

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2007

Pd PEPPSI-IPr-Mediated Reactions in Metal-Coated Capillaries Under Microwave-Assisted, Continuous Flow Organic Synthesis (MACOS): The Synthesis of Indoles by Sequential Aryl Amination/Heck Coupling

Gjergji Shore, Sylvie Morin and Michael G. Organ*^[a]

[a] Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario, Canada, M3J 1P3 Table of Contents:

Experimental		S 3
	Microwave irradiation experiments	S 3
	General Procedure for creating the Pd- and Ag-film coating inside	
	of 1180 micron (ID) capillaries	S 3
	Pd film coating	S 3
	Ag film coating (the "silver-mirrror" approach)	S 3
	Ag film coating (the "colloidal silver" approach)	S4
	General Procedure for the Indole Synthesis	S4
References		S11
Spectra		S12
	¹ H-NMR of compound 3a	S12
	LC-MS of compound 3a	S 13
	¹ H-NMR of compound 3b	S14
	LC-MS of compound 3b	S15
	¹ H-NMR of compound 3c	S16
	LC-MS of compound 3c	S17
	¹ H-NMR of compound 3d	S18
	¹³ C-NMR of compound 3d	S19
	LC-MS of compound 3d	S20
	¹ H-NMR of compound 3e	S21
	LC-MS of compound 3e	S22
	¹ H-NMR of compound 3f	S23
	LC-MS of compound 3f	S24
	¹ H-NMR of compound $3g$	S25
	¹³ C-NMR of compound 3g	S26
	LC-MS of compound 3g	S27
	¹ H-NMR of compound 3h	S28
	¹³ C-NMR of compound 3h	S29
	LC-MS of compound 3h	S30

¹ H-NMR of compound 3i	S31
¹³ C-NMR of compound 3i	S32
LC-MS of compound 3i	S 33
¹ H-NMR of compound 3j	S 34
¹³ C-NMR of compound 3 j	S35
LC-MS of compound 3 j	S36
¹ H-NMR of compound 3k	S 37
LC-MS of compound 3k	S38
¹ H-NMR of compound 3 I	S39
LC-MS of compound 3 l	S 40
¹ H-NMR of compound 3m	S41
LC-MS of compound 3m	S42
¹ H-NMR of compound 3n	S43
LC-MS of compound 3n	S 44
¹ H-NMR of compound 30	S45
LC-MS of compound 30	S46
¹ H-NMR of compound 3p	S47
¹³ C-NMR of compound 3p	S 48
LC-MS of compound 3p	S 49
¹ H-NMR of compound 3q	S50
LC-MS of compound 3q	S 51
¹ H-NMR of compound 3r	S52
LC-MS of compound 3r	S53
¹ H-NMR of compound 3s	S54
¹³ C-NMR of compound 3s	S55
LC-MS of compound 3s	S56
¹ H-NMR of compound 3 t	S57
¹³ C-NMR of compound 3 t	S58
LC-MS of compound 3t	S59
¹ H-NMR of compound 3u	S 60
¹³ C-NMR of compound 3u	S61

Experimental

Microwave irradiation experiments:

All MACOS experiments were performed in 1180 μ m borosilicate capillaries, using a single mode Biotage Smith Creator Synthesizer, operating at a frequency of 2.45 GHz with irradiation power from 0 to 300 W. The capillaries were fed reactants from Hamilton gastight syringes attached to a Harvard 22 syringe pump pre-set to the desired flow rate. The system was connected to a sealed collection vial, where a pressurized air line was attached to create backpressure (pressure inside the system reached 75 psi). The temperatures reported were measured by an IR sensor built into the microwave chamber that reads the temperature on the outer surface of capillaries. All reagents and solvents were purchased from commercial sources and used without additional purification. Column chromatography purifications were carried out using the flash technique on silica gel 60 (200 – 400 mesh). ¹H NMR spectroscopy was run using a Bruker Advance 400 MHz instrument and all spectra were calibrated to 7.26 ppm for the signal from the residual proton of the deuterated chloroform solvent.

Purity analyses were conducted on Waters 2695LC – Quattro Ultima Mass Spectrometer (MS) using an H₂O-CH₃CN solvent system; the MS was run in "ESI+, dual scan" mode ($T = 350^{\circ}$ C). The

LC columns used were Synergy 4 micron Hydro RP 150mm X 4.6mm (T = 20° C) and Gemini C18 4 micron 150mm X 4.6mm (T = 24° C).

