

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2008

Intra-annular Savige-Fontana reaction: One step conversion of one class of	
monocyclic peptides into another class of bicyclic peptides.	
Jonathan P. May and David M. Perrin*	

Department of Chemistry, University of British Columbia, Vancouver, B.C., Canada

Contents

General experimental details	3
¹ H/ ¹³ C NMR of Compound 4	4
¹ H/ ¹³ C NMR of Compound 5	5
HPLC, UV, MS of Compound 8	6
HPLC, UV, MS of Compound 9	7
¹ H/ ¹³ C NMR of Compound 9	8
HPLC, UV, MS of Compound 10	9
HPLC analysis	10
¹ H/ ¹³ C NMR of Compound 13	11
HPLC study on Compound 13	12
Study on Compound 14	13
Characterization for [anti-cis]-Fmoc-Ile-Hpi-Gly-OMe	15
¹ H/ ¹³ C NMR of [anti-cis]-Fmoc-Ile-Hpi-Gly-OMe	16

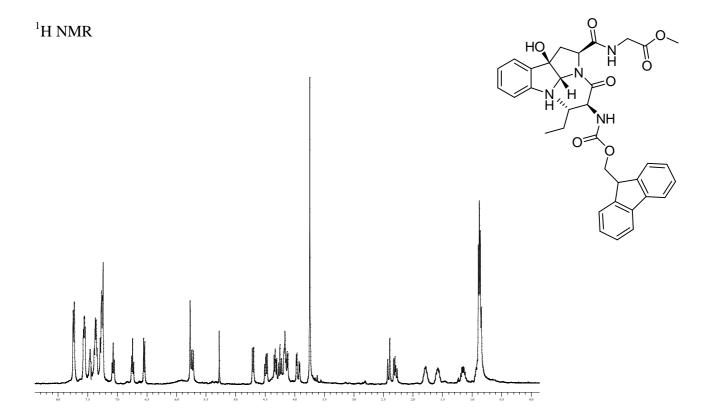
General experimental details

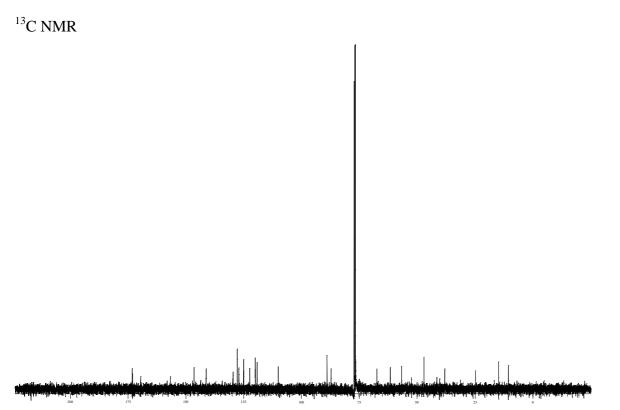
¹H-NMR and ¹³C-NMR were performed at 300/400/600 MHz and 75/100 MHz respectively. Chemical shifts for all spectra were reported in parts per million and referenced to the solvent peak.

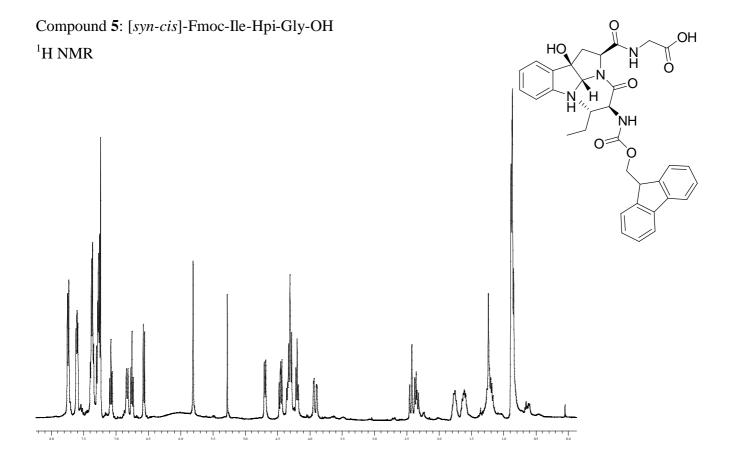
Mass spectrometry data was acquired using positive or negative ionization mode in MeOH or MeCN.

