Binding of Topotecan to a Nicked DNA Oligomer in Solution

W. Bocian[¹], R. Kawecki[²], E. Bednarek[¹], J. Sitkowski[¹,²], M. P. Williamson[³], P. E. Hansen[⁴] and L. Kozerski*[¹,²]

[¹] Prof. Dr. hab. Lech Kozerski, Dr. W. Bocian, Dr. E. Bednarek, MSc. J. Sitkowski, National Medicines Institute, 00-725 Warszawa, Chelmska 30/34, Poland. Fax +48 (22) 8410652 email: lkoz@il.waw.pl

[²] Prof. Dr. hab. Lech Kozerski, Dr. hab. R. Kawecki, MSc. J. Sitkowski, Institute of Organic Chemistry, Polish Academy of Sciences, 01-224 Warszawa, Kasprzaka 44, Poland. Fax +48 (22) 6326681 email: lkoz@icho.edu.pl (email for correspondence)

[³] Prof. Dr. Michael P. Williamson, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK. Fax +44 114 222 2800. email: M.Williamson@sheffield.ac.uk

[⁴] Prof. Dr. Poul Erik Hansen, Department of Life Sciences and Chemistry, Roskilde University, DK-4000 Roskilde, Denmark. Fax +45 46743011 email: poulerik@ruc.dk
Fig 1S. Sequence-specific chemical shift changes of nicked DNA on interaction with TPT.

Fig 2S. An example of a NOESY spectrum (pH 6, room temperature), with cross-peaks marked by arrows from Me-19 methyl group of TPT to nicked DNA (the 5' and 5'' cross-peaks were not assigned).
<table>
<thead>
<tr>
<th></th>
<th>H1'</th>
<th>H2'</th>
<th>H2''</th>
<th>H3'</th>
<th>H4'</th>
<th>H6/8</th>
<th>H2/5/Me</th>
<th>H5''</th>
<th>H5'</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>6.001</td>
<td>2.758</td>
<td>2.844</td>
<td>4.957</td>
<td>4.337</td>
<td>8.069</td>
<td>-</td>
<td>3.993</td>
<td>3.884</td>
</tr>
<tr>
<td>G6</td>
<td>5.720</td>
<td>2.635</td>
<td>2.635</td>
<td>4.669</td>
<td>4.180</td>
<td>7.662</td>
<td>-</td>
<td>3.975</td>
<td>3.844</td>
</tr>
<tr>
<td>C8</td>
<td>5.754</td>
<td>2.041</td>
<td>2.405</td>
<td>4.862</td>
<td>4.121</td>
<td>7.465</td>
<td>5.625</td>
<td>4.105</td>
<td>4.105</td>
</tr>
<tr>
<td>G9</td>
<td>5.906</td>
<td>2.623</td>
<td>2.705</td>
<td>5.000</td>
<td>4.361</td>
<td>7.926</td>
<td>-</td>
<td>4.134</td>
<td>4.078</td>
</tr>
<tr>
<td>G13</td>
<td>5.661</td>
<td>2.735</td>
<td>2.808</td>
<td>5.040</td>
<td>4.388</td>
<td>7.910</td>
<td>-</td>
<td>4.146</td>
<td>4.064</td>
</tr>
<tr>
<td>C15</td>
<td>5.612</td>
<td>1.985</td>
<td>2.373</td>
<td>4.766</td>
<td>4.135</td>
<td>7.155</td>
<td>5.198</td>
<td>4.303</td>
<td>4.157</td>
</tr>
</tbody>
</table>

a) TPT (lactone form) chemical shifts in the sample were found as follows (ppm from TSPA)