General Procedure for creating the Pd- and Ag-film coating inside of 1180 micron (ID) capillaries.

Pd film coating. Borosilicate capillaries (1180 μ m internal diameter) were filled with a 0.1 mmol/mL solution of palladium acetate in DMF, capped at both ends with Teflon tape and placed inside a muffle furnace; the temperature was increased to 120° C. After 10-30 min., metallic Pd was gradually released from the solution and deposited on the inner side of capillaries. Capillaries were drained, rinsed with fresh DMF and the tubes with their new thin films were calcinated (dry) in the same furnace for 1 min. at 400°C (X3) before use in MACOS.

Ag film coating (the "silver-mirror" approach). Tollen's reagent (0.5 mL) was mixed with 0.5 mL of 5% D-glucose solution into a 2 mL vial. The 1180 μ m capillaries were filled with this mixture, capped at both ends with Teflon tape and left to develop at room temperature. After the Ag coating was fully developed (5-10 min), the remaining solution was poured out, the capillaries were rinsed with acetone and then they were calcinated at 400°C in a muffle furnace before use.

Tollen's reagent was prepared as follows: 1.5 mL of 4M NaOH was added drop-wise into 20 mL of a 5% AgNO₃ solution, forming a gray precipitate that was titrated with 4M NH₄OH until the solution became clear.

Ag film coating (the "colloidal silver" approach). Borosilicate capillaries (1180 μm internal diameter) were filled with a 0.5 mmol/mL colloidal solution of silver oxide in ethylene glycol, capped at both ends with Teflon tape and placed inside a muffle furnace; the temperature was gradually increased to 140° C. After the Ag coating was fully developed (30 min), capillaries were rinsed with acetone and placed inside a muffle furnace for calcination at 400°C before use.

General Procedure for the Indole Synthesis.

A stock solution containing the substituted bromo alkene **1** (0.75 mmol, 1.5 equiv.), o-bromo aniline **2** (0.5 mmol, 1.0 equiv.), sodium t-butoxide (1.5 mmol, 3.0 equiv.), Pd PEPPSI-IPr (18 mg, 2.6 mol %.) in 0.8 mL toluene (total mixture volume is 1.0 mL) was prepared.

The continuous flow microwave system was primed with toluene and a 1 mL aliquot from the homogenous stock solution was taken up in a Hamilton gastight syringe that was connected to the reactor system with the aid of MicrotightTM fittings. The syringe was placed in a Harvard 22 syringe pump that was set to deliver 15 μ L/min and the single mode microwave was programmed so as to keep the temperature constant at the specified levels. The output (effluent) from the reactor was fed into a sealed, pressurized vial (75 psi) and then analyzed by ¹H NMR spectroscopy immediately after the reaction. Typically 0.5-0.8 mL of the crude reaction mixture was collected and the product was purified by silica gel column chromatography.

2-Ethyl-1H-indole (3a). Following the general procedure above for the preparation of indoles using MACOS, 0.6 mL of crude reaction mixture, derived from **1a** and **2a**, were collected and purification by flash chromatography (14% ethyl acetate in hexane) afforded 35.1 mg of **3a** in 81% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.81 (br s, 1H), 7.61 (d, J = 2.1 Hz, 1H), 7.32 (d, J = 8.0 Hz, 1H), 7.17 (m, 2H), 6.32 (s, 1H), 2.82 (q, J = 7.5 Hz, 2H), 1.39 (d, J = 7.5 Hz, 3H). Spectra matched that found in the literature.³

2-Methyl-1H-indole (3b). Following the general procedure above for the preparation of indoles using MACOS, 0.55 mL of crude reaction mixture, derived from **1b** and **2a**, were collected and purification by flash chromatography (20% acetone in hexane) afforded 26 mg of **3b** in 72% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.87 (br s, 1H), 7.53 (d, J = 8.1 Hz, 1H), 7.31 (d, J = 8.0 Hz, 1H), 7.10 (m, 2H), 6.24 (s, 1H), 2.47 (s, 3H). Spectra matched that found in the literature.^{1,2}

2-Phenyl-1H-indole (3c). Following the general procedure above for the preparation of indoles using MACOS, 0.7 mL of crude reaction mixture, derived from **1c** and **2a**, were collected and purification by flash chromatography (12% ethyl acetate in hexane) afforded 60 mg of **3c** in 74% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.35 (br s, 1H), 7.68 (m, 3H), 7.46 (m, 3H), 7.36 (t, J = 8.0 Hz,