UV spectra were recorded on a spectrophotometer in 1 mL quartz cuvettes.

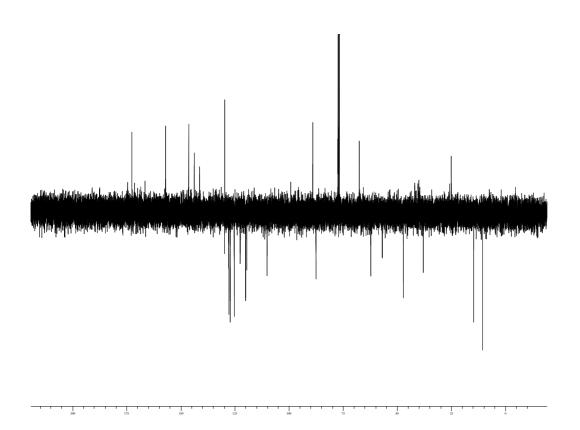
HPLC was performed using a reverse-phase C18 column (8.5 x 15 x 1.5 mm) with gradients combining buffer A and B. Buffer $A = (H_2O + 0.1 \% TFA)$; Buffer B = (MeCN + 0.05% TFA).

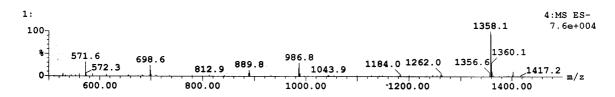

Thin layer chromatography was performed on Merck silica plates.

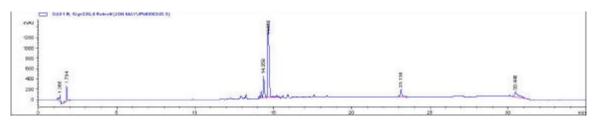

All amino-acids are L-amino-acids unless otherwise stated.


Preparations and full characterisation of both diastereomers of H-Hpi-Gly-OMe have been described in our previous paper.¹

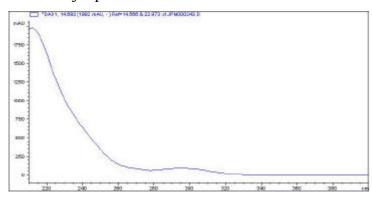
¹ May, J.P.; Fournier, P.; Pellicelli, J.; Patrick, B. O.; Perrin, D. M.; J. Org. Chem. **2005**, 70, 8424-8430.


Compound 4: [syn-cis]-Fmoc-Ile-Hpi-Gly-OMe

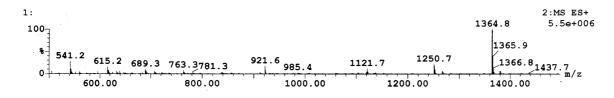

¹³C NMR

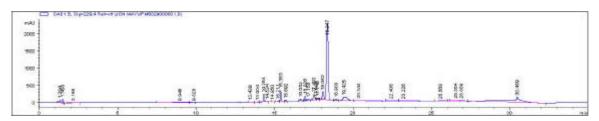

Compound 8: H-Cys(Tr)-Asn(Tr)-Pro-Ile-Hpi-Gly-Ile-Gly-OH

Chemical Formula: C₇₇H₈₆N₁₀O₁₁S Exact Mass: 1358.6198 Molecular Weight: 1359.6321

