 34.2, 21.7, 21.4; $[\alpha]^{24}_{D} = 86.1^{\circ}$ (c = 0.20, CHCl₃, 90% *ee*). The two enantiomers could be separated by chiral HPLC (Chiralpak AS column, hexanes:iso-propanol = 80:20).

N-(2-Hydroxy-2-naphthalen-2-yl-ethyl)-*N*-methyl-acetamide.

Mixture of rotamers. ¹H NMR (300 MHz, CDCl₃): d 7.84-7.75 (m, 4H), 7.48-7.38 (m, 4H), 5.12-5.04 (m, 0.7H), 5.02-4.94 (m, 0.3H), 3.66-3.54 (m, 1.7H), 3.38-3.37 (m, 0.3H), 2.94 (s, 1.0H), 2.78 (s, 2.0H), 2.03 (s, 2.0H), 2.00 (s, 1.0H); ¹³C NMR (75 MHz, CDCl₃):

d 173.1, 171.7, 139.7, 139.3, 133.14, 133.08, 132.9, 132.8, 128.2, 128.0, 127.8, 127.6, 127.5, 126.1, 126.0, 125.9, 125.7, 124.6, 124.4, 123.8, 123.6, 73.3, 71.5, 58.5, 57.0, 38.3, 34.2, 21.6, 21.4; $[\alpha]^{24}{}_{\rm D} = 110.9^{\circ}$ (c = 0.12, CHCl₃, 89% *ee*). The two enantiomers could be separated by chiral HPLC (Chiralpak AS column, hexanes:iso-propanol = 80:20);

N-Ethyl-*N*-(2-hydroxy-2-phenyl-ethyl)-acetamide. Mixture of rotamers. ¹H NMR (300 MHz, CDCl₃): d 7.35-7.15 (m, 5H), 4.86 (dd, 0.8H, J = 8.1, 2.5 Hz), 4.82-4.75 (m, 0.2H), 3.69-3.58 (m, 0.8H) 3.51-3.42 (m, 0.2H), 3.37-2.98 (m, 3H), 2.05 (s, 2.4H), 1.93 (s, 0.6H), 1.03 (t, 3H, J = 7.2 Hz); ¹³C NMR (75 MHz, CDCl₃): d 173.4, 142.5, 128.4, 127.5, 125.8, 74.5, 55.3, 45.4, 21.2, 13.6; APCI-HRMS Calcd. for C₁₂H₁₈NO₂ [M+H⁺]: 208.1338, found 208.1340. [α]²⁴_D = -72.273° (c = 0.32, CHCl₃, 84% *ee*). The two enantiomers could be separated by chiral HPLC (Chiralpak AS column, hexanes:iso-propanol = 90:10).

Asymmetric Hydrogenation of **a**-Primary Amino Ketones.

2-Amino-1-(3-methoxyphenyl)ethanone Hydrochloride (12c).

¹H NMR (CD₃OD, 360 MHz) δ 7.61 (dddd, J = 1.0, 1.6, 2.6, 7.7 Hz, 1H), 7.54 (dd, J = 1.6, 2.6 Hz, 1H), 7.48 (dd, J = 0.3, 8.2 Hz, 1H), 7.27 (dddd, J = 1.0, 2.6, 3.6, 8.3 Hz, 1H), 4.60 (s, 2H), 3.86 (s, 3H); ¹³C NMR (CD₃OD, 90 MHz) δ 193.1, 161.6, 136.3, 131.3, 121.8, 121.7, 113.6, 56.1, 46.3.

NH₂HCl

2-Amino-1-(2,5-dimethoxyphenyl)ethanone Hydrochloride (12d). This compound was prepared following the general procedure as an off-white solid (80%). ¹H NMR (CD₃OD, 360 MHz) δ 7.48 (d, J = 3.2Hz, 1H), 7.24 (dd, J = 3.2, 9.1 Hz, 1H), 7.17 (d, J = 9.1 Hz, 1H), 4.42 (s, 2H), 3.96 (s, 3H), 3.79 (s, 3H); ¹³C NMR (CD₃OD, 90 MHz) δ 192.6, 156.3, 155.2, 124.4, 124.0, 115.0, 114.7, 56.8, 56.3, 50.4.