TPT-H7 - 8.424 TPT-H9 - 4.581
<table>
<thead>
<tr>
<th></th>
<th>H1'</th>
<th>H2'</th>
<th>H2''</th>
<th>H3'</th>
<th>H4'</th>
<th>H6/8</th>
<th>H2/5/Me</th>
<th>NH</th>
<th>NH2</th>
<th>H^β</th>
<th>H^γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>6.01</td>
<td>2.76</td>
<td>2.85</td>
<td>4.96</td>
<td>4.34</td>
<td>8.07</td>
<td></td>
<td>13.23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>5.68</td>
<td>2.14</td>
<td>2.46</td>
<td>4.86</td>
<td>4.22</td>
<td>7.39</td>
<td>5.40</td>
<td>8.44</td>
<td>6.64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G3</td>
<td>6.09</td>
<td>2.69</td>
<td>2.85</td>
<td>5.02</td>
<td>4.44</td>
<td>7.94</td>
<td></td>
<td>12.96</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>6.06</td>
<td>2.10</td>
<td>2.62</td>
<td>4.88</td>
<td>4.27</td>
<td>7.26</td>
<td>1.45</td>
<td>14.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T5</td>
<td>6.19</td>
<td>2.44</td>
<td>2.44</td>
<td>4.68</td>
<td>4.04</td>
<td>7.39</td>
<td>1.67</td>
<td>13.34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G6</td>
<td>5.83</td>
<td>2.64</td>
<td>2.64</td>
<td>4.66</td>
<td>4.18</td>
<td>7.63</td>
<td></td>
<td>12.51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T7</td>
<td>6.07</td>
<td>2.17</td>
<td>2.56</td>
<td>4.87</td>
<td>4.32</td>
<td>7.56</td>
<td>1.16</td>
<td>13.83</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C8</td>
<td>5.76</td>
<td>2.05</td>
<td>2.42</td>
<td>4.87</td>
<td>4.13</td>
<td>7.47</td>
<td>5.64</td>
<td>8.65</td>
<td>7.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G9</td>
<td>5.91</td>
<td>2.61</td>
<td>2.69</td>
<td>5.00</td>
<td>4.35</td>
<td>7.93</td>
<td></td>
<td>13.13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C10</td>
<td>6.24</td>
<td>2.23</td>
<td>2.46</td>
<td>4.85</td>
<td>4.20</td>
<td>7.58</td>
<td>5.61</td>
<td>8.43</td>
<td>6.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G11</td>
<td>6.00</td>
<td>2.76</td>
<td>2.85</td>
<td>4.96</td>
<td>4.34</td>
<td>8.08</td>
<td></td>
<td>13.29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C12</td>
<td>5.67</td>
<td>2.01</td>
<td>2.39</td>
<td>4.85</td>
<td>4.18</td>
<td>7.37</td>
<td>5.43</td>
<td>8.54</td>
<td>6.68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G13</td>
<td>5.66</td>
<td>2.72</td>
<td>2.82</td>
<td>5.04</td>
<td>4.39</td>
<td>7.92</td>
<td></td>
<td>12.91</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A14</td>
<td>6.25</td>
<td>2.67</td>
<td>2.95</td>
<td>5.03</td>
<td>4.49</td>
<td>8.15</td>
<td>7.79</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exp. NOE</td>
<td>NOE’s for structures from molecular dynamics runs</td>
<td>X-ray</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>---</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>St1A</td>
<td>St1B</td>
<td>St2A</td>
<td>St2B</td>
<td>St3A</td>
<td>St3B</td>
<td>St4A</td>
<td>St4B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPT-H14 / A16-H2</td>
<td>m</td>
<td>vw</td>
<td>vw</td>
<td>vw</td>
<td>vw</td>
<td>vw</td>
<td>m</td>
<td>st</td>
<td>st</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPT-H17a / T5-H2''</td>
<td>m</td>
<td>vw</td>
<td>vw</td>
<td>w</td>
<td>vw</td>
<td>vw</td>
<td>m</td>
<td>w</td>
<td>m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPT-H17a / T5-H2'</td>
<td>m</td>
<td>vw</td>
<td>vw</td>
<td>m</td>
<td>w</td>
<td>vw</td>
<td>m</td>
<td>m</td>
<td>st</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPT-H17b / T5-H2''</td>
<td></td>
<td>vw</td>
<td>vw</td>
<td>w</td>
<td>vw</td>
<td>vw</td>
<td>m</td>
<td>m</td>
<td>st</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPT-H17b / T5-H2'</td>
<td></td>
<td>vw</td>
<td>vw</td>
<td>w</td>
<td>w</td>
<td>vw</td>
<td>m</td>
<td>st</td>
<td>st</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPT-H17a / T5-Me</td>
<td>w</td>
<td>vw</td>
<td>vw</td>
<td>m</td>
<td>vw</td>
<td>vw</td>
<td>w</td>
<td>w</td>
<td>m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPT-H17b / T5-Me</td>
<td></td>
<td>vw</td>
<td>vw</td>
<td>m</td>
<td>vw</td>
<td>vw</td>
<td>w</td>
<td>m</td>
<td>st</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPT-H17a / G6-H4'</td>
<td>m</td>
<td>vw</td>
<td>w</td>
<td>w</td>
<td>m</td>
<td>vw</td>
<td>vv</td>
<td>m</td>
<td>st</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPT-H17b / G6-H4'</td>
<td></td>
<td>vv</td>
<td>m</td>
<td>vw</td>
<td>w</td>
<td>vv</td>
<td>vv</td>
<td>m</td>
<td>m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPT-H18a / G6-H1'</td>
<td>m</td>
<td>vv</td>
<td>vv</td>
<td>w</td>
<td>vv</td>
<td>m</td>
<td>vv</td>
<td>m</td>
<td>m</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3S NOE analysis.
The symbols represent % volume of the cross-peaks relative to the volume of the Cyt H5-H6 distance: St > 10%; 10% > m > 1%; 1% > w > 0.2%; 0.2% > vw. For computed structures the cross-peak volumes which conform with experimental cross-peak volumes are shown in bold.