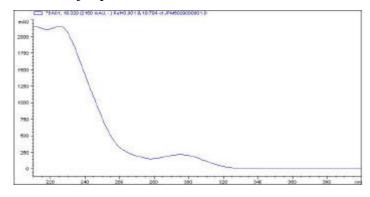

MS/ES -ve

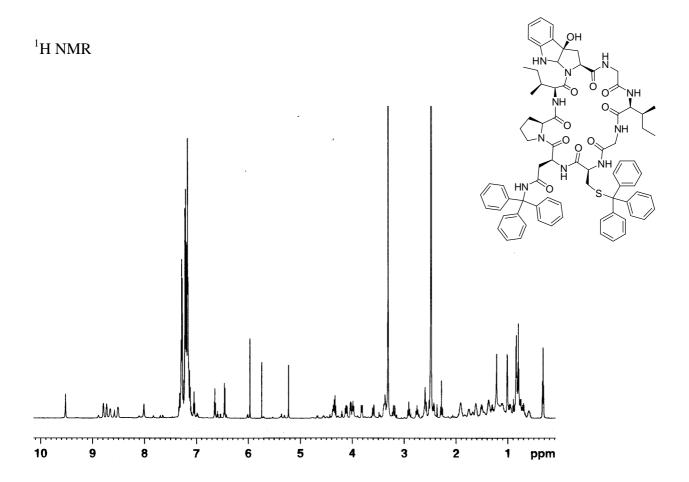
crude HPLC trace

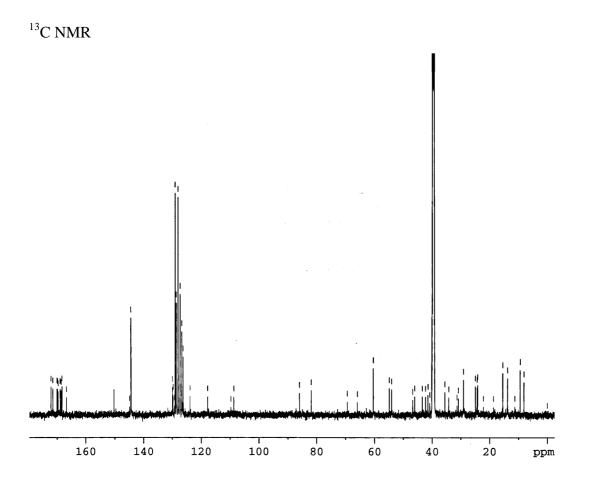

UV of major peak


Compound **9**: [syn-cis]-Cyclo(Cys(Tr)-Asn(Tr)-Pro-Ile-Hpi-Gly-Ile-Gly)

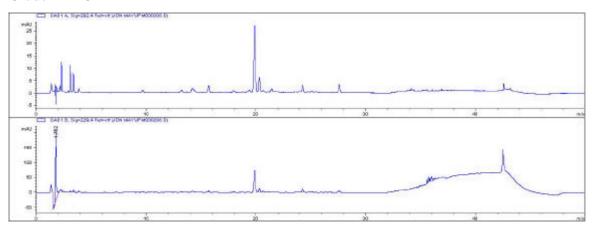
Chemical Formula: C₇₇H₈₄N₁₀O₁₀S Exact Mass: 1340.6093 Molecular Weight: 1341.6169