2-Amino-1-*p*-tolylethanone Hydrochloride (12e). This compound was prepared following the general procedure as an off-white solid (74%). ¹H NMR (CD₃OD, 300 MHz) δ 7.94 (d, *J* = 8.3 Hz, 2H), 7.40 (d, *J* = 8.3 Hz, 2H), 4.57 (s, 2H), 2.45 (s, 3H); ¹³C NMR (CD₃OD, 75 MHz) δ 193.1, 147.6, 133.0, 131.2, 129.8, 46.5, 22.2.

O NH₂HCI

2-Amino-1-naphthalen-2-ylethanone Hydrochloride (12f). This compound was prepared following the general procedure as an off-white solid (70%). ¹H NMR (CD₃OD, 300 MHz) δ 8.66 (s, 1H), 8.10-7.96 (m, 4H), 7.70-7.62 (m, 2H), 4.75 (s, 2H); ¹³C NMR (CD₃OD, 75 MHz) δ 193.1, 137.7, 133.9, 132.2, 131.8, 130.9, 130.5, 130.0, 129.0, 128.4, 124.0, 46.2.

NC 4-(2-Aminoacetyl)benzonitrile Hydrochloride (12g). This compound was prepared following the general procedure as an off-white solid (75%). ¹H NMR (CD₃OD, 300 MHz) δ 8.19 (dd, *J* = 1.6, 8.3 Hz, 2H), 7.95 (d, *J* = 8.5 Hz, 2H), 4.68 (s, 2H); ¹³C NMR (CD₃OD, 75 MHz) δ 192.7, 138.1, 134.0, 129.9, 118.7, 118.6, 46.6.

Scheme 1. Preparation of Racemic Samples

OH NH₂ (±)-2-Amino-1-phenylethanol (13a). ¹H NMR (CD₃OD, 360 MHz) δ 7.35-7.25 (m, 5H), 4.62 (dd, J = 3.9, 7.7 Hz, 1H), 2.93 (dd, J = 3.7, 12.8 Hz, 1H), 2.80 (dd, J = 7.8, 12.8 Hz, 1H), 2.47 (s br, 3H); ¹³C NMR (CD₃OD, 90 MHz) δ 143.3, 129.0, 128.1, 126.5, 74.9, 49.9.

(±)-2-Amino-1-(4-methoxyphenyl)ethanol (13b). This compound was prepared from 12b by the same method as described for preparation of 13a in a similar yield. ¹H NMR (CD₃OD, 300 MHz) δ 7.29 (d, *J* = 8.7 Hz, 2H), 6.90 (d, *J* = 8.7 Hz, 2H), 4.59 (dd, *J* = 3.9, 7.8 Hz, 1H), 3.81 (s, 3H), 2.99 (dd, *J* = 3.8, 12.7 Hz, 1H), 2.80 (dd, *J* = 7.9, 12.7 Hz, 1H), 2.06 (s br, 3H); ¹³C NMR (CD₃OD, 75 MHz) δ 159.0, 134.7, 127.1, 113.8, 74.0, 55.2, 49.3.

(±)-2-Amino-1-(3-methoxyphenyl)ethanol (13c). This compound was prepared from 12c by the same method as described for preparation of 13a in a similar yield. ¹H NMR (CD₃OD, 300 MHz) δ 7.12 (s, 1H), 6.77-6.69 (m, 3H), 4.41(m, 1H), 3.66 (s, 3H), 3.66-1.50 (m, 5H); ¹³C NMR (CD₃OD, 75 MHz) δ 159.3, 144.6 (m), 128.9, 117.9, 112.3, 111.1, 73.5 (m), 54.7, 48.5 (m).

(±)-2-Amino-1-(2,5-dimethoxyphenyl)ethanol (13d). This compound was prepared from 12d by the same method as described for preparation of 13a in a similar yield. ¹H NMR (CD₃OD, 300 MHz) δ 6.98 (s, 1H), 6.74-6.67 (m, 2H), 4.83(m, 1H), 3.71 (s, 6H), 3.30-1.50 (m, 5H); ¹³C NMR (CD₃OD, 75 MHz) δ 153.6, 150.2, 131.9 (m), 112.7, 112.4, 111.1, 69.9 (m), 55.6 (d, *J* = 2.6 Hz), 47.5 (m).

