

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2008

New Highly Asymmetric Henry Reaction Catalyzed by Cu(II) and a C₁-Symmetric Amino Pyridine Ligand, and Its Application to the Synthesis of Miconazole.

Gonzalo Blay,* Luis R. Domingo, Victor Hernández-Olmos, and José R. Pedro*

Departament de Química Orgànica, Facultat de Química, Universitat de València, Dr. Moliner 59, E-46100 Burjassot (València), Spain General methods: Commercial reagents were used as purchased. Reagent quality absolute EtOH without additional drying was used for all enantioselective reactions which were carried out in test tubes stopped with a septum. No special precautions were observed for air or moisture exclusion. Reactions were monitored by TLC analysis using Merck Silica Gel 60 F-254 thin layer plates. Flash column chromatography was performed on Merck silica gel 60, 0.040-0.063 mm. Diastereomerically pure samples of compounds 10-12 were obtained by HPLC. Specific optical rotations were recorded on a Perkin-Elmer 241 polarimeter using sodium light (D line 589 nm). NMR spectra were recorded on Bruker Avance spectrometers in the deuterated solvents as stated, using residual non-deuterated solvent as internal standard and CFCl₃ as internal standard for ¹⁹F NMR. J values are given in Hz. The carbon type was determined by DEPT experiments. Mass spectra were recorded on a Fisons Instruments VG Autospec GC 8000 series. Mass spectra (EI) were run at 70 eV. Mass spectra (FAB) were carried out at 30 kV in a MNBA matrix. Chiral HPLC analyses were performed in a Hitachi Elite Lachrom instrument equipped with a Hitachi UV diode-array L-4500 detector using chiral stationary columns from Daicel. Retention times are given in min. Diastereomerically pure samples of compounds 10-12 were obtained by HPLC. For the stereochemical notation of these compounds, i. e. (1S, 2R), 1 always refers to the C-OH carbon and 2 always refers to the C-NO₂ carbon.

Synthesis of amino pyridine ligands

Compound 2:

Sodium borohydride (1.59 g, 4.13 mmol) was added portionwise to a solution of imino pyridine $\mathbf{1}^{[1]}$ (1.00 g, 4.13 mmol) and NiCl₂ (1.09 g, 8.26 mmol) in MeOH (60 mL) at -30 °C under nitrogen atmosphere over a 1 h period. After 2h, the solvent was evaporated under reduced pressure. Column chromatography eluting with EtOAc afforded 624 mg (62 %) of amino pyridine $\mathbf{2}$: an oil; $[\alpha]_D^{25} = -80.6$ (c = 1.01 in CHCl₃); ¹H NMR (300 MHz, CDCl₃): $\delta = 8.51$ (dd, J = 4.8, 0.6 Hz, 1H), 7.61 (td, J = 7.5, 1.8 Hz, 1H), 7.32 (d, J = 7.5 Hz, 1H), 7.12 (ddd, J = 7.5, 5.1, 0.6 Hz, 1H), 3.88 (d, J = 14.4 Hz, 1H), 3.78 (d, J = 14.4 Hz, 1H), 2.62-2.57 (m, 1H), 2.53 (br s, 1H), 1.70-1.42 (m, 5H), 1.07 (s, 3H), 1.03 (d, J = 8.4 Hz, 2H), 0.92 (s, 3H), 0.80 ppm (s, 3H); ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 160.4$ (s), 149.0 (d), 136.3 (d), 122.2 (d), 121.7 (d), 66.4 (d), 53.9 (t), 48.4 (s), 46.7 (s), 45.2 (d), 38.5 (t), 36.8 (t), 27.3 (t), 20.5 (q), 2

12.2 ppm (q); MS (EI) m/z (%): 244 (M⁺, 0.8), 152 (100), 135 (29), 95 (41), 93 (92); HRMS calcd for C₁₆H₂₄N₂ (M⁺): 244.1939, found: 244.1936.

Compound 3

Following the same procedure as for the synthesis of compound **2**, from compound **16**^[1] (100 mg, 0.39 mmol) was obtained compound **3** (60.8 mg, 60%): $[\alpha]_D^{25} = -70.3$ (c = 1.02 in CHCl₃); ¹H NMR (300 MHz, CDCl₃): $\delta = 8.49$ (dq, J = 4.8, 0.9 Hz, 1H), 7.57 (td, J = 7.5, 1.8 Hz, 1H), 7.16 (d, J = 7.5 Hz, 1H), 7.09 (ddd, J = 7.5, 4.8, 0.9 Hz, 1H), 2.99-2.84 (m, 4H), 2.56 (t, J = 6.6 Hz, 1H), 1.69-1.41 (m, 5H), 1.09-0.98 (m, 2H), 0.94 (s, 3H), 0.82 (s, 3H), 0.77 ppm (s, 3H); ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 160.7$ (s), 149.1 (d), 136.2 (d), 123.3 (d), 121.1 (d), 66.5 (d), 48.4 (s), 48.3 (t), 46.6 (s), 45.2 (d), 38.7 (t), 38.5 (t), 36.9 (t), 27.3 (t), 20.5 (q), 20.3 (q), 12.1 ppm (q); MS (EI) *m/z* (%): 258 (M⁺, 23.2), 187 (63), 152 (100), 149 (61), 106 (85), 95 (91), 93 (88); HRMS calcd for C₁₇H₂₆N₂ (M⁺): 258.2096, found: 258.2104 .

Compound 4

Following the same procedure as for the synthesis of compound **2**, from compound **17**^[1] (100 mg, 0.39 mmol) was obtained compound **4** (73 mg, 72 %): $[\alpha]_D^{25} = -66.0$ (c = 1.01 in CHCl₃); ¹H NMR (300 MHz, CDCl₃): $\delta = 7.51$ (t, J = 7.5 Hz, 1H), 7.13 (d, J = 7.5, 1H), 6.99 (d, J = 7.5 Hz, 1H), 3.88 (d, J = 14.4 Hz, 1H), 3.81 (d, J = 14.4 Hz, 1H), 2.67-2.63 (m, 1H), 2.52 (s, 3H), 1.71-1.48 (m, 5H), 1.09 (s, 3H), 1.07-1.04 (m, 2H), 0.95 (s, 3H), 0.82 ppm (s, 3H); ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 159.1$ (s), 157.6 (s), 136.7 (d), 121.4 (d), 119.0 (d), 66.5 (d), 53.7 (t), 48.5 (s), 46.8 (s), 45.2 (d), 38.3 (t), 36.8 (t), 27.3 (t), 24.4 (q), 20.5 (q), 20.5 (q), 12.2 ppm (q); MS (EI) *m/z* (%): 258 (M⁺, 0.4), 152 (58), 107 (100), 95 (34); HRMS calcd for C₁₇H₂₆N₂ (M⁺): 258.2096, found: 258.2097.