1H), 7.23 (t, J = 7.1 Hz, 1H), 7.15 (t, J = 7.1 Hz, 1H), 6.86 (s, 1H). Spectra matched that found in the literature.¹

2-Ethyl-5-fluoro-1H-indole (3d). Following the general procedure above for the preparation of indoles using MACOS, 0.55 mL of crude reaction mixture, derived from **1a** and **2b**, were collected and purification by flash chromatography (30% dichloromethane in hexane) afforded 33.6 mg of **3d** in 76% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.88 (br s, 1H), 7.21 (m, 2H), 6.88 (t, J¹H-¹⁹F = 9.0 Hz, 1H), 6.23 (s, 1H), 2.81 (q, J = 7.5 Hz, 2H), 1.37 (t, J = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 157.9 (¹J¹³C-¹⁹F = 232.3 Hz), 143.2, 132.3, 129.2 (³J¹³C-¹⁹F = 10.2 Hz), 110.6 (³J¹³C-¹⁹F = 10.2 Hz), 109.0 (²J¹³C-¹⁹F = 26.3 Hz), 104.7 (²J¹³C-¹⁹F = 23.4 Hz), 99.2 (⁴J¹³C-¹⁹F = 4.4 Hz), 21.5, 13.1. Anal. Calcd. for C₁₀H₁₀NF: C, 73.88; H, 6.19; N, 8.58. Found: C, 73.90; H, 6,28; N, 8.48. Compound **3b** has been reported previously⁹ without ¹H NMR or ¹³C NMR spectra, which are reported here.

2-Methyl-5-fluoro-1H-indole (3e). Following the general procedure above for the preparation of indoles using MACOS, 0.58 mL of crude reaction mixture, derived from **1b** and **2b**, were collected and purification by flash chromatography (20% ethyl acetate in hexane) afforded 31.6 mg of **3e** in 73% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.84 (br s, 1H), 7.19 (m, 2H), 6.87 (dt, J¹H-¹⁹F = 9.0, 2.0 Hz, 1H), 6.21 (s, 1H), 2.46 (s, 3H). Spectra matched that found in the literature.⁵

2-Phenyl-5-fluoro-1H-indole (3f). Following the general procedure above for the preparation of indoles using MACOS, 0.78 mL of crude reaction mixture, derived from **1c** and **2b**, were collected and purification by flash chromatography (30% dichloromethane in hexane) afforded 64.0 mg of **3f** in 78% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.33 (br s, 1H), 7.68 (d, J = 7.0 Hz, 2H), 7.48 (t, J = 8.0

Hz, 2H), 7.35 (m, 3H), 6.97 (dt, $J^{1}H^{-19}F = 9.0$, 3.0 Hz, 1H), 6.81 (s, 1H). Spectra matched that found in the literature.^{5,7}

2-Ethyl-5-isopropyl-1H-indole (3g). Following the general procedure above for the preparation of indoles using MACOS, 0.61 mL of crude reaction mixture, derived from **1a** and **2c**, were collected and purification by flash chromatography (30% dichloromethane in hexane) afforded 47.4 mg of **3g** in 83% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.68 (br s, 1H), 7.55 (s, 1H), 7.29 (d, J = 8.1 Hz, 1H), 7.18 (d, J = 8.1 Hz, 1H), 6.34 (s, 1H), 3.16 (septet, J = 7.1 Hz, 1H), 2.83 (q, J = 7.1 Hz, 2H), 1.45 (m, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 141.7, 140.2, 134.5, 129.0, 120.2, 116.9, 110.1, 98.5, 34.4, 24.9, 21.5, 13.5. HRMS *m/z* calcd for C₁₃H₁₇N: 187.1361; found: 187.1353.

2-Methyl-5-isopropyl-1H-indole (3h). Following the general procedure above for the preparation of indoles using MACOS, 0.68 mL of crude reaction mixture, derived from **1b** and **2c**, were collected and purification by flash chromatography (30% dichloromethane in pentane) afforded 46.0 mg of **3h** in 79% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.69 (br s, 1H), 7.44 (s, 1H), 7.24 (d, J = 8.1 Hz, 1H), 7.09 (d, J = 8.1 Hz, 1H), 6.24 (s, 1H), 3.07 (septet, J = 7.1 Hz, 1H), 2.45 (s, 3H), 1.38 (d, J = 7.1 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 140.4, 135.3, 134.6, 129.2, 120.1, 116.7, 110.0, 100.1, 34.2, 24.7, 13.7. HRMS *m/z* calcd for C₁₂H₁₅N: 173.1204; found: 173.1206.