(±)-2-Amino-1-*p*-tolylethanol (13e). This compound was prepared from 12e by the same method as described for preparation of 13a in a similar yield. ¹H NMR (CD₃OD, 300 MHz) δ 7.21 (d, *J* = 7.6 Hz, 2H), 7.13 (d, *J* = 7.6 Hz, 2H), 4.57 (m, 1H), 2.91 (m, 1H), 2.79 (m, 1H), 2.32 (s, 3H), 2.11 (s br, 3H); ¹³C NMR (CD₃OD, 75 MHz) δ 140.0, 137.1, 129.1, 125.9, 74.2, 49.4, 21.2.

(±)-2-Amino-1-naphthalen-2-ylethanol (13f). This compound was prepared from 12f by the same method as described for preparation of 13a in a similar yield. ¹H NMR (CD₃OD, 360 MHz) δ 7.79-7.76 (m, 4H), 7.46-7.38 (m, 3H), 4.74

(m, 1H), 2.97-2.85 (m, 2H), 2.35 (s br, 3H); ¹³C NMR (CD₃OD, 90 MHz) δ 141.1, 133.2, 132.9, 128.1, 127.8, 127.6, 126.1, 125.7, 124.6, 124.0, 74.3, 49.1.

NC (±)-4-(2-Amino-1-hydroxyethyl)benzonitrile (13g). This compound was prepared from 12g by the same method as described for preparation of 13a in a similar yield. ¹H NMR (CD₃OD, 300 MHz) δ 7.53 (d, *J* = 6.3 Hz, 2H), 7.38 (d, *J* = 6.3 Hz, 2H), 4.60 (m, 1H), 3.70-1.70 (m, 5H); ¹³C NMR (CD₃OD, 75 MHz) δ 148.3, 131.9, 126.3, 118.6, 110.6, 73.1, 48.8.

Br (±)-2-Amino-1-(4-bromophenyl)ethanol (13h). This compound was prepared from 12h by the same method as described for preparation of 13a in a similar yield. ¹H NMR (CD₃OD, 400 MHz) δ 7.43 (d, J = 7.5 Hz, 2H), 7.15 (d, J = 7.5Hz, 2H), 4.55 (m, 1H), 3.50-2.20 (m, 5H); ¹³C NMR (CD₃OD, 100 MHz) δ 141.5, 131.4, 127.5, 121.2, 73.2, 48.9.

^O 2,2,2-Trifluoro-*N*-(2-hydroxy-2-phenylethyl)acetamide. The two enantiomers were separated using a Chiral Select 1000 column (170 °C). ¹H NMR (CD₃OD, 400 MHz) δ 9.19 (s br, 1H), 7.39-7.32 (m, 4H), 7.29-7.25 (m, 1H), 4.80 (dd, *J* = 5.4, 7.5 Hz, 1H), 3.51-1.41 (m, 2H); ¹³C NMR (CD₃OD, 100 MHz) δ 159.3 (q, *J* = 34.0 Hz), 143.8, 129.8, 129.2, 127.6, 117.9 (q, *J* = 284.2 Hz), 73.2, 48.6.

(±)-2,2,2-Trifluoro-N-[2-hydroxy-2-(4-

methoxyphenyl)ethyl]acetamide. This compound was prepared from 13b following the

general procedure. The two enantiomers were separated using a Chiral Select 1000 column (170 °C). ¹H NMR (CD₃OD, 300 MHz) δ 7.17 (d, *J* = 8.6 Hz, 2H), 6.93 (s br, 1H), 6.80 (d, *J* = 8.6 Hz, 2H), 4.70 (dd, *J* = 3.3, 8.4 Hz, 1H), 3.71 (s, 3H), 3.67-3.60 (m, 1H), 3.30-3.25 (m, 1H), 2.73 (s br, 1H); ¹³C NMR (CD₃OD, 75 MHz) δ 159.8, 157.7 (q, *J* = 37.3 Hz), 132.8, 127.2, 116.0 (q, *J* = 287.7 Hz), 114.3, 72.1, 55.5, 46.8.