Compound 5

Following the same procedure as for the synthesis of compound **2**, from compound **18**^[1] (200 mg, 0.83 mmol) was obtained compound **5** (201 mg, 99 %): $[\alpha]_D^{25} = +49.4$ (c = 1.11 in CHCl₃); ¹H NMR (300 MHz, CDCl₃): $\delta = 8.53$ (d, J = 4.8 Hz, 1H), 7.64 (td, J = 7.8, 1.8 Hz, 1H), 7.42 (d, J = 7.8, 1H), 7.14 (dd, J = 7.8, 4.8 Hz, 1H), 4.01 (d, J = 14.4 Hz, 1H), 3.87 (d, J = 14.4 Hz, 1H), 2.37 (br s, 1H), 2.34 (d, J = 1.8 Hz, 1H), 1.73-1.33 (m, 5H), 1.11 (s, 3H), 1.08-1.03 (m, 2H), 1.01 (s, 3H), 1.00 ppm (s, 3H); ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 160.4$ (s), 149.0 (d), 136.3 (d), 122.2 (d), 121.8 (d), 73.3 (d), 55.4 (t), 49.1 (s), 48.9 (d), 42.8 (t), 39.3 (s), 32.3 (q), 26.5 (t), 26.2 (t), 21.0 (q), 20.5 ppm (q); MS (EI) m/z (%): 244 (M⁺, 0.8), 175 (28), 152 (100), 121 (60), 93 (100); HRMS calcd for C₁₆H₂₄N₂ (M⁺): 244.1939, found: 244.1938.

General procedure for the catalytic enantioselective Henry Reaction: Compound 2 (6.7 mg, 0.025 mmol) dissolved in absolute EtOH (2 mL) was added to $Cu(OAc)_2 \cdot H_2O$ (5.0 mg, 0.025 mmol) placed in a test tube. The test tube was stopped with a septum, and the solution was stirred for 1h to give a blue solution. The aldehyde (0.5 mmol) was added and the tube was introduced in a bath at the reaction temperature. After 5 min, the nitroalkane (5 mmol) was added followed by DIPEA (87.1 μ L, 0.5 mmol). After the indicated time, the solvent was removed under reduced pressure and the product was isolated by column chromatography.

(S)-(+)-2-Nitro-1-phenylethanol (8a)^[1]

Purified by flash chromatography hexane:ether (88:12). Enantiomeric excess (98%, Table 1, entry 1) was determined by HPLC (Chiralcel OD-H), hexane:*i*-PrOH 90:10, 1 mL/min, major enantiomer (*S*) $t_r = 15.8$, minor enantiomer (*R*) $t_r = 13.5$; $[\alpha]_D^{25} = +51.3$ (c = 0.76 in CH₂Cl₂, 98% ee), absolute stereochemistry assigned by comparison of the retention times in HPLC and optical rotation signs with literature data; ¹H NMR (300 MHz, CDCl₃): $\delta = 7.42$ -7.40 (m, 5H), 5.47 (dd, J = 9.3, 3.6 Hz, 1H), 4.62 (dd, J = 13.8, 9.3 Hz, 1H), 4.52 (dd, J = 13.8, 3.6 Hz, 1H), 2.77 (br s, 1H); ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 138.0$ (s), 129.0 (d), 128.9 (s), 125.9 (d), 81.1 (t), 70.9 (d).

(S)-(+)-1-(2-Methoxyphenyl)-2-nitroethanol (8b)^[1]

Purified by flash chromatography hexane:ether (88:12). Enantiomeric excess (98%, Table 1, entry 5) was determined by HPLC (Chiralcel OD-H), hexane:*i*-PrOH 90:10, 1 mL/min, major enantiomer (*S*) $t_r = 13.3$, minor enantiomer (*R*) $t_r = 11.5$; $[\alpha]_D^{25} = +49.2$ (c = 1.13 in CH₂Cl₂, 98% ee), absolute stereochemistry assigned by comparison of the retention times in HPLC and optical rotation signs with literature data; ¹H NMR (300 MHz, CDCl₃): $\delta = 7.44$ (dd, J = 7.5, 1.5 Hz, 1H), 7.33 (td, J = 7.5, 1.5 Hz, 1H), 7.04-6.99 (m, 1H), 6.91 (d, J = 8.4 Hz, 1H), 5.63 (dd, J = 9.0, 3.3 Hz, 1H), 4.65 (dd, J = 13.2, 3.3 Hz, 1H), 4.57 (dd, J = 13.2, 9.0 Hz, 1H), 3.88 (s, 3H), 2.87 ppm (br s, 1H); ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 155.9$ (s), 129.7 (d), 127.1 (d), 125.9 (s), 121.0 (d), 110.5 (d), 79.8 (t), 67.7 (d), 55.3 ppm (q).

(S)-(+)-2-Nitro-1-o-tolylethanol (8c)^[1]

Purified by flash chromatography hexane:ether (88:12). Enantiomeric excess (98%, Table 1, entry 6) was determined by HPLC (Chiralcel OD-H), hexane:*i*-PrOH 90:10, 1 mL/min, major enantiomer (*S*) $t_r = 15.0$, minor enantiomer (*R*) $t_r = 10.4$; $[\alpha]_D^{25} = +49.7$ (c = 1.13 in CH₂Cl₂, 98% ee), absolute stereochemistry assigned by comparison of the retention times in HPLC and optical rotation signs with literature data; ¹H NMR (300 MHz, CDCl₃): $\delta = 7.50-7.46$ (m, 1H), 7.25-7.22 (m, 2H), 7.17-7.15 (m, 1H), 5.64 (dd, J = 9.6, 2.7 Hz, 1H), 4.51 (dd, J = 13.5, 9.6 Hz, 1H), 4.39 (dd, J = 13.5, 2.7 Hz, 1H), 2.79 (br s, 1H), 2.35 ppm (s, 3H); ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 136.2$ (s), 134.4 (s), 130.8 (d), 128.7 (d), 126.7 (d), 125.6 (d), 80.2 (t), 67.9 (d), 18.8 ppm (q).