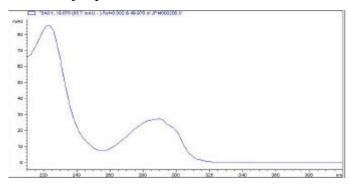

MS/ES +ve

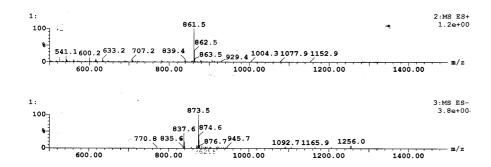



HPLC trace

UV of major peak from HPLC

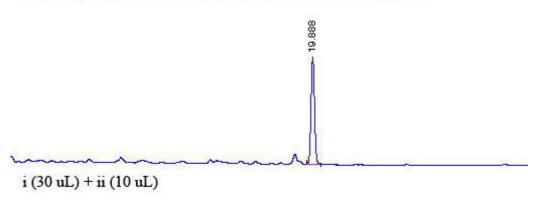


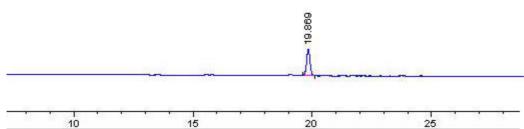

Compound **10**: Pro²-Ile³-S-deoxo-amaninamide


Chemical Formula: C₃₉H₅₄N₁₀O₉S Exact Mass: 838.3796 Molecular Weight: 838.9727

Crude HPLC

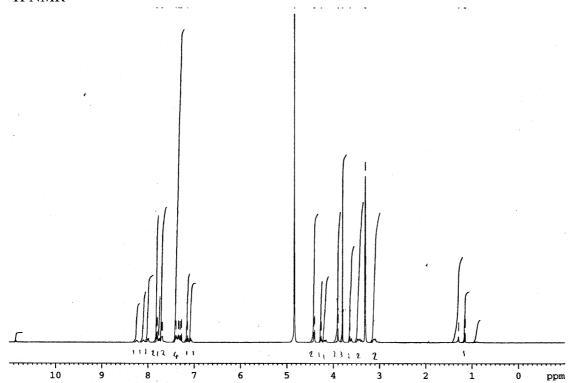
UV of major peak from HPLC

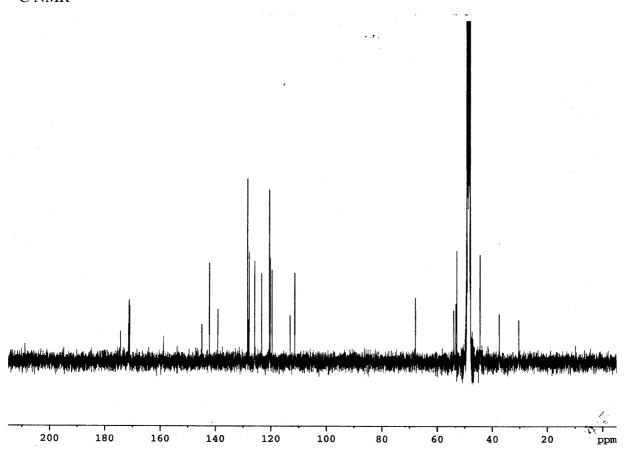




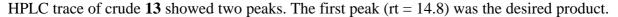
i) Compound 10 analytical - 10 uL injection

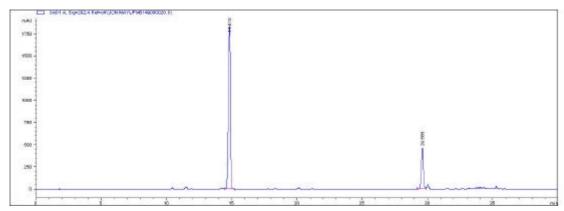
ii) Pro2-Ile3-S-deoxo-amaninamide reference - 25 uL injection

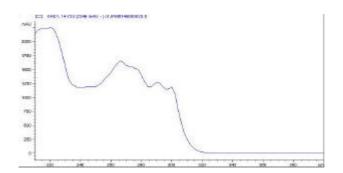



[2] J. P. May, P. Fournier, B. O. Patrick, D. M. Perrin, Chem. Eur. J. in press 2007.

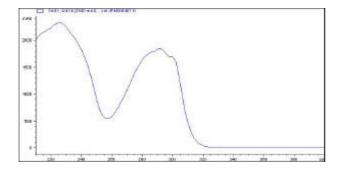
Compound 13: cyclic tryptathionine - Fmoc-Gly-Trp-Gly-Cys-OMe





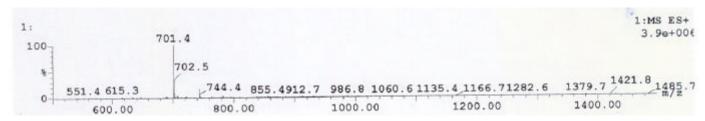


HPLC study on cyclic compound 13:

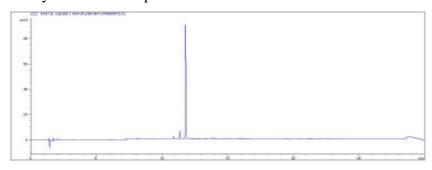


Peak 1 (rt = 14.8) was collected and characterized (NMR, MS, UV), but UV didn't show the characteristic absorption of a tryptathionine, because it was partially masked by the Fmoc moiety.