Table 4S. NOE analysis

<table>
<thead>
<tr>
<th>Experimentally observed NOE effects</th>
<th>Exp. NOE</th>
<th>NOE effects for structures from molecular dynamics runs</th>
<th>X-ray</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPT-H14 / A16-H2</td>
<td>7.2</td>
<td>St1A: 0.12 (0.41) St1B: 0.15 (0.55) St2A: 0.19 (0.06) St2B: 0.13 (0.05) St3A: 0.06 (0.03) St3B: 0.08 (0.02) St4A: 1.02 (1.50) St4B: 15.41 (17.97)</td>
<td>38.70</td>
</tr>
<tr>
<td>TPT-H17a / T5-H2"</td>
<td>8.3</td>
<td>St1A: 0.03 (0.04) St1B: 0.06 (0.57) St2A: 0.57 (0.84) St2B: 0.19 (0.24) St3A: 0.00 (0.00) St3B: 0.00 (0.00) St4A: 4.18 (7.45) St4B: 0.81 (1.50)</td>
<td>2.00</td>
</tr>
<tr>
<td>TPT-H17a / T5-H2’</td>
<td>8.3</td>
<td>St1A: 0.05 (0.09) St1B: 0.04 (0.30) St2A: 3.58 (14.04) St2B: 0.61 (1.39) St3A: 0.00 (0.00) St3B: 0.00 (0.00) St4A: 4.66 (8.88) St4B: 2.44 (3.71)</td>
<td>12.18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td></td>
<td>0.02</td>
<td>0.01</td>
<td>0.26</td>
</tr>
<tr>
<td>TPT-H17b / T5-H2’</td>
<td>(0.03)</td>
<td>(0.09)</td>
<td>(0.35)</td>
</tr>
<tr>
<td></td>
<td>0.03</td>
<td>0.01</td>
<td>0.75</td>
</tr>
<tr>
<td>TPT-H17b / T5-H2’</td>
<td>(0.03)</td>
<td>(0.08)</td>
<td>(2.50)</td>
</tr>
<tr>
<td></td>
<td>0.17</td>
<td>0.00</td>
<td>2.08</td>
</tr>
<tr>
<td>TPT-H17a / T5-Me</td>
<td>(0.87)</td>
<td>(0.01)</td>
<td>(3.52)</td>
</tr>
<tr>
<td>>1.0</td>
<td>0.05</td>
<td>0.00</td>
<td>3.16</td>
</tr>
<tr>
<td>TPT-H17b / T5-Me</td>
<td>(0.20)</td>
<td>(0.00)</td>
<td>(5.76)</td>
</tr>
<tr>
<td>3.8</td>
<td>0.04</td>
<td>0.88</td>
<td>0.26</td>
</tr>
<tr>
<td>TPT-H17a / G6-H4’</td>
<td>(0.12)</td>
<td>(1.05)</td>
<td>(0.84)</td>
</tr>
<tr>
<td></td>
<td>0.12</td>
<td>8.55</td>
<td>0.08</td>
</tr>
<tr>
<td>TPT-H17b / G6-H4’</td>
<td>(0.54)</td>
<td>(16.46)</td>
<td>(0.13)</td>
</tr>
<tr>
<td></td>
<td>0.02</td>
<td>0.09</td>
<td>0.80</td>
</tr>
<tr>
<td>TPT-H18a / G6-H1’</td>
<td>(0.03)</td>
<td>(0.09)</td>
<td>(1.04)</td>
</tr>
<tr>
<td>9.0</td>
<td>0.01</td>
<td>0.08</td>
<td>2.20</td>
</tr>
<tr>
<td>TPT-H18b / G6-H1’</td>
<td>(0.02)</td>
<td>(0.08)</td>
<td>(3.74)</td>
</tr>
<tr>
<td></td>
<td>0.02</td>
<td>0.03</td>
<td>0.09</td>
</tr>
<tr>
<td>TPT-H18a / A16-H2</td>
<td>(0.03)</td>
<td>(0.06)</td>
<td>(0.05)</td>
</tr>
<tr>
<td>>1.0</td>
<td>0.01</td>
<td>0.02</td>
<td>0.10</td>
</tr>
<tr>
<td>TPT-H18b / A16-H2</td>
<td>(0.02)</td>
<td>(0.04)</td>
<td>(0.10)</td>
</tr>
<tr>
<td></td>
<td>0.01</td>
<td>0.07</td>
<td>0.45</td>
</tr>
<tr>
<td>TPT-H19 / G6-H1’</td>
<td>(0.02)</td>
<td>(0.06)</td>
<td>(0.56)</td>
</tr>
<tr>
<td>>2.0</td>
<td>0.03</td>
<td>0.07</td>
<td>1.51</td>
</tr>
<tr>
<td>TPT-H19 / G6-H4’</td>
<td>(0.07)</td>
<td>(0.06)</td>
<td>(4.22)</td>
</tr>
<tr>
<td>>1.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
</tr>
<tr>
<td>TPT-H19 / T7-H4’</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.01)</td>
</tr>
<tr>
<td>3.6</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
</tr>
<tr>
<td>TPT-H19 / T7-H1’</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
</tr>
<tr>
<td>Experimentally observed NOE effects</td>
<td>Exp. NOE</td>
<td>Back calculated NOE effects for structures from molecular dynamics runs</td>
<td>X-ray</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---------</td>
<td>---</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>St4A</td>
<td>St4A-OH</td>
</tr>
<tr>
<td>TPT-NMe^a / A16-H2</td>
<td>>2.0</td>
<td>4.93 (11.79)</td>
<td>0.25 (0.66)</td>
</tr>
<tr>
<td>TPT-NMe^b / A16-H2</td>
<td></td>
<td>4.56 (12.19)</td>
<td>0.27 (0.94)</td>
</tr>
</tbody>
</table>