(S)-(+)-1-(2-Chlorophenyl)-2-nitroethanol (8d)^[1]

Purified by flash chromatography hexane:ether (88:12). Enantiomeric excess (96%, Table 1, entry 7) was determined by HPLC (Chiralcel OD-H), hexane:*i*-PrOH 95:5, 0.5 mL/min, major enantiomer (*S*) $t_r = 27.8$, minor enantiomer (*R*) $t_r = 26.5$; $[\alpha]_D^{25} = +60.3$ (c = 1.02 in CH₂Cl₂, 96% ee), absolute stereochemistry assigned by comparison of the retention times in HPLC and optical rotation signs with literature data; ¹H NMR (300 MHz, CDCl₃): $\delta = 7.67$ (dd, J = 7.5, 2.1 Hz, 1H), 7.40-7.27 (m, 3H), 5.85 (dd, J = 9.6, 2.4 Hz, 1H), 4.68 (dd, J = 13.5, 2.4 Hz, 1H), 4.45 (dd, J = 13.5, 9.6 Hz, 1H), 2.88 ppm (br s, 1H); ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 135.4$ (s), 131.5 (s), 129.9 (d), 129.7 (d), 127.6 (d), 127.5 (d), 79.3 (t), 67.8 ppm (d).

(S)-(-)-2-Nitro-1-(2-nitrophenyl)ethanol (8e)^[1]

Purified by flash chromatography hexane:ether (80:20). Enantiomeric excess (86%, Table 1, entry 8) was determined by HPLC (Chiralcel OD-H), hexane:*i*-PrOH 90:10, 0.8 mL/min, major enantiomer (*S*) $t_r = 19.8$, minor enantiomer (*R*) $t_r = 18.0$; $[\alpha]_D^{25} = -203.1$ (c = 0.51 in CH₂Cl₂, 86% ee), absolute stereochemistry assigned by comparison of the retention times in HPLC and optical rotation signs with literature data; ¹H NMR (300 MHz, CDCl₃): $\delta = 8.07$ (dd, J = 8.1, 1.2 Hz, 1H), 7.95 (dd, J = 8.1, 1.2 Hz, 1H), 7.75 (td, J = 7.8, 1.2 Hz, 1H), 7.55 (td, J = 7.8, 1.2 Hz, 1H), 6.04 (dd, J = 9.3, 2.4 Hz, 1H), 4.86 (dd, J = 13.8, 2.4 Hz, 1H), 4.55 (dd, J = 13.8, 9.3 Hz, 1H), 3.28 ppm (br s, 1H); ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 147.1$ (s), 134.3 (d), 134.0 (s), 129.7 (d), 128.7 (d), 125.0 (d), 80.0 (t), 66.7 ppm (d).

(S)-(+)-1-(3-Metoxyphenyl)-2-nitroethanol (8f)^[1]

Purified by flash chromatography hexane:ether (82:18). Enantiomeric excess (98%, Table 1, entry 9) was determined by HPLC (Chiralcel OD-H), hexane:*i*-PrOH 90:10, 1 mL/min, major enantiomer (*S*) $t_r = 27.9$, minor enantiomer (*R*) $t_r = 21.6$; $[\alpha]_D^{25} = +41.3$ (c = 0.64 in CH₂Cl₂, 98% ee), absolute stereochemistry assigned by comparison of the retention times in HPLC and optical rotation signs with literature data; ¹H NMR (300 MHz, CDCl₃): $\delta = 7.31$ (t, J = 8.1, 1H), 6.96 (m, 2H), 6.89 (dd, J = 8.1, 2.4 Hz, 1H), 5.44 (dd, J = 9.3, 3.3 Hz, 1H), 4.60 (dd, J = 13.2, 9.3 Hz, 1H), 4.51 (dd, J = 13.2, 3.3 Hz, 1H), 3.82 (s, 3H), 2.59

ppm (br s, 1H); ¹³C NMR (75.5 MHz, CDCl₃): δ = 160.0 (s), 139.7 (s), 130.0 (d), 118.0 (d), 114.3 (d), 111.4 (d), 81.1 (t), 70.8 (d), 55.3 ppm (t).

(S)-(+)-2-Nitro-1-*m*-tolylethanol (8g)^[1]

Purified by flash chromatography hexane:ether (88:12). Enantiomeric excess (98%, Table 1, entry 10) was determined by HPLC (Chiralcel OD-H), hexane:*i*-PrOH 90:10, 1 mL/min, major enantiomer (*S*) $t_r = 13.1$, minor enantiomer (*S*) $t_r = 11.5$; $[\alpha]_D^{25} = +41.9$ (c = 0.54 in CH₂Cl₂, 98% ee), absolute stereochemistry assigned by comparison of the retention times in HPLC and optical rotation signs with literature data; ¹H NMR (300 MHz, CDCl₃): $\delta = 7.20$ (t, J = 7.5 Hz, 1H), 7.12-7.08 (m, 3H), 5.32 (dd, J = 9.3, 3.0 Hz, 1H), 4.50 (dd, J = 13.2, 9.3 Hz, 1H), 4.40 (dd, J = 13.2, 3.0 Hz, 1H), 2.79 (br s, 1H), 2.29 ppm (s, 3H); ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 138.8$ (s), 138.0 (s), 129.6 (d), 128.8 (d), 126.5 (d), 122.9 (d), 81.2 (t), 71.0 (d), 21.3 ppm (q).