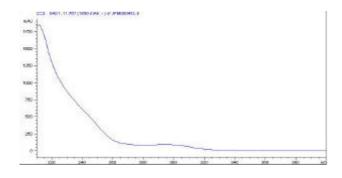
Hence, a small sample of 13 was treated with piperidine, evaporated to dryness and redissolved in MeOH/H₂O for analysis by HPLC. Three peaks were seen. Peak 1 had a characteristic UV spectra and MS of desired Fmoc-deprotected tryptathionine compound (see below). The other two peaks corresponded to starting material and Fmoc-piperidine byproduct.



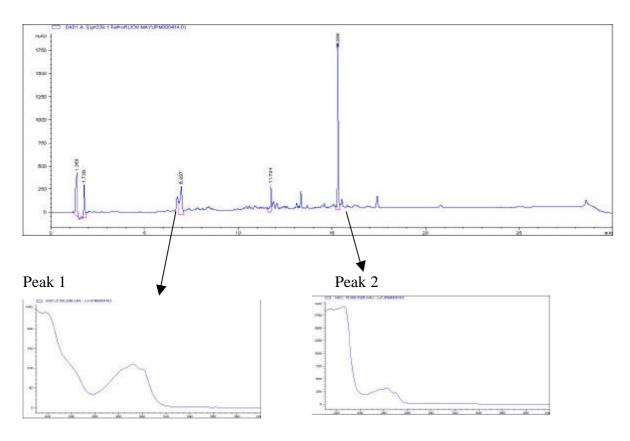
Study on Compound 14 (Ac-Hpi-Gly-Cys(Tr)-OMe)


The tripeptide Tr-Hpi-Gly-Cys(Tr)-OMe (May *et al. J. Org. Chem.* **2005**, *70*, 8424) was treated with HFIP/CH₂Cl₂ (1:4) for 10 mins, then the solvent was evaporated to dryness. The residue was redissolved in CH₂Cl₂ and acetic anhydride (1 eq.) and triethylamine (excess) were added. After 1hr the reaction was diluted with CH₂Cl₂ and washed with citric acid, sodium bicarbonate and brine. The organic phase was dried over sodium sulphate and purified with a silica column (CH₂Cl₂/MeOH 0-10%). The desired product was found by mass spec and a single peptide product was observed by HPLC.

Chemical Formula: C₃₈H₃₈N₄O₆S Exact Mass: 678.2512

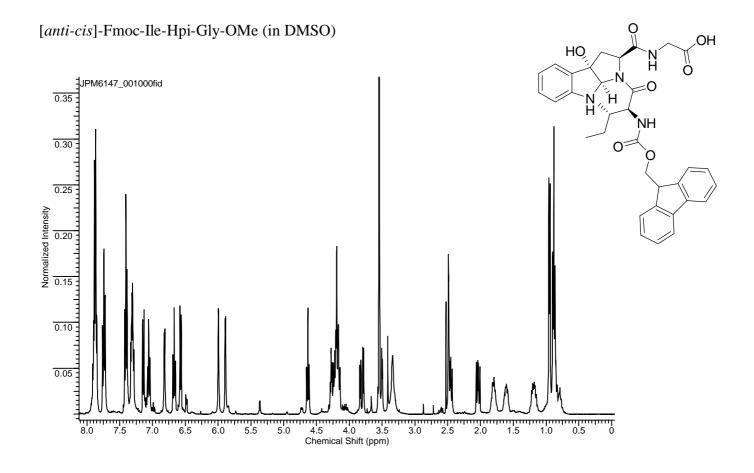

MS of product

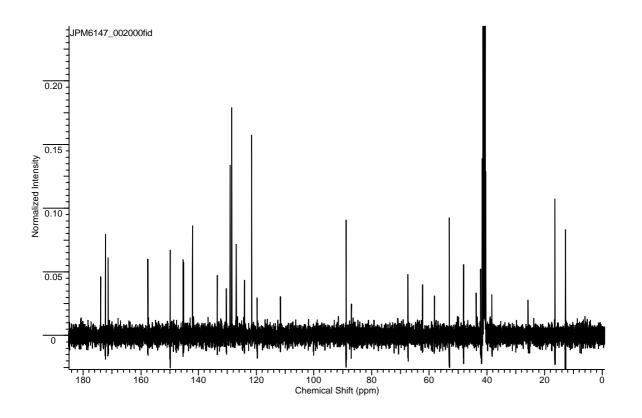
Analytical HPLC of product


UV absorption of product

N.B. No significant UV absorption shown in 250-350 region: no tryptathionine.