^a The values represent % volume of the crosspeaks relative to volume of the Cyt H5-H6 distance. The values in parentheses denote the standard deviation calculated for last 8 ns run (800 structures).

Table 5S. NOE analysis^a.
<table>
<thead>
<tr>
<th>Compound</th>
<th>Peak</th>
<th>Volume (0.46)</th>
<th>Volume (0.30)</th>
<th>Volume (0.61)</th>
<th>Volume (0.42)</th>
<th>Volume (0.61)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPT-H18a / A16-H2</td>
<td>>1.0</td>
<td>0.37</td>
<td>0.73</td>
<td>0.82</td>
<td>0.70</td>
<td>0.62</td>
</tr>
<tr>
<td>TPT-H18b / A16-H2</td>
<td></td>
<td>0.32 (0.38)</td>
<td>0.76 (0.28)</td>
<td>0.68 (0.34)</td>
<td>0.77 (0.34)</td>
<td>0.55</td>
</tr>
<tr>
<td>TPT-H19 / G6-H1'</td>
<td>>2.0</td>
<td>1.80 (6.33)</td>
<td>0.27 (0.45)</td>
<td>4.87 (7.34)</td>
<td>0.43 (0.57)</td>
<td>55.82</td>
</tr>
<tr>
<td>TPT-H19 / G6-H4'</td>
<td>>1.0</td>
<td>0.31 (1.30)</td>
<td>0.04 (0.07)</td>
<td>0.67 (1.42)</td>
<td>0.64 (1.70)</td>
<td>1.93</td>
</tr>
<tr>
<td>TPT-H19 / T7-H4'</td>
<td>3.6</td>
<td>7.18 (9.10)</td>
<td>8.00 (11.46)</td>
<td>9.15 (10.32)</td>
<td>7.88 (10.97)</td>
<td>1.32</td>
</tr>
<tr>
<td>TPT-H19 / T7-H1'</td>
<td>>1.0</td>
<td>7.93 (12.46)</td>
<td>4.10 (5.81)</td>
<td>1.75 (2.68)</td>
<td>9.69 (14.40)</td>
<td>0.34</td>
</tr>
<tr>
<td>TPT-NMe(^a) / A16-H2</td>
<td>>2.0</td>
<td>5.02 (0.08)</td>
<td>0.01 (0.01)</td>
<td>0.02 (0.02)</td>
<td>0.04 (0.04)</td>
<td>5.47</td>
</tr>
<tr>
<td>TPT-NMe(^b) / A16-H2</td>
<td></td>
<td>4.91 (11.33)</td>
<td>0.01 (0.01)</td>
<td>0.06 (0.05)</td>
<td>0.02 (0.02)</td>
<td>3.01</td>
</tr>
</tbody>
</table>

\(^a\)The values represent % volume of the crosspeaks relative to volume of the Cyt H5-H6 cross peak. The values in parentheses denote the standard deviation calculated for an entire trajectory (800 - 1000 structures). St4A-OH, St4A-NH and St4A-prot are 10 ns MD trajectories, where the starting point is the last geometry from St4A trajectory with modified TPT; St4A-NH and St4A-OH are the tautomers of the neutral molecule bearing proton on N and O atoms, respectively and St4A-prot is protonated TPT on nitrogen in the R\(^2\) = CH\(_2\)N(CH\(_3\))\(_2\) substituent.
Table 6S: Free energy analysis for DNA / TPT complexes.