(S)-(+)-1-(3-Chlorophenyl)-2-nitroethanol (8h)^[1]

Purified by flash chromatography hexane:ether (88:12). Enantiomeric excess (97%, Table 1, entry 11) was determined by HPLC (Chiralcel OD-H), hexane:*i*-PrOH 90:10, 1 mL/min, major enantiomer (*S*) $t_r =$ 16.1, minor enantiomer (*R*) $t_r = 13.1$; $[\alpha]_D^{25} = +40.2$ (c = 0.80 in CH₂Cl₂, 97% ee), absolute stereochemistry assigned by comparison of the retention times in HPLC and optical rotation signs with literature data; ¹H NMR (300 MHz, CDCl₃): $\delta = 7.42$ (m, 1H), 7.35-7.26 (m, 3H), 5.44 (dd, J = 9.3, 3.6 Hz, 1H), 4.58 (dd, J = 13.5, 9.3 Hz, 1H), 4.50 (dd, J = 13.5, 3.6 Hz, 1H), 3.01 ppm (br s, 1H); ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 140.0$ (s), 134.9 (s), 130.3 (d), 129.1 (d), 126.2 (d), 124.0 (d), 80.9 (t), 70.2 ppm (d).

(S)-(+)-1-(4-Metoxyphenyl)-2-nitroethanol (8i)^[1]

Purified by flash chromatography hexane:ether (82:18). Enantiomeric excess (98%, Table 1, entry 12) was determined by HPLC (Chiralcel OD-H), hexane:*i*-PrOH 90:10, 1 mL/min, major enantiomer (*S*) $t_r = 25.3$, minor enantiomer (*R*) $t_r = 19.6$; $[\alpha]_D^{25} = +43.5$ (c = 0.95 in CH₂Cl₂, 98% ee), absolute stereochemistry assigned by comparison of the retention times in HPLC and optical rotation signs with literature data; ¹H NMR (300 MHz, CDCl₃): $\delta = 7.32$ (d, J = 8.7, 2H), 6.92 (d, J = 8.7, 2H), 5.41 (dd, J = 9.3, 3.0 Hz, 1H), 4.60 (dd, J = 13.2, 9.3 Hz, 1H), 4.47 (dd, J = 13.2, 3.0 Hz, 1H), 3.81 (s, 3H), 2.35 ppm (br s, 1H); ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 159.9$ (s), 130.2 (s), 127.2 (d), 114.3 (d), 81.2 (t), 70.6 (d), 55.3 ppm (q).

(S)-(+)-2-Nitro-1-*p*-tolylethanol (8j)^[1]

Purified by flash chromatography hexane:ether (88:12). Enantiomeric excess (98%, Table 1, entry 13) was determined by HPLC (Chiralcel OD-H), hexane:*i*-PrOH 90:10, 1 mL/min, major enantiomer (*S*) $t_r =$ 16.2, minor enantiomer (*R*) $t_r = 12.9$; $[\alpha]_D^{25} = +47.0$ (c = 1.00 in CH₂Cl₂, 98% ee), absolute stereochemistry assigned by comparison of the retention times in HPLC and optical rotation signs with literature data; ¹H NMR (300 MHz, CDCl₃): $\delta = 7.33$ (d, J = 7.8 Hz, 2H), 7.26 (d, J = 7.8 Hz, 2H), 5.46 (dd, J = 9.3, 3.0 Hz, 1H), 4.64 (dd, J = 13.2, 9.3 Hz, 1H), 4.52 (dd, J = 13.2, 3.0 Hz, 1H), 2.82 (br s, 1H), 2.41 ppm (s, 3H); ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 138.9$ (s), 135.1 (s), 129.6 (d), 125.8 (d), 81.2 (t), 70.8 (d), 21.1 ppm (q).

(S)-(+)-1-(4-Chlorophenyl)-2-nitroethanol (8k)^[1]

Purified by flash chromatography hexane:ether (88:12). Enantiomeric excess (97%, Table 1, entry 14) was determined by HPLC (Chiralcel OD-H), hexane:*i*-PrOH 90:10, 1 mL/min, major enantiomer (*S*) $t_r =$ 16.4, minor enantiomer (*R*) $t_r = 13.1$; $[\alpha]_D^{25} = +35.2$ (c = 1.12 in CH₂Cl₂, 97% ee), absolute stereochemistry assigned by comparison of the retention times in HPLC and optical rotation signs with literature data; ¹H NMR (300 MHz, CDCl₃): $\delta = 7.39-7.31$ (m, 4H), 5.43 (dd, J = 9.0, 3.3 Hz, 1H), 4.56 (dd, J = 13.2, 9.0 Hz, 1H), 4.47 (dd, J = 13.2, 3.3 Hz, 1H), 3.11 ppm (br s, 1H); ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 136.5$ (s), 134.7 (s), 129.2 (d), 127.3 (d), 80.9 (t), 70.2 ppm (d).

(S)-(+)-1-(4-Nitrophenyl)-2-nitroethanol (8l)^[1]

Purified by flash chromatography hexane:ether (80:20). Enantiomeric excess (86%, Table 1, entry 15) was determined by HPLC (Chiralcel OD-H), hexane:*i*-PrOH 90:10, 1 mL/min, major enantiomer (*S*) t_r = 33.3, minor enantiomer (*R*) t_r = 26.6; $[\alpha]_D^{25}$ = +25.1 (c = 0.53 in CH₂Cl₂, 86% ee), absolute stereochemistry assigned by comparison of the retention times in HPLC and optical rotation signs with literature data; ¹H NMR (300 MHz, CDCl₃): δ = 8.24 (d, J = 8.7 Hz, 2H), 7.62 (d, J = 8.7 Hz, 2H), 5.61 (dd, J = 7.5, 4.5 Hz, 1H), 4.61-4.58 (m, 2H), 3.30 ppm (br s, 1H); ¹³C NMR (75.5 MHz, CDCl₃): δ = 148.0 (s), 145.0 (s), 126.9 (d), 124.1 (d), 80.6 (t), 69.9 ppm (d).