2-Phenyl-5-isopropyl-1H-indole (3i). Following the general procedure above for the preparation of indoles using MACOS, 0.72 mL of crude reaction mixture, derived from **1c** and **2c**, were collected and purification by flash chromatography (30% dichloromethane in pentane) afforded 68.0 mg of **3i** in 80% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.27 (br s, 1H), 7.70 (d, J = 7.1 Hz, 2H), 7.56 (s, 1H), 7.49 (t, J = 8.1 Hz, 2H), 7.38 (m, 2H), 7.18 (d, J = 8.1 Hz, 1H), 6.86 (s, 1H), 3.10 (septet, J = 7.1 Hz, 2H)

1H), 1.41 (d, J = 7.1 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 140.9, 138.0, 135.4, 132.6, 129.4, 128.9, 127.5, 125.1, 121.6, 117.5, 110.6, 99.8, 34.2, 24.6. HRMS *m*/*z* calcd for C₁₇H₁₇N: 235.1361; found: 235.1355.

2-Ethyl-5-methyl-1H-indole (3j). Following the general procedure above for the preparation of indoles using MACOS, 0.66 mL of crude reaction mixture, derived from **1a** and **2d**, were collected and purification by flash chromatography (20% ethyl acetate in hexane) afforded 39.5 mg of **3j** in 75% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.79 (br s, 1H), 7.35 (s, 1H), 7.21 (d, J = 8.0 Hz, 1H), 6.96 (d, J = 8.1 Hz, 1H), 6.19 (s, 1H), 2.80 (q, J = 8.0 Hz, 2H), 2.46 (s, 3H), 1.36 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 141.4, 134.6, 130.2, 128.7, 122.4, 119.5, 109.9, 98.2, 21.5, 21.3, 13.2. HRMS *m*/*z* calcd for C₁₁H₁₃N: 159.1048; found: 159.1050. Compound **3j** has been reported previously⁹ without ¹H NMR or ¹³C NMR spectra, which are reported here.

2-Methyl-5-methyl-1H-indole (3k). Following the general procedure above for the preparation of indoles using MACOS, 0.84 mL of crude reaction mixture, derived from **1b** and **2d**, were collected and purification by flash chromatography (20% acetone in hexane) afforded 45.8 mg of **3k** in 82% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.76 (br s, 1H), 7.33 (s, 1H), 7.19 (d, J = 8.1 Hz, 1H), 6.96 (d, J = 9.1 Hz, 1H), 6.16 (s, 1H), 2.45 (s, 6H). Spectra matched that found in the literature.⁶

2-Phenyl-5-methyl-1H-indole (3l). Following the general procedure above for the preparation of indoles using MACOS, 0.75 mL of crude reaction mixture, derived from **1c** and **2d**, were collected and purification by flash chromatography (12% ethyl acetate in hexane) afforded 65.8 mg of **3l** in 85% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.26 (br s, 1H), 7.68 (m, 2H), 7.45 (m, 3H), 7.31 (m, 2H), 7.05 (d, J = 7.0 Hz, 1H), 6.78 (s, 1H), 2.48 (s, 3H). Spectra matched that found in the literature.⁴

2-Ethyl-5-Chloro-1H-indole (3m). Following the general procedure above for the preparation of indoles using MACOS, 0.82 mL of crude reaction mixture, derived from **1a** and **2e**, were collected and purification by flash chromatography (20% ethyl acetate in hexane) afforded 51.4 mg of **3m** in 70% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.91 (br s, 1H), 7.51 (s, 1H), 7.22 (d, J = 8.1 Hz, 1H), 7.08 (dd, J = 9.1, 2.0 Hz, 1H), 6.21 (s, 1H), 2.81 (q, J = 8.1 Hz, 2H), 1.37 (t, J = 8.1 Hz, 3H). Spectra matched that found in the literature.²

2-Methyl-5-Chloro-1H-indole (3n). Following the general procedure above for the preparation of indoles using MACOS, 0.7 mL of crude reaction mixture, derived from **1b** and **2e**, were collected and purification by flash chromatography (20% acetone in hexane) afforded 35.8 mg of **3n** in 62% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.88 (br s, 1H), 7.49 (d, J = 2.3 Hz, 1H), 7.20 (d, J = 8.7 Hz, 1H), 7.07 (dd, J = 8.7, 2.0 Hz, 1H), 6.19 (s, 1H), 2.49 (s, 3H). Spectra matched that found in the literature.⁵