<table>
<thead>
<tr>
<th>Struct./Time</th>
<th><E_{elec}></th>
<th><E_{vdw}></th>
<th><E_{int}></th>
<th><E_{MM}></th>
<th><G_{solv}></th>
<th><H></th>
<th>-T?S></th>
<th>-?Gut</th>
<th><?Gut></th>
</tr>
</thead>
<tbody>
<tr>
<td>St1A 2ns</td>
<td>508.0(46.2)</td>
<td>-196.4(10.5)</td>
<td>1078.7(20.7)</td>
<td>1390.3(44.1)</td>
<td>-5570.9(32.8)</td>
<td>-4180.7(22.1)</td>
<td>35.2</td>
<td>-629.0</td>
<td>-4809.7</td>
</tr>
<tr>
<td>3ns</td>
<td>508.7(47.6)</td>
<td>-197.5(10.0)</td>
<td>1083.5(23.2)</td>
<td>1394.7(47.1)</td>
<td>-5577.7(35.8)</td>
<td>-4183.0(26.1)</td>
<td>32.9</td>
<td>-625.0</td>
<td>-4808.0</td>
</tr>
<tr>
<td>4ns</td>
<td>526.1(39.2)</td>
<td>-191.4(10.1)</td>
<td>1081.0(21.3)</td>
<td>1415.7(42.6)</td>
<td>-5598.1(29.1)</td>
<td>-4182.4(23.5)</td>
<td>33.5</td>
<td>-624.9</td>
<td>-4807.3</td>
</tr>
<tr>
<td>5ns</td>
<td>533.7(48.5)</td>
<td>-191.2(11.5)</td>
<td>1084.2(19.3)</td>
<td>1426.7(49.2)</td>
<td>-5603.6(36.4)</td>
<td>-4177.0(21.4)</td>
<td>38.9</td>
<td>-625.7</td>
<td>-4802.7</td>
</tr>
<tr>
<td>6ns</td>
<td>542.2(32.8)</td>
<td>-191.0(9.5)</td>
<td>1082.6(18.4)</td>
<td>1433.8(33.7)</td>
<td>-5607.2(26.1)</td>
<td>-4173.5(19.4)</td>
<td>42.4</td>
<td>-625.9</td>
<td>-4799.4</td>
</tr>
<tr>
<td>7ns</td>
<td>538.1(48.4)</td>
<td>-189.8(10.6)</td>
<td>1081.7(22.3)</td>
<td>1430.0(49.0)</td>
<td>-5598.3(38.3)</td>
<td>-4168.3(23.1)</td>
<td>47.6</td>
<td>-622.9</td>
<td>-4791.2</td>
</tr>
<tr>
<td>8ns</td>
<td>540.7(104.4)</td>
<td>-190.9(10.2)</td>
<td>1085.8(17.8)</td>
<td>1435.6(103.9)</td>
<td>-5578.8(89.3)</td>
<td>-4143.2(26.2)</td>
<td>72.6</td>
<td>-625.9</td>
<td>-4769.1</td>
</tr>
<tr>
<td>9ns</td>
<td>420.7(57.2)</td>
<td>-192.5(10.8)</td>
<td>1082.0(21.2)</td>
<td>1310.1(64.8)</td>
<td>-5484.0(44.9)</td>
<td>-4173.8(29.0)</td>
<td>42.0</td>
<td>-628.1</td>
<td>-4801.9</td>
</tr>
<tr>
<td>average</td>
<td>514.8(68.3)</td>
<td>-192.6(10.8)</td>
<td>1082.4(20.7)</td>
<td>1404.6(70.0)</td>
<td>-5577.3(59.0)</td>
<td>-4172.7(26.9)</td>
<td>43.1</td>
<td>-625.9(1.8)</td>
<td>-4798.7(12.5)</td>
</tr>
<tr>
<td>St1B 2ns</td>
<td>611.8(64.1)</td>
<td>-208.6(10.7)</td>
<td>1088.2(19.8)</td>
<td>1491.4(62.4)</td>
<td>-5654.6(48.6)</td>
<td>-4163.2(24.4)</td>
<td>52.6</td>
<td>-627.8</td>
<td>-4791.0</td>
</tr>
<tr>
<td>3ns</td>
<td>639.5(44.7)</td>
<td>-206.0(9.8)</td>
<td>1083.2(21.3)</td>
<td>1516.8(45.5)</td>
<td>-5671.9(32.8)</td>
<td>-4155.1(22.5)</td>
<td>60.7</td>
<td>-629.5</td>
<td>-4784.6</td>
</tr>
<tr>
<td>4ns</td>
<td>643.9(41.7)</td>
<td>-208.3(9.6)</td>
<td>1080.8(20.8)</td>
<td>1516.5(41.9)</td>
<td>-5675.0(33.6)</td>
<td>-4159.1(20.8)</td>
<td>56.8</td>
<td>-630.6</td>
<td>-4789.7</td>
</tr>
<tr>
<td>5ns</td>
<td>635.8(50.7)</td>
<td>-205.3(9.7)</td>
<td>1093.0(19.4)</td>
<td>1523.5(48.5)</td>
<td>-5670.6(38.9)</td>
<td>-4147.2(19.6)</td>
<td>68.7</td>
<td>-629.0</td>
<td>-4776.2</td>
</tr>
<tr>
<td>6ns</td>
<td>647.3(53.7)</td>
<td>-204.6(10.6)</td>
<td>1087.7(21.3)</td>
<td>1530.5(50.5)</td>
<td>-5674.5(38.3)</td>
<td>-4144.0(21.6)</td>
<td>71.8</td>
<td>-629.2</td>
<td>-4773.2</td>
</tr>
<tr>
<td>7ns</td>
<td>635.3(44.4)</td>
<td>-208.0(8.7)</td>
<td>1086.8(18.2)</td>
<td>1514.1(46.9)</td>
<td>-5665.9(31.7)</td>
<td>-4151.8(24.0)</td>
<td>64.1</td>
<td>-627.7</td>
<td>-4779.5</td>
</tr>
<tr>
<td>8ns</td>
<td>525.1(75.3)</td>
<td>-196.2(11.7)</td>
<td>1083.3(20.7)</td>