(S)-(+)-1-(2,4-Dichlorophenyl)-2-nitroethanol (8m)^[2]

Purified by flash chromatography hexane:ether (88:12). Enantiomeric excess (89%, Table 1, entry 16) was determined by HPLC (Chiralpak AD-H), hexane:*i*-PrOH 90:10, 1 mL/min, major enantiomer (*S*) $t_r =$ 10.0, minor enantiomer (*R*) $t_r = 8.4$; $[\alpha]_D^{25} = +54.3$ (c = 1.08 in CH₂Cl₂, 89% ee), absolute stereochemistry assigned by comparison of the retention times in HPLC and optical rotation signs with literature data; ¹H NMR (300 MHz, CDCl₃): $\delta = 7.62$ (d, J = 8.4 Hz, 1H), 7.41 (d, J = 1.8 Hz, 1H), 7.35 (dd, J = 8.4, 1.8 Hz, 1H), 5.80 (d, J = 9.3 Hz, 1H), 4.65 (dd, J = 13.5, 2.4 Hz, 1H), 4.42 (dd, J = 13.5, 9.3 Hz, 1H), 3.11 ppm (br s, 1H); ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 135.2$ (s), 134.1 (s), 132.0 (s), 129.5 (d), 128.6 (d), 128.0 (d), 79.0 (t), 67.4 ppm (d).

(S)-(+)-2-Nitro-1-(thiophen-3-yl)ethanol (8n)

Purified by flash chromatography hexane:ether (85:15). Enantiomeric excess (98%, Table 1, entry 17) was determined by HPLC (Chiralcel OD-H), hexane:*i*-PrOH 90:10, 1 mL/min, major enantiomer (*S*) $t_r =$ 17.3, minor enantiomer (*R*) $t_r = 15.0$; $[\alpha]_D^{25} = +50.0$ (c = 1.02 in CH₂Cl₂, 98%), absolute stereochemistry assigned by analogy to other compounds in this work; ¹H NMR (300 MHz, CDCl₃): $\delta = 7.40-7.36$ (m, 2H), 7.09 (dd, J = 4.8, 1.2 Hz, 1H), 5.56 (dd, J = 9.0, 3.3 Hz, 1H), 4.65 (dd, J = 13.5, 9.0 Hz, 1H), 4.57 (dd, J = 13.5, 3.3 Hz, 1H), 2.87 ppm (br s, 1H); ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 139.3$ (s), 127.2 (d), 125.0 (d), 122.6 (d), 80.5 (t), 67.3 ppm (d); MS (EI) m/z (%): 173 (M⁺, 15), 126 (100), 113 (42), 85 (59); HRMS 173.0141 (M⁺), C₆H₇NO₃S required 173.0147.

(S)-(+)-1-Nitroundecan-2-ol (80)

Purified by flash chromatography hexane:ether (88:12). Enantiomeric excess (92%, Table 1, entry 18) was determined by HPLC (Chiralpak AD-H), hexane:*i*-PrOH 95:5, 1 mL/min, major enantiomer (*S*) $t_r =$ 17.0, minor enantiomer (*R*) $t_r = 11.1$; $[\alpha]_D^{25} = +4.3$ (c = 0.98 in CH₂Cl₂, 92% ee), absolute stereochemistry assigned by analogy to other compounds in this work; ¹H NMR (300 MHz, CDCl₃): $\delta = 4.47-4.27$ (m, 2H), 2.52 (br s, 1H), 1.60-1.47 (m, 4H), 1.26 (m, 13H), 0.88 ppm (t, J = 6.6 Hz, 3H); ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 80.6$ (t), 68.7 (d), 33.7 (t), 31.8 (t), 29.4 (t), 29.4 (t), 29.3 (t), 29.2 (t), 25.1 (t), 22.6 (t), 14.1 ppm (q).

(S)-(-)-1-Nitro-4-phenylbutan-2-ol (8p)^[1]

Purified by flash chromatography hexane:ether (88:12). Enantiomeric excess (94%, Table 1, entry 19) was determined by HPLC (Chiralpak AD-H), hexane:*i*-PrOH 90:10, 1 mL/min, major enantiomer (*S*) $t_r =$ 14.6, minor enantiomer (*R*) $t_r = 11.6$; $[\alpha]_D^{25} = -14.3$ (c = 0.97 in CH₂Cl₂, 94% ee), absolute

stereochemistry assigned by comparison of the retention times in HPLC and optical rotation signs with literature data; ¹H NMR (300 MHz, CDCl₃): δ = 7.25-7.10 (m, 5H), 4.33-4.30 (m, 2H), 4.26-4.20 (m, 1H), 2.83-260 (m, 3H), 1.80-1.69 ppm (m, 2H); ¹³C NMR (75.5 MHz, CDCl₃): δ = 140.6 (s), 128.6 (d), 128.4 (d), 126.3 (d), 80.5 (t), 67.7 (d), 35.1 (t), 31.3 ppm (t).

(S)-(+)-1-Cyclohexyl-2-nitroethanol (8q)^[1]

Purified by flash chromatography hexane:ether (88:12). The enantiomeric excess (90%, Table 1, entry 20) was determined by HPLC (Chiralpak AD-H), hexane:*i*-PrOH 95:5, 0.7 mL/min, major enantiomer (*S*) $t_r = 23.4$, minor enantiomer (*R*) $t_r = 21.7$; $[\alpha]_D^{25} = +16.9$ (c = 0.89 in CH₂Cl₂, 90% ee), absolute stereochemistry assigned by comparison of the retention times in HPLC and optical rotation signs with literature data; ¹H NMR (300 MHz, CDCl₃): $\delta = 4.48$ (dd, J = 12.9, 3.3 Hz, 1H), 4.41 (dd, J = 12.9, 8.7 Hz, 1H), 4.11-4.05 (m, 1H), 2.68 (br s, 1H), 1.84-1.75 (m, 3H), 1.70-1.58 (m, 2H), 1.50-1.37 (m, 1H), 1.28-1.05 ppm (m, 5H); ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 79.3$ (t), 72.8 (d), 41.3 (d), 28.8 (t), 27.9 (t), 26.0 (t), 25.8 (t), 25.7 ppm (t).

(S)-(-)-4-Methyl-1-nitropentan-2-ol (8r)^[1]

Purified by flash chromatography hexane:ether (88:12). Enantiomeric excess (91%, Table 1, entry 21) was determined by HPLC (Chiralpak AD-H), hexane:*i*-PrOH 95:5, 1 mL/min, major enantiomer (*S*) $t_r = 16.1$, minor enantiomer (*R*) $t_r = 11.4$; $[\alpha]_D^{25} = -2.3$ (c = 0.38 in CH₂Cl₂, 91% ee), absolute stereochemistry assigned by comparison of the retention times in HPLC and optical rotation signs with literature data; ¹H NMR (300 MHz, CDCl₃): $\delta = 4.43-4.33$ (m, 3H), 2.41 (br s, 1H), 1.87-1.78 (m, 1H), 1.53-1.45 (m, 1H), 1.26-1.17 (m, 1H), 0.96 (d, J = 6.6 Hz, 3H), 0.94 ppm (d, J = 6.6 Hz, 3H). ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 81.0$ (t), 66.9 (d), 42.4 (t), 24.3 (d), 23.1 (q), 21.7 ppm (q).