(±)-2,2,2-Trifluoro-N-[2-hydroxy-2-(3-

methoxyphenyl)ethyl]acetamide. This compound was prepared from 13c following the general procedure. The two enantiomers were separated using a Chiral Select 1000 column (170 °C). ¹H NMR (CD₃OD, 360 MHz) δ 7.26-7.22 (m, 1H), 7.06 (s br, 1H), 6.88-6.85 (m, 2H), 6.83-6.80 (m, 1H), 4.77 (dd, J = 3.3, 8.3 Hz, 1H), 3.75 (s, 3H), 3.69 (ddd, J = 3.6, 7.1, 10.8 Hz, 1H), 3.30 (ddd, J = 4.7, 8.4, 13.4 Hz, 1H), 3.16 (s br, 1H); ¹³C NMR (CD₃OD, 90 MHz) δ 159.8, 157.6 (q, J = 37.2 Hz), 142.2, 129.8, 117.9, 115.8 (q, J = 287.6 Hz), 113.8, 111.2, 72.1, 55.2, 46.6.

(±)-N-[2-(2,5-Dimethoxyphenyl)-2-hydroxyethyl]-2,2,2-

trifluoroacetamide. This compound was prepared from 13d following the general procedure. The two enantiomers were separated using a Chiral Select 1000 column (170 ^oC). ¹H NMR (CD₃OD, 300 MHz) δ 6.93-6.82 (m, 4H), 5.05-4.99 (m, 2H), 3.82 (s, 3H), 3.77 (s, 3H), 3.80-3.76 (m, 1H), 3.50 (ddd, J = 4.5, 7.9, 12.9 Hz, 1H), 3.10 (d, J = 5.8 Hz, 1H); ¹³C NMR (CD₃OD, 75 MHz) δ 157.9 (q, J = 36.8 Hz), 154.3, 150.8, 129.6, 116.3 (q, J = 287.8 Hz), 114.1, 113.4, 112.0, 69.5, 56.2, 45.6.

O (±)-2,2,2-Trifluoro-*N*-(2-hydroxy-2-*p*-tolylethyl). This compound was prepared from 13e following the general procedure. The two enantiomers were separated using a Chiral Select 1000 column (170 °C). ¹H NMR (CD₃OD, 360 MHz) δ 7.22 (d, *J* = 8.2 Hz, 2H), 7.17 (d, *J* = 8.2 Hz, 2H), 6.82 (s, br, 1H), 4.82 (dd, *J* = 3.4, 8.5 Hz, 1H), 3.79-3.73 (m, 1H), 3.34 (ddd, *J* = 4.3, 8.5, 13.3 Hz, 1H), 2.40 (s br, 1H), 2.33 (s, 3H); ¹³C NMR (CD₃OD, 75 MHz) δ 157.7 (q, *J* = 34.1 Hz), 138.6, 137.7, 129.7, 125.9, 116.0 (q, *J* = 285.9 Hz), 72.4, 46.7, 21.4.

(±)-2,2,2-Trifluoro-N-(2-hydroxy-2-naphthalen-2-

ylethyl)acetamide. This compound was prepared from **13f** following the general procedure. The two enantiomers were separated using a Chiral Select 1000 column (185 $^{\circ}$ C). ¹H NMR (CD₃OD, 300 MHz) δ 7.86-7.81 (m, 4H), 7.52-7.42 (m, 3H), 6.81 (s br, 1H), 5.03 (dd, *J* = 3.5, 8.5 Hz, 1H), 3.89 (ddd, *J* = 3.6, 7.5, 11.1 Hz, 1H), 3.43 (ddd, *J* = 4.3, 8.5, 13.3 Hz, 1H), 2.44 (s br, 1H); ¹³C NMR (CD₃OD, 75 MHz) δ 157.7, 137.8, 133.3, 133.1, 128.8, 128.0, 127.8, 126.6, 126.4, 124.8, 123.3, 117.7, 72.6, 46.5.