<td>1412.3(74.7)</td>
<td>-5578.5(56.1)</td>
<td>-4166.3(26.8)</td>
<td>49.6</td>
<td>-629.4</td>
<td>-4795.7</td>
</tr>
<tr>
<td>9ns</td>
<td>525.5(51.8)</td>
<td>-197.1(10.6)</td>
<td>1081.5(18.2)</td>
<td>1236.9(55.3)</td>
<td>-5433.2(44.8)</td>
<td>-4196.3(22.2)</td>
<td>19.6</td>
<td>-626.8</td>
<td>-4823.1</td>
</tr>
<tr>
<td>average</td>
<td>586.4(110.3)</td>
<td>-204.2(11.2)</td>
<td>1085.6(20.4)</td>
<td>1467.7(108.6)</td>
<td>-5628.1(89.7)</td>
<td>-4160.4(27.5)</td>
<td>55.5</td>
<td>-628.8(1.1)</td>
<td>-4789.1(14.7)</td>
</tr>
<tr>
<td>St2A 2ns</td>
<td>444.3(59.9)</td>
<td>-213.8(9.7)</td>
<td>1085.1(22.2)</td>
<td>1315.6(61.1)</td>
<td>-5518.8(49.1)</td>
<td>-4203.2(22.9)</td>
<td>12.7</td>
<td>-625.6</td>
<td>-4828.8</td>
</tr>
<tr>
<td>3ns</td>
<td>501.7(49.6)</td>
<td>-220.6(9.2)</td>
<td>1091.6(20.2)</td>
<td>1372.7(53.2)</td>
<td>-5585.5(41.7)</td>
<td>-4212.8(23.2)</td>
<td>3.0</td>
<td>-628.4</td>
<td>-4841.2</td>
</tr>
<tr>
<td>4ns</td>
<td>558.9(56.4)</td>
<td>-225.7(10.2)</td>
<td>1086.1(18.6)</td>
<td>1419.4(57.0)</td>
<td>-5631.2(45.7)</td>
<td>-4211.9(22.3)</td>
<td>4.0</td>
<td>-627.1</td>
<td>-4839.0</td>
</tr>
<tr>
<td>5ns</td>
<td>556.4(42.0)</td>
<td>-224.0(9.4)</td>
<td>1083.3(20.7)</td>
<td>1415.8(45.0)</td>
<td>-5624.4(34.9)</td>
<td>-4208.5(20.1)</td>
<td>7.3</td>
<td>-623.0</td>
<td>-4831.5</td>
</tr>
<tr>
<td>6ns</td>
<td>549.8(57.0)</td>
<td>-220.1(10.5)</td>
<td>1085.1(20.7)</td>
<td>1414.7(55.6)</td>
<td>-5619.9(44.4)</td>
<td>-4205.2(21.4)</td>
<td>10.6</td>
<td>-624.9</td>
<td>-4830.1</td>
</tr>
<tr>
<td></td>
<td>7ns</td>
<td>8ns</td>
<td>9ns</td>
<td>average</td>
<td>St2B 2ns</td>
<td>3ns</td>
<td>4ns</td>
<td>5ns</td>
<td>6ns</td>
</tr>
<tr>
<td>------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td></td>
<td>546.1(45.7)</td>
<td>557.0(41.7)</td>
<td>562.9(46.0)</td>
<td>534.6(63.4)</td>
<td>542.3(51.7)</td>
<td>509.0(40.2)</td>
<td>516.5(41.2)</td>
<td>554.2(37.3)</td>
<td>513.9(36.6)</td>
</tr>
<tr>
<td></td>
<td>-219.4(8.8)</td>
<td>-221.1(9.4)</td>
<td>-221.5(10.5)</td>
<td>-220.8(10.3)</td>
<td>-218.1(9.4)</td>
<td>-215.5(10.9)</td>
<td>-218.1(10.5)</td>
<td>-225.8(9.8)</td>
<td>-228.7(10.4)</td>
</tr>
<tr>
<td></td>
<td>1086.2(23.3)</td>
<td>1083.8(20.6)</td>
<td>1092.3(20.3)</td>
<td>1086.7(21.1)</td>
<td>1080.3(18.4)</td>
<td>1081.5(20.5)</td>
<td>1086.5(20.8)</td>
<td>1089.4(21.6)</td>
<td>1098.7(19.5)</td>
</tr>
<tr>
<td></td>
<td>1412.9(51.6)</td>
<td>1419.7(41.6)</td>
<td>1433.8(48.4)</td>
<td>1400.6(63.3)</td>
<td>1404.5(49.8)</td>
<td>1375.0(41.9)</td>
<td>1385.0(44.5)</td>
<td>1417.7(39.4)</td>
<td>1383.9(39.1)</td>
</tr>
<tr>
<td></td>
<td>-5609.3(39.4)</td>
<td>-5626.8(31.6)</td>
<td>-5636.5(35.9)</td>
<td>-5606.5(54.6)</td>
<td>-5610.9(43.6)</td>
<td>-5583.6(32.0)</td>
<td>-5591.1(34.3)</td>
<td>-5629.4(30.0)</td>
<td>-5610.8(30.2)</td>
</tr>
<tr>
<td></td>
<td>-4196.4(26.0)</td>
<td>-4207.1(20.7)</td>
<td>-4202.7(27.5)</td>
<td>-4206.0(23.7)</td>
<td>-4206.4(16.8)</td>
<td>-4208.6(21.9)</td>
<td>-4206.1(24.9)</td>
<td>-4211.7(23.2)</td>
<td>-4226.9(19.3)</td>
</tr>
<tr>
<td></td>
<td>7ns</td>
<td>8ns</td>
<td>9ns</td>
<td>average</td>
<td>St4A 2ns</td>
<td>St4B 2ns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>---------</td>
<td>----------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>564.5(40.5)</td>
<td>544.4(35.1)</td>
<td>527.9(35.6)</td>