(S,E)-(+)-1-Nitro-4-phenylbut-3-en-2-ol $(8s)^{[3]}$

Purified by flash chromatography hexane:ether (80:20). Enantiomeric excess (96%, Table 1, entry 22) was determined by HPLC (Chiralpak AD-H), hexane:*i*-PrOH 95:5, 1 mL/min, major enantiomer (*S*) t_r = 36.9, minor enantiomer (*R*) t_r = 35.5; $[\alpha]_D^{25}$ = +11.8 (c = 0.64 in CH₂Cl₂, 96% ee), absolute stereochemistry assigned by comparison of the retention times in HPLC and optical rotation signs with literature data; ¹H NMR (300 MHz, CDCl₃): δ = 7.40-7.25 (m, 5H), 6.78 (dd, J = 15.9, 1.2 Hz, 1H), 6.14 (dd, J = 15.9, 6.3 Hz, 1H), 5.04 (qd, J = 6.3, 1.2 Hz, 1H), 4.54-4.45 (m, 2H), 2.53 ppm (br s, 1H); ¹³C NMR (75.5 MHz, CDCl₃): δ = 135.5 (s), 133.6 (d), 129.7 (d), 128.5 (d), 126.7 (d), 124.9 (d), 79.8 (t), 69.6 ppm (d).

2-Nitro-1-phenylpropan-1-ol (10a)^[4-8]

Purified by flash chromatography hexane:ether (88:12). Diastereomeric ratios (*anti/syn*, 80:20, Table 2, entry 1) were determined by ¹H NMR. Enantiomeric excesses were determined by chiral HPLC (Chiralpak AD-H), hexane:*i*-PrOH 95:5, 1 mL/min, *anti*_{majof}(1*S*,2*R*) $t_r = 13.7$, *anti*_{minor}(1*R*,2*S*) $t_r = 15.0$, $syn_{major}(1S,2S) t_r = 18.6$, $syn_{minor}(1R,2R) t_r = 21.1$, absolute stereochemistry of both diastereomers assigned by comparison of the retention times in HPLC with literature data; *anti isomer* (1*S*,2*R*): $[\alpha]_D^{25} = +1.1 (c = 0.65 in CH_2Cl_2, 95\% ee);$ ¹H NMR (300 MHz, CDCl₃): $\delta = 7.40-7.33$ (m, 5H), 5.40 (d, J = 3.6 Hz, 1H), 4.75-4.66 (m, 1H), 2.77 (br s, 1H), 1.50 ppm (d, J = 6.9 Hz, 3H); ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 138.4$ (s), 128.7 (d), 128.5 (d), 125.9 (d), 87.4 (d), 73.9 (d), 12.0 ppm (q); *syn isomer* (1*S*,2*S*): $[\alpha]_D^{25} = +47.2 (c = 0.31 in CH_2Cl_2, 91\% ee);$ ¹H NMR (300 MHz, CDCl₃): $\delta = 7.40-7.33$ (m, 5H), 5.03 (d, J = 9.0 Hz, 1H), 4.82-4.75 (m, 1H), 2.77 (br s, 1H), 1.32 ppm (d, J = 6.9 Hz, 3H); ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 138.3$ (s), 129.2 (d), 129.0 (d), 126.9 (d), 88.4 (d), 76.3 (d), 16.5 ppm (q).

1-(2-Methoxyphenyl)-2-nitropropan-1-ol (10b)^[9]

Purified by flash chromatography hexane:ether (88:12). Diastereomeric ratios (*anti/syn*, 82:18, Table 2, entry 5) were determined by ¹H NMR. Enantiomeric excesses were determined by chiral HPLC (Chiralpak AD-H), hexane:*i*-PrOH 95:5, 1 mL/min, *anti*_{major}(1*S*,2*R*) $t_r = 14.0$, *anti*_{minor}(1*R*,2*S*) $t_r = 17.7$, *syn*_{major}(1*S*,2*S*) $t_r = 24.7$, *syn*_{minor}(1*R*,2*R*) $t_r = 26.3$, absolute stereochemistry of both diastereomers assigned by analogy to other compounds in this work; *anti isomer* (1*S*,2*R*): $[\alpha]_D^{25} = +0.9$ (*c* = 0.90 in CH₂Cl₂, 95% ee); ¹H NMR (300 MHz, CDCl₃): $\delta = 7.42$ (dd, J = 7.5, 1.5 Hz,1H), 7.31 (td, J = 7.5, 1.5 Hz, 1H), 6.99 (t, J = 7.5 Hz, 1H), 6.89 (d, J = 8.4 Hz, 1H), 5.53 (d, J = 3.6 Hz, 1H), 4.94-4.86 (m, 1H), 3.87 (s, 3H), 3.11 (br s, 1H), 1.47 ppm (d, J = 6.9 Hz, 3H); ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 155.7$ (s), 129.4 (d), 127.6 (d), 126.2 (s), 120.9 (d), 110.3 (d), 85.0 (d), 70.7 (d), 55.3 (q), 12.5 ppm (q); *syn isomer* (1*S*,2*R*): $[\alpha]_D^{25} = +37.8$ (*c* = 0.17 in CH₂Cl₂, 94% ee); ¹H NMR (300 MHz, CDCl₃): $\delta = 7.35$ (dd, J = 7.5, 1.5 Hz, 1H), 7.31 (td, J = 7.5, 1.5 Hz, 1H), 6.99 (t, J = 7.5, 1.5 Hz, 1H), 6.99 (t, J = 7.5, 1.5 Hz, 1H), 6.93 (d, J = 8.4 Hz, 1H), 5.13 (d, J = 9.0 Hz, 1H), 5.05-4.95 (m, 1H), 3.89 (s, 3H), 3.33 (br s, 1H), 1.33 ppm (d, J = 6.9 Hz, 3H): ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 156.7$ (s), 130.0 (d), 129.0 (d), 125.8 (s), 121.2 (d), 110.9 (d), 87.6 (d), 74.2 (d), 55.4 (q), 16.6 ppm (q); MS (EI) *m*/*z* (%): 211 (M⁺, 0.1), 197 (33), 150 (30), 137 (100), 135 (86), 107(67), 91 (48), 77 (47).

