Tandem Cofacial Stacks of Porphyrin-Phthalocyanine Dyad through Complementary Coordination

Mitsuhiko Morisue† and Yoshiaki Kobuke‡*

Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma 630-0101, Japan.

‡Present Address: Institute of Advanced Energy, Gokasho, Uji, Kyoto 611-0011, Japan. E-mail Address:
kobuke@iae.kyoto-u.ac.jp

†Present Address: Department of Biomolecular Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
1. NMR Measurements:

Figure S1. 1H NMR (600 MHz) spectrum of H$_2$(ImP)-Zn(nBuO)$_6$Pc in CDCl$_3$ at 25 °C.

Figure S2. 13C NMR (150 MHz) spectrum of H$_2$(ImP)-Zn(nBuO)$_6$Pc in CDCl$_3$ at 25 °C.
Figure S3. 1H-1H COSY spectrum of H$_2$(ImP)-Zn(nBuO)$_6$Pc in CDCl$_3$ at 25 °C.
Figure S4. \(^1\)H-\(^1\)H ROESY spectrum of H\(_2\)(ImP)-Zn(nBuO\(_6\)Pc) in CDCl\(_3\) at 25 °C.

Figure S5. \(^1\)H-\(^{13}\)C HMOC spectrum of H\(_2\)(ImP)-Zn(nBuO\(_6\)Pc) in CDCl\(_3\) at 25 °C.
Figure S6. 1H-13C HMBC spectrum of H$_2$(ImP)-Zn(nBuO$_6$Pc) in CDCl$_3$ at 25 °C.

Figure S7. 1H NMR (600 MHz) spectrum of H$_2$(ImP)-Zn(nBuO$_6$Pc) with 10% TFA in CDCl$_3$ at 25 °C.
Figure S8. 1H NMR (600 MHz) spectrum of H$_2$(ImP)-Zn(tBu$_3$Pc) in CDCl$_3$ at 25 °C.

Figure S9. 13C NMR (150 MHz) spectrum of H$_2$(ImP)-Zn(tBu$_3$Pc) in CDCl$_3$ at 25 °C.
Figure S10. 1H-13C HMOC spectrum of H$_2$(ImP)-Zn(tBu$_3$Pc) in CDCl$_3$ at 25 °C.
2. Spectral Titration:

Figure S11. Spectral titration of H₂(ImP)-Zn(tBu₃Pc) with 1-methylimidazole (recorded on addition of every 5000 equivalent of 1-methylimidazole up to 150000 equivalent, and then 200000, 300000, 400000, and 500000 equivalent) in toluene at 25 °C. Fluorescence spectra were shown normalized at excitation wavelength at 455 nm (recorded on every observation of absorption spectra).

Figure S12. Spectral titration of H₂(ImP)-Zn(tBu₃Pc) with 1-methylimidazole (recorded on addition of every 5000 equivalent of 1-methylimidazole up to 150000 equivalent) in THF at 25 °C. Fluorescence spectra were shown normalized at excitation wavelength at 455 nm (recorded on addition of every 50000 equivalent of 1-methylimidazole).
Figure S13. Spectral titration of $\text{H}_2(\text{ImP})\cdot\text{Zn(}t\text{Bu}_3\text{Pc)}$ with 1-methylimidazole (recorded on addition of every 1000 equivalent of 1-methylimidazole up to 6000 equivalent) in CH_2Cl_2 at 25 °C. Fluorescence spectra were shown normalized at excitation wavelength at 455 nm (recorded on addition of 0 and 6000 equivalent of 1-methylimidazole).

Figure S14. Spectral titration of $\text{H}_2(\text{ImP})\cdot\text{Zn(}n\text{BuO}_6\text{Pc)}$ with 1-methylimidazole (recorded on addition of every 5000 equivalent of 1-methylimidazole up to 150000 equivalent) in toluene at 25 °C. Inset shows the fitting plot for absorbance at 717 nm. Fluorescence spectra were shown normalized at excitation wavelength at 455 nm (recorded on addition of every 5000 equivalent of 1-methylimidazole up to 150000 equivalent).
Figure S15. Spectral titration of $\text{H}_2(\text{ImP})\text{-Zn(nBuO}_6\text{Pc})$ with 1-methylimidazole (recorded on addition of every 5000 equivalent of 1-methylimidazole up to 150000 equivalent) in THF at 25 °C. Fluorescence spectra were shown normalized at excitation wavelength at 455 nm (recorded on addition of 0, 100000, 150000, 200000, and 250000 equivalent of 1-methylimidazole, and the spectrum without 1-methylimidazole was magnified by 10 times).

Figure S16. Spectral titration of $\text{H}_2(\text{ImP})\text{-Zn(nBuO}_6\text{Pc})$ with 1-methylimidazole (recorded on addition of every 1000 equivalent of 1-methylimidazole up to 6000 equivalent) in CH_2Cl_2 at 25 °C. Fluorescence spectra were shown normalized at excitation wavelength at 455 nm (recorded on addition of 0 and 6000 equivalent of 1-methylimidazole).