<td>543.4(46.4)</td>
<td>370.3(52.6)</td>
<td>394.7(35.7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-218.0(9.1)</td>
<td>-217.8(9.7)</td>
<td>-219.3(9.4)</td>
<td>-217.8(9.4)</td>
<td>-206.1(10.3)</td>
<td>-204.2(10.4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1086.9(21.4)</td>
<td>1083.0(21.6)</td>
<td>1084.3(19.0)</td>
<td>1083.9(21.0)</td>
<td>1084.4(20.7)</td>
<td>1085.6(20.1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1433.4(40.6)</td>
<td>1409.6(41.3)</td>
<td>1392.9(33.7)</td>
<td>1409.4(46.9)</td>
<td>1248.6(55.5)</td>
<td>1286.0(72.4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-5643.7(30.1)</td>
<td>-5629.5(27.5)</td>
<td>-5621.3(27.5)</td>
<td>-5625.3(36.8)</td>
<td>-5450.0(43.4)</td>
<td>-5483.7(65.9)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-4210.3(21.1)</td>
<td>-4219.8(23.5)</td>
<td>-4228.3(20.0)</td>
<td>-4215.8(22.6)</td>
<td>-4201.4(22.8)</td>
<td>-4197.7(23.1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.5</td>
<td>-4.0</td>
<td>-12.5</td>
<td>0.0</td>
<td>14.4</td>
<td>18.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-624.2</td>
<td>-624.6</td>
<td>-623.9</td>
<td>-625.4(2.5)</td>
<td>-628.6</td>
<td>-628.3(2.2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-4834.5</td>
<td>-4844.4</td>
<td>-4852.2</td>
<td>-4841.2(6.6)</td>
<td>-4830.0</td>
<td>-4825.9(3.8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.7</td>
<td>-3.2</td>
<td>-11.0</td>
<td>0.0</td>
<td>11.2</td>
<td>15.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7ns</td>
<td>8ns</td>
<td>9ns</td>
<td>average</td>
<td>St4A 2ns</td>
<td>St4B 2ns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>564.5(40.5)</td>
<td>544.4(35.1)</td>
<td>527.9(35.6)</td>
<td>543.4(46.4)</td>
<td>370.3(52.6)</td>
<td>394.7(35.7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-218.0(9.1)</td>
<td>-217.8(9.7)</td>
<td>-219.3(9.4)</td>
<td>-217.8(9.4)</td>
<td>-206.1(10.3)</td>
<td>-204.2(10.4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1086.9(21.4)</td>
<td>1083.0(21.6)</td>
<td>1084.3(19.0)</td>
<td>1083.9(21.0)</td>
<td>1084.4(20.7)</td>
<td>1085.6(20.1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1433.4(40.6)</td>
<td>1409.6(41.3)</td>
<td>1392.9(33.7)</td>
<td>1409.4(46.9)</td>
<td>1248.6(55.5)</td>
<td>1286.0(72.4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-5643.7(30.1)</td>
<td>-5629.5(27.5)</td>
<td>-5621.3(27.5)</td>
<td>-5625.3(36.8)</td>
<td>-5450.0(43.4)</td>
<td>-5483.7(65.9)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-4210.3(21.1)</td>
<td>-4219.8(23.5)</td>
<td>-4228.3(20.0)</td>
<td>-4215.8(22.6)</td>
<td>-4201.4(22.8)</td>
<td>-4197.7(23.1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.5</td>
<td>-4.0</td>
<td>-12.5</td>
<td>0.0</td>
<td>14.4</td>
<td>18.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-624.2</td>
<td>-624.6</td>
<td>-623.9</td>
<td>-625.4(2.5)</td>
<td>-628.6</td>
<td>-628.3(2.2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-4834.5</td>
<td>-4844.4</td>
<td>-4852.2</td>
<td>-4841.2(6.6)</td>
<td>-4830.0</td>
<td>-4825.9(3.8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.7</td>
<td>-3.2</td>
<td>-11.0</td>
<td>0.0</td>
<td>11.2</td>
<td>15.3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 7S Comparison of selected global and backbone parameters of the computed and X-ray\cite{6,8} complexesa