Compound 14 was then treated with neat TFA for 5 hrs.


Chemical Formula: C₁₉H₂₂N₄O₅S Exact Mass: 418.1311



Peaks corresponding to tryptathionine (peak 1) and oxindole (peak 2) were observed. The desired mass of the tryptathionine compound was seen in mass spectrometry of the crude reaction mixture $((M+Na)^+ = 441)$.

[anti-cis]-Fmoc-Ile-Hpi-Gly-Cys(Tr)-OMe: Method was identical to that used for compound 1. White foam 0.16 g (50%). $R_f = 0.5$ (CH₂Cl₂/MeOH 9:1); 1 H NMR (400 MHz, DMSO-d6) $\delta = 8.01$ -7.75 (m, 4H, NHCO, ArH^{Fmoc}), 7.71-7.65 (m, 2H, ArH^{Fmoc}), 7.46-7.37 (m, 2H, ArH^{Fmoc}), 7.36-7.22 (m, 2H, ArH^{Fmoc}), 7.11 (d, 1H, J = 7.5 Hz, ArH^{indole}), 7.03 (t, 1H, J = 7.5 Hz, ArH^{indole}), 6.75 (d, 1H, J = 4.0 Hz, NH^{indole}), 6.63 (t, 1H, J = 7.5 Hz, ArH^{indole}), 6.54 (d, 1H, J = 7.5 Hz, ArH^{indole}), 5.98 (s 1H, OH), 5.82 (d, 1H, J = 4.1 Hz, CH^{Hpi8a}), 4.60 (t, 1H, J = 8.1 Hz, CH^{Ilea}), 4.30-4.12 (m, 4H, CH₂Fmoc, CH^{Fmoc} CH^{Hpia}), 3.75 (dd, 1H, J = 11.6, 6.0 Hz, CH^{glya}), 3.56-3.41 (m, 4H, CH₃OMe, CH₂Glya), 2.58-2.39 (m, 1H, CH^{Hpiβ}), 2.01 (dd, J = 8.2, 4.9 Hz, CH Hpiβ), 1.84-1.78 (m, 1H, CH^{Ileβ}), 1.69-1.49 (m, 1H, CH^{Ile?}), 1.25-1.08 (m, 1H, CH^{Ile?}), 0.99-0.75 (m, 6H, CH^{Ile?}, Iled); Iled (100 MHz, DMSO-d6) $\delta = 173.9$ (C^{COOH}), 172.3 (C^{CONH}), 171.4 (C^{CONH}), 157.6 (C^{CONH}), 149.8 (C^{Hpi}), 145.4, 145.1 (C^{Fmoc}), 142.2, 142.1 (C^{Fmoc}), 133.5 (C^{3b}), 130.4 (CH⁶), 129.1 (CH^{Fmoc}), 128.5 (CH^{Fmoc}), 126.9, 126.8 (CH^{Fmoc}), 124.0 (CH⁴), 121.5 (CH^{Fmoc}), 119.6 (CH⁵), 111.6 (CH⁷), 88.8 (C^{3a}), 87.1 (C^{8a}), 67.3 (CH^{Fmoc}), 62.3 (CH^{Ilea}), 58.2 (CH^{Fmoc}), 53.1 (CH^{OMe}), 48.1 (CH^{Hpia}), 43.7 (CH^{Hpiβ}), 42.1 (CH^{Glya}), 38.2 (CH^{Ilea}), 25.8 (CH₂Ile²), 16.4 (CH^{Ilea}), 12.7 (CH^{Iled}); ES⁺/MS: 649.2 (M+Na)⁺.