2-Phenyl-5-Chloro-1H-indole (30). Following the general procedure above for the preparation of indoles using MACOS, 0.5 mL of crude reaction mixture, derived from **1c** and **2e**, were collected and purification by flash chromatography (16% ethyl acetate in hexane) afforded 37.4 mg of **3o** in 69% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.38 (br s, 1H), 7.68 (d, J = 8.0 Hz, 2H), 7.61 (d, J = 2.1 Hz, 1H), 7.48 (t, J = 7.0 Hz, 2H), 7.35 (m, 2H), 7.17 (dd, J = 9.1, 2.0 Hz, 1H), 6.79 (s, 1H). Spectra matched that found in the literature.⁴

2-Ethyl-5,7-dimethyl-1H-indole (3p). Following the general procedure above for the preparation of indoles using MACOS, 0.45 mL of crude reaction mixture, derived from **1a** and **2f**, were collected

and purification by flash chromatography (10% acetone in hexane) afforded 27.0 mg of **3p** in 72% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.72 (br s, 1H), 7.22 (s, 1H), 6.81 (s, 1H), 6.22 (s, 1H), 2.84 (q, J = 8.1 Hz, 2H), 2.48 (s, 3H), 2.46 (s, 3H), 1.39 (t, J = 8.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 141.1, 133.7, 129.0, 128.4, 123.4, 119.2, 117.6, 99.1, 21.8, 21.3, 15.7, 13.4. HRMS *m*/*z* calcd for C₁₂H₁₅N: 173.1204; found: 173.1205.

2-Methyl-5,7-dimethyl-1H-indole (3q). Following the general procedure above for the preparation of indoles using MACOS, 0.60 mL of crude reaction mixture, derived from **1b** and **2f**, were collected and purification by flash chromatography (20% acetone in hexane) afforded 37.5 mg of **3q** in 85% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.70 (br s, 1H), 7.19 (s, 1H), 6.79 (s, 1H), 6.17 (s, 1H), 2.48 (s, 3H), 2.46 (s, 3H), 2.43 (s, 3H). Spectra matched that found in the literature.¹⁰

2-Phenyl-5,7-dimethyl-1H-indole (3r). Following the general procedure above for the preparation of indoles using MACOS, 0.40 mL of crude reaction mixture, derived from **1c** and **2f**, were collected and purification by flash chromatography (30% dichloromethane in hexane) afforded 36.4 mg of **3r** in 82% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.12 (br s, 1H), 7.71 (d, J = 7.0 Hz, 2H), 7.46 (m, 2H), 7.34 (m, 2H), 6.87 (s, 1H), 6.78 (s, 1H), 2.54 (s, 3H), 2.45 (s, 3H). Spectra matched that found in the literature.⁸

2-Ethyl-5,7-difluoro-1H-indole (3s). Following the general procedure above for the preparation of indoles using MACOS, 0.68 mL of crude reaction mixture, derived from **1a** and **2g**, were collected and purification by flash chromatography (10% ethyl ether in pentane) afforded 39.2 mg of **3s** in 64% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.02 (br s, 1H), 7.01 (dd, J¹H-¹⁹F = 9.0, 2.0 Hz, 1H), 6.68 (dt, J¹H-¹⁹F = 10.0, 2.0 Hz, 1H), 6.28 (s, 1H), 2.82 (q, J = 7.5 Hz, 2H), 1.38 (t, J = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 156.9 (¹J¹³C-¹⁹F = 235.6; 10.2 Hz), 147.9 (¹J¹³C-¹⁹F = 245.9; 14.6 Hz), 143.8, 131.3 (²J¹³C-¹⁹F = 19.1 Hz), 120.4 (³J¹³C-¹⁹F = 13.2 Hz), 100.5 (²J¹³C-¹⁹F = 21.9;16.1 Hz), 99.9 (⁴J¹³C-¹⁹F = 4.4

Hz), 95.9 (${}^{2}J^{_{13}}C^{_{-19}}F = 48.3$; 20.5 Hz), 22.2, 13.2. HRMS *m*/*z* calcd for C₁₀H₉NF₂: 181.0703; found: 181.0701.