2-nitro-1-o-tolylpropan-1-ol (10c)^[5,10]

Purified by flash chromatography hexane:ether (88:12). Diastereomeric ratios (*anti/syn*, 79:21, Table 2, entry 6) were determined by ¹H NMR. Enantiomeric excesses were determined by chiral HPLC (Chiralpak AD-H), hexane:*i*-PrOH 95:5, 1 mL/min, *anti*_{major}(1*S*,2*R*) $t_r = 11.0$, *anti*_{minor}(1*R*,2*S*) $t_r = 12.2$, *syn*_{major}(1*S*,2*S*) $t_r = 15.0$, *syn*_{minor}(1*R*,2*R*) $t_r = 18.4$, absolute stereochemistry of both diastereomers assigned by analogy to other compounds in this work; *anti isomer* (1*S*,2*R*): $[\alpha]_D^{25} = -9.7$ (*c* = 0.90 in CH₂Cl₂, 91% ee); ¹H NMR (300 MHz, CDCl₃): $\delta = 7.56-7.53$ (m, 1H), 7.30-7.16 (m, 3H), 5.64 (d, *J* = 3.0 Hz, 1H), 4.64 (dq, *J* = 6.6, 3.6 Hz, 1H), 2.38 (s, 3H), 2.38 (br s, 1H), 1.52 ppm (d, *J* = 6.6 Hz, 3H); ¹³C

NMR (75.5 MHz, CDCl₃): $\delta = 136.6$ (s), 134.3 (s), 130.7 (d), 128.3 (d), 126.4 (d), 125.9 (d), 85.3 (d), 70.8 (d), 18.8 (q), 11.4 ppm (q); *syn isomer* (1*S*,2*S*): $[\alpha]_D^{25} = +22.7$ (*c* = 0.33 in CH₂Cl₂, 91% ee); ¹H NMR (300 MHz, CDCl₃): $\delta = 7.42$ -7.38 (m, 1H), 7.30-7.16 (m, 3H), 5.38 (d, *J* = 9.3 Hz, 1H), 4.89-4.84 (m, 1H), 2.45 (s, 3H), 2.38 (br s, 1H), 1.33 ppm (d, *J* = 6.6 Hz, 3H); ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 136.5$ (s), 135.8 (s), 131.0 (d), 128.7 (d), 126.8 (d), 126.5 (d), 88.8 (d), 72.1 (d), 19.5 (q), 16.0 ppm (q); MS (EI) *m/z* (%): 195 (M⁺, 5), 121 (100), 91 (61).

1-(4-Methoxyphenyl)-2-nitropropan-1-ol (10i)^[11,12]

Purified by flash chromatography hexane:ether (88:12). Diastereomeric ratios (*anti/syn*, 66:34, Table 2, entry 7) were determined by ¹H NMR. Enantiomeric excesses were determined by chiral HPLC (Chiralpak AD-H), hexane:*i*-PrOH 90:10, 1 mL/min, *anti_{major}*(1*S*,2*R*) $t_r = 11.7$, *anti_{minor}*(1*R*,2*S*) $t_r = 13.0$, *syn_{major}* (1*S*,2*S*) $t_r = 16.3$, *syn_{minor}*(1*R*,2*R*) $t_r = 18.8$, absolute stereochemistry of both diastereomers assigned by analogy to other compounds in this work; *anti isomer* (1*S*,2*R*): $[\alpha]_D^{25} = -3.6$ (*c* = 0.66 in CH₂Cl₂, 91% ee); ¹H NMR (300 MHz, CDCl₃): $\delta = 7.29$ (d, J = 8.7 Hz, 2H), 6.90 (m, 2H), 5.30 (d, J = 3.9 Hz, 1H), 4.72-4.63 (m, 1H), 3.81 (s, 3H), 2.64 (br s, 1H), 1.52 ppm (d, J = 6.9 Hz, 3H); ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 159.6$ (s), 130.5 (s), 127.2 (d), 114.1 (d), 87.5 (d), 73.7 (d), 55.3 (q), 12.4 ppm (q); *syn isomer* (1*S*,2*S*): $[\alpha]_D^{25} = +38.2$ (*c* = 0.57 in CH₂Cl₂, 85% ee); ¹H NMR (300 MHz, CDCl₃): $\delta = 7.29$ (d, J = 8.7 Hz, 2H), 6.90 (m, 2L), 2.64 (br s, 1H), 1.30 ppm (d, J = 6.9 Hz, 3H); ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 160.1$ (s), 130.4 (s), 128.1 (d), 114.3 (d), 88.5 (d), 75.9 (d), 55.6 (q), 16.4 ppm (q); MS (EI) *m/z* (%): 211 (M⁺, 21), 137 (100), 135 (44), 77 (21).

1-(4-Chlorophenyl)-2-nitropropan-1-ol (10k)^[8,13]

Purified by flash chromatography hexane:ether (88:12). Diastereomeric ratios (*anti/syn*, 81:19, Table 2, entry 8) were determined by ¹H NMR. Enantiomeric excesses were determined by chiral HPLC