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Rise (Å)b</th>
<th>Rise (Å)</th>
<th>Twist (deg)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T4/T5; T5/G6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T5/G6; A16/C15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C15/A14; A16/C15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computed nicked decamerd</td>
<td>3.49; 3.71</td>
<td>3.39; 3.63</td>
<td>-7.6; 2.3</td>
</tr>
<tr>
<td>Nicked decamer, NMRe</td>
<td>3.51; 2.77</td>
<td>2.44; 3.80</td>
<td>66.9; 60.4</td>
</tr>
<tr>
<td>Nicked decamer, X-Rayf</td>
<td>3.67; 3.17</td>
<td>2.49; 4.12</td>
<td>18.7; 33.8</td>
</tr>
<tr>
<td>TPT complex, NMRg</td>
<td>2.90; 8.67</td>
<td>3.12; 8.15</td>
<td>23.3; 26.4c</td>
</tr>
<tr>
<td>TPT complex, X-Rayh</td>
<td>2.94; 7.31</td>
<td>2.60; 7.94</td>
<td>8.2; 12.7e</td>
</tr>
</tbody>
</table>

aParameters were calculated using the program CURVES[42]

bGlobal interbase parameter.

cThe average value for other pairs in a duplex is ca. 35° in both cases.

dComputed structure of the nicked decamer, using native DNA geometry as a starting structure, as an average from last 8 ns MD run.

eNMR structure of the nicked decamer, GCGTT↓GTCGC

fX-Ray structure of a binary TopI-nicked DNA complex, GACTT↓TGAAA

gThis work, average from last 8 ns MD run

hX-Ray – TPT structure, close environment of a nick in DNA, GACTT↓GGAAA
Scheme 1S Starting structures for MD calculations
Fig. 3S Aromatic part expansion of a NOESY spectra of neat decamer (A, 500 MHz, mixing time 200 ms) and decamer titrated with TPT (B, 500 MHz, mixing time 300 ms). The longer mixing time was applied in a latter case to have better S/N on intermolecular NOE,s. Despite the change in mixing time both spectra have essentially the same chemical shift dispersion and crosspeaks.
Fig. 4S Minor groove views of the eight MD-derived structures of nicked decamer–TPT complexes. Only six base pair units flanking the nick are shown for clarity. Each structure represents the minimised average of structures from the last 1 ns out of a 10 ns MD run.