(±)-N-[2-(4-Cyanophenyl)-2-hydroxyethyl]-2,2,2-

trifluoroacetamide. This compound was prepared from **13g** following the general procedure. The two enantiomers were separated using a Chiral Select 1000 column (170 °C). ¹H NMR (CD₃OD, 300 MHz) δ 7.71 (dd, *J* = 1.7, 6.6 Hz, 2H), 7.57 (d, *J* = 8.2 Hz, 2H), 4.90-4.86 (m, 1H), 3.54-3.40 (m, 2H); ¹³C NMR (CD₃OD, 75 MHz) δ 159.2 (q, *J* = 37.1 Hz), 149.3, 133.3, 128.2, 119.7, 117.5 (q, *J* = 285.2 Hz), 112.5, 72.1, 47.8.

Br (±)-Trifluoroacetic Acid 1-(4-Bromophenyl)-2-(2,2,2trifluoroacetylamino) ethyl Ester. The two enantiomers were separated using a Chiral Select 1000 column (170 °C). ¹H NMR (CD₃OD, 300 MHz) δ 7.61-7.57 (m, 2H), 7.29-7.25 (m, 2H), 6.82 (s br, 1H), 6.02 (dd, J = 4.3, 8.2 Hz, 1H), 3.93-3.74 (m, 2H), 3.50 (ddd, J = 4.5, 7.9, 12.9 Hz, 1H), 3.10 (d, J = 5.8 Hz, 1H); ¹³C NMR (CD₃OD, 75 MHz) δ 157.7 (q, J = 37.8 Hz), 156.4 (q, J = 43.4 Hz), 133.3, 132.5, 127.9, 124.1, 115.5 (q, J = 287.7Hz), 114.2 (q, J = 285.8 Hz), 77.0, 43.7.

	O II	Rh-diphosphine complex		OH NH ₂		
	Ph NH ₂ HCI	solvent, base, H ₂ (10 bar)				
	12a				13a	
entry	^[a] catalyst	solvent	base (equiv.)	temp.	yield (%) ^[b]	ee (%) (config.) ^[c]
1	[Rh(R,R,S,S-DuanPhos)(nbd)]SbF	⁷ ₆ (11) MeOH	K ₂ CO ₃ (0.5)	50 °C	90	72(S)
2	11	EtOH	K ₂ CO ₃ (0.5)	50 °C	90	62(<i>S</i>)
3	11	<i>i</i> -PrOH	K ₂ CO ₃ (0.5)	50 °C	90	42(S)
4	11	CH_2CI_2	K ₂ CO ₃ (0.5)	50 °C	<50	63(<i>S</i>)
5	11	CF ₂ HCF ₂ CH ₂ OH	K ₂ CO ₃ (0.5)	50 °C	>95	78(S)
6	11	TFE	K ₂ CO ₃ (0.5)	50 °C	>95	88(S)
7	11	TFE	K ₂ CO ₃ (0.5)	rt	>95	88(S)
8	11	TFE	TEA (1.0)	50 °C	>95	88(S)
9	[Rh(R,R,S,S-DuanPhos)(cod)]BF ₄	TFE	K ₂ CO ₃ (0.5)	50 °C	>95	87(<i>S</i>)
10	[Rh(<i>R,R,S,S</i> -DuanPhos)Cl] ₂	TFE	K ₂ CO ₃ (0.5)	50 °C	>95	87(S)
11	[Rh(S,S,R,R-TangPhos)(ocd)]BF ₄	TFE	K ₂ CO ₃ (0.5)	50 °C	>95	87(<i>S</i>)
12	[Rh(S-Binapine)(cod)]BF ₄	TFE	K ₂ CO ₃ (0.5)	50 °C	>95	82(S)
13	[Rh(S,S-Me-DuPhos)(cod)]BF ₄ (9)	TFE	K ₂ CO ₃ (0.5)	50 °C	>95	80(S)
14	[Rh(S,S-Et-DuPhos)(cod)]BF ₄ (10)	TFE	K ₂ CO ₃ (0.5)	50 °C	>95	85(<i>S</i>)
15 ^{[0}	^{d]} 11	TFE	K ₂ CO ₃ (0.5)	50 °C	80 ^[e]	84(<i>S</i>)
16 ^{[0}	^{d]} 9	TFE	K ₂ CO ₃ (0.5)	50 °C	40 ^[e]	79(S)
17 ^{[0}	^{d]} 10	TFE	K ₂ CO ₃ (0.5)	50 °C	<20	72(<i>S</i>)

-

[a] The hydrogenation was carried out under described conditions for each entry with 0.5 mol % of Rhprecatalyst following the general procedure. [b] Estimated yield based on ¹H NMR of crude product. [c] The enantiomeric excess of 13a was determined by chiral GC (Chiral Select 1000 column) after conversion to the correspondig N-acyl derivative (Cf. Experimental Section). [d] 0.02 mol% of Rhprecatalyst was used (S/C = 5000). [e] Isolated yield.