2-Methyl-5,7-difluoro-1H-indole (3t). Following the general procedure above for the preparation of indoles using MACOS, 0.60 mL of crude reaction mixture, derived from **1b** and **2g**, were collected and purification by flash chromatography (10% ethyl ether in pentane) afforded 32.7 mg of **3t** in 65% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.00 (br s, 1H), 6.98 (d, J¹H-¹⁹F = 9.0 Hz, 1H), 6.66 (t, J¹H-¹⁹F = 10.0 Hz, 1H), 6.24 (s, 1H), 2.48 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 157.3 (¹J¹³C-¹⁹F = 235.6; 10.2 Hz), 147.6 (¹J¹³C-¹⁹F = 244.4; 14.6 Hz), 138.2, 131.6 (²J¹³C-¹⁹F = 17.5 Hz), 120.8 (³J¹³C-¹⁹F = 11.7 Hz), 101.6 (⁴J¹³C-¹⁹F = 4.4 Hz), 100.3 (²J¹³C-¹⁹F = 23.4; 4.4 Hz), 96.1 (²J¹³C-¹⁹F = 30.7; 20.5 Hz), 13.6. HRMS *m*/*z* calcd for C₉H₇NF₂: 167.0547; found: 167.0544.

2-Phenyl-5,7-difluoro-1H-indole (3u). Following the general procedure above for the preparation of indoles using MACOS, 0.50 mL of crude reaction mixture, derived from **1c** and **2g**, were collected and purification by flash chromatography (25% dichloromethane in pentane) afforded 36.0 mg of **3u** in 63% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.44 (br s, 1H), 7.69 (d, J = 8.1 Hz, 2H), 7.50 (t, J = 8.0 Hz, 2H), 7.41 (m, 1H), 7.11 (d, J⁺H⁻¹⁹F = 8.0 Hz, 1H), 6.83 (s, 1H), 6.77 (t, J⁺H⁻¹⁹F = 10.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 157.2 (¹J⁺G⁻¹⁹F = 237.1; 10.2 Hz), 148.4 (¹J⁺³C⁻¹⁹F = 245.9; 14.6 Hz), 140.2, 131.7 (³J⁺³C⁻¹⁹F = 4.4 Hz), 131.2, 129.4, 128.1, 125.5, 121.6 (²J⁺³C⁻¹⁹F = 13.2 Hz), 101.0 (²J⁺³C⁻¹⁹F = 23.4; 4.4 Hz), 100.5, 97.4 (²J⁺³C⁻¹⁹F = 30.7; 20.5 Hz). HRMS *m*/*z* calcd for C₁₄H₉NF₂: 229.0703; found: 229.0692. Anal. Calcd. for C₁₄H₉NF₂: C, 73.36; H, 3.96; N, 6.11; F, 16.58. Found: C, 73.54; H, 3.58; N, 6.11; F, 16.38.

References

1. Dib, H. H.; Al-Awadi, N.; Ibrahim, Y. A.; El-Dusouqui, M. E. J. Phys. Org. Chem. 2004, 17, 267.

2. Hamel, P.; Zajac, N.; Atkinson, J. G.; Girard, Y. J. Org. Chem. 1994, 59, 6372.

3. Zhao, D.; Hughes, D. L.; Bender, D. R.; DeMarco, A. M.; Reider, P. R. J. Org. Chem. 1991, 56, 3001.

- 4. Davies, I. W.; Smitrovich, J. H., Sidler, R., Qu, C., Gresham, V., Bazaral, C., *Tetrahedron*, **2005**, 61, 6425-37.
- 5. Mckew, J.C., Foley, M.A., Thakker, P., Behnke, M.L., Lovering, F.E., Sun, F-W., Tan, S., Wu, K., Shen, M., Zhang, W., Gonzalez, M., Liu, S., Mahadevan, A., Sard, H., Khor, S., Clark, J.D., *J*.

Med. Chem. 2006, 49, 135-138.

- 6. Sigma-Aldrich reference NMR spectrum.
- 7. Lautens, M., Fang, Y-Q., Org. Lett. 2005, 7, 3549.
- 8. Junjappa, H., Synthesis, 1975, 12, 798.
- 9. Bach, N.J., Dillard, R.D., Draheim, S.E., Hermann, R.B., Schevitz, R.W., "Preparation of 1Hindole-3acetic acid hydrazides as sPLA2 inhibitors", *Eur. Pat. Appl.* **1994**.
- 10. Piozzi, F., Langella, M.R., Gazzeta Chimica Italiana 1963, 93(11), 1382-91.