^[1] D. N. Ridge, J. W. Hanifin, L. A. Harten, B. D. Johnson, J. Menschik, G. Nicolau, A. E. Sloboda, D. E. Watts, J. Phar. Sci. 1979, 22, 1385-1389.

^[2] E. D. Bergmann, Z. Goldschmidt, J. Med. Chem. 1968, 11, 1121-1125.

- [3] D. Chen, H. Sun, Z. Zeng, Y. Jiang, Faming Zhuanli Shenqing Gongkai Shuomingshu, 1999, pp25.
- [4] B. M. Trost, V. S. C. Yeh, H. Ito, N. Bremeyer, Org. Lett. 2002, 4, 2621-2623.
- [5] A. Kamal, Tetrahedron: Asymmetry 2004, 15, 3939-3944.
- [6] D. G. Thomas, A. H. Nathan, J. Am. Chem. Soc. 1948, 70, 331-334.
- [7] A. Alberola, L. Calvo, A. Gonzalez-Ortega, A. P. Encabo, M. C. Sanudo, Synthesis, 2001, 43, 1941-1948.
- [8] E. L. Martin, C. R. Noller, F. M. McMillan, Org. Synth. 1943, 2, 499-500; 1935, 15, 64-65.
- [9] O. S. Radchenko, V. L. Novikov, R. H. Willis, P. T. Murphy, G. B. Elyakov, *Tetrahedron Lett.* 1997, 38, 3581-3584.
- [10] A. Pelter, R. S. Ward, R. R. Rao, Tetrahedron, 1985, 41, 2933-2938.
- [11]F. Giovanni, F. Claudio, S. Stefano, C. Marco, K. Joseph, J. Agric. Food. Chem. 2002, 50, 2748-2754.
- [12] J. Apelt, X. Ligneau, H. H. Pertz, J. –M. Arrang, C. R. Ganellin, J. –C. Schwartz, W. Schunack, H. Stark, J. Med. Chem. 2002, 45, 1128-1141.
- [13]C. J. Cavallito, A. E. Soria, J. O. Hoppe, J. Am. Chem. Soc. 1950, 72, 2661-2665.
- [14]C.-J. Wang, X. Sun, X. Zhang, Angew. Chem. Int. Ed. 2005, 44, 4933-4935.
- [15] C. Fabbri, M. Bietti, O. Lanzalunga, J. Org. Chem. 2005, 70, 2720-2728.
- [16] M. H. Holshouser, J. Pharm. Sci. 1986, 75, 619-621.
- [17] E. D. Sych, Z. N. Belaya, O. V. Moreiko, Khim. Geterotsikl. Soedin. 1970, 282-285.
- [18] J. Ortiz, A. Guijarro, M. Yus, Tetrahedron, 1999, 55, 4831-4832.
- [19]B. L. Goodwin, C. R. J. Ruthven, M. Sandler, Gen. Pharmacol. 1997, 28, 535-543.
- [20] A. Bai, Z. Guo, W. Hu, F. Shen, G. Cheng, Chin. Chem. Lett. 2001, 12, 775-778.
- [21]U. Amschler, O. E. Schultz, Arzneim.-Forsch. 1972, 22, 2095-2096.
- [22] M. Masui, Y. Kamada, S. Ozaki, Chem. Pharm. Bull. 1983, 31, 122-127.
- [23] M. K. Chmielewski, V. Marchan, J. Cieslak, A. Grajkowski, V. Livengood, U. Muench, A. Wilk, S. L. Beaucage, J. Org. Chem. 2003, 68, 10003-10012.
- [24] H. Bretschneider, Monatsh. Chem. 1949, 80, 517-529.