(Chiralpak AD-H), hexane:*i*-PrOH 95:5, 1 mL/min, anti_{major}(1*S*,2*R*) $t_r = 15.0$, anti_{minor}(1*R*,2*S*) $t_r = 16.4$, syn_{major}(1*S*,2*S*) $t_r = 24.0$, syn_{minor}(1*R*,2*R*) $t_r = 21.9$, absolute stereochemistry of both diastereomers assigned by comparison of the retention times in HPLC with literature data and by analogy to other compounds in this work; anti isomer (1*S*,2*R*): $[\alpha]_D^{25} = +3.7$ (c = 1.13 in CH₂Cl₂, 95% ee); ¹H NMR (300 MHz, CDCl₃): $\delta = 7.40-7.30$ (m, 4H), 5.38 (d, J = 3.6 Hz, 1H), 4.72-4.62 (m, 1H), 2.87 (br s, 1H), 1.49 ppm (d, J = 6.9 Hz, 3H); ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 136.8$ (s), 134.4 (s), 128.9 (d), 127.3 (d), 87.2 (d), 73.2 (d), 12.0 ppm (q); syn isomer (1*S*,2*S*): $[\alpha]_D^{25} = +33.1$ (c = 0.26 in CH₂Cl₂, ee 84%), Lit.^[13] $[\alpha]_D^{25} = -15.8$ (c = 1 in CHCl₃, for the 1*R* enantiomer, 71% ee, mixture of diastereomers); ¹H NMR (300 MHz, CDCl₃): $\delta = 7.40-7.30$ (m, 4H), 5.02 (d, J = 9.0 Hz, 1H), 4.77-4.70 (m, 1H), 2.87 (br s, 1H), 1.33 ppm (d, J = 6.9 Hz, 3H); ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 136.7$ (s), 135.1 (s), 129.2 (d), 128.2 (d), 88.1 (d), 75.5 (d), 16.3 ppm (q).

2-Nitro-1-(4-nitrophenyl)propan-1-ol (10l)^[11,12,14,15]

Purified by flash chromatography hexane:ether (88:12). Diastereomeric ratios (*anti/syn*, 80:20, Table 2, entry 9) were determined by ¹H NMR. Enantiomeric excesses were determined by chiral HPLC (Chiralcel OD-H + Chiralpak AD-H), hexane:*i*-PrOH 80:20, 1 mL/min, *anti*_{major}(1*S*,2*R*) t_r =17.5, *anti*_{minor}(1*R*,2*S*) t_r =16.1, *syn*_{major}(1*S*,2*S*) t_r = 22.7, *syn*_{minor}(1*R*,2*R*) t_r = 20.1, absolute stereochemistry of both diastereomers assigned by comparison of the retention times in HPLC with literature data and by analogy to other compounds in this work; anti isomer (1*S*,2*R*): $[\alpha]_D^{25} = -0.37$ (c = 0.57 in CH₂Cl₂, 92% ee); ¹H NMR (300 MHz, CDCl₃): $\delta = 8.26$ (d, J = 8.7 Hz, 2H), 7.60 (d, J = 8.7 Hz, 2H), 5.56 (br s, 1H), 4.75-4.67 (m, 1H), 2.98 (br s, 1H), 1.49 ppm (d, J = 6.9 Hz, 3H); ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 147.8$ (s), 145.6 (s), 127.0 (d), 123.9 (d), 86.8 (d), 72.9 (d), 11.8 ppm (q); *syn isomer* (1*S*,2*S*): $[\alpha]_D^{25} = +19.6$ (c = 0.17 in CH₂Cl₂, 63% ee), Lit.^[14] $[\alpha]_D^{25} = +20.8$ (c = 0.36 in CH₂Cl₂, 91% ee, mixture of diastereomers); ¹H NMR (300 MHz, CDCl₃): $\delta = 8.26$ (d, J = 8.7 Hz, 2H), 7.60 (d, J = 8.7 Hz, 2H), 5.19 (d, J = 8.7 Hz, 1H), 4.79-4.72 (m, 1H), 2.90 (br s, 1H), 1.40 ppm (d, J = 6.9 Hz, 3H); ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 148.2$ (s), 145.3 (s), 127.9 (d), 124.0 (d), 87.8 (d), 75.0 (d), 16.1 ppm (q).

4-Nitro-1-phenylpentan-3-ol (10p)^[8,16-18]

Purified by flash chromatography hexane:ether (88:12). Diastereomeric ratios (anti/syn, 47:53, Table 2, entry 10) were determined by ¹H NMR. Enantiomeric excesses were determined by chiral HPLC (Chiralpak AD-H), hexane: *i*-PrOH 95:5, 1 mL/min, $syn_{maior}(1S,2S) t_r = 21.3$, $syn_{minor}(1R,2R) t_r = 19.4$, antimajor(1S,2R) $t_r = 15.2$, antiminor(1R,2S) $t_r = 15.2$, absolute stereochemistry of both diastereomers assigned by comparison of the retention times in HPLC with literature data; syn isomer (1S,2S): $[\alpha]_D^{25} = -$ 19.5 (c = 0.67 in CH₂Cl₂, 80% ee), $\left[\alpha\right]_{D}^{25} = -28.8$ (c = 0.61 in EtOH, 80% ee), Lit.^[17] $\left[\alpha\right]_{D}^{24} = -43.7$ (c =1.06 in EtOH, 97% ee), Lit.^[16] $[\alpha]_D^{25} = +29.0$ (c = 0.96 in EtOH, for the 1R,2R enantiomer, 83% ee, mixture of diastereomers); ¹H NMR (300 MHz, CDCl₃): $\delta = 7.33-7.18$ (m, 5H), 4.54 (quint, J = 6.9 Hz, 1H), 3.93-3.86 (m, 1H), 2.79-2.65 (m, 2H), 2.29 (br s, 1H), 1.90-1.76 (m, 2H), 1.53 ppm (d, J = 6.9 Hz, 3H); ¹³C NMR (75.5 MHz, CDCl₃): δ = 140.8 (s), 128.6 (d), 128.4 (d), 126.2 (d), 87.7 (d), 72.1 (d), 34.7 (t), 31.4 (t), 16.2 ppm (g); anti isomer (15,2R): $[\alpha]_D^{25} = -16.1$ (c = 0.59 in CH₂Cl₂, 77% ee), $[\alpha]_D^{25} = -23.5$ (c = 0.47 in EtOH, 77% ee), Lit.^[17] $[\alpha]_{D}^{24} = -18.4$ (c = 1.04 in EtOH, 49% ee); ¹H NMR (300 MHz, CDCl₃): $\delta = 7.33-7.18$ (m, 5H), 4.48 (ad, J = 6.9, 3.0 Hz, 1H), 4.21-4.15 (dt, J = 9.3, 3.6 Hz, 1H), 2.94-2.83 (m, 2H), 2.29 (br s, 1H), 1.90-1.76 (m, 2H), 1.55 ppm (d, J = 6.9 Hz, 3H); ¹³C NMR (75.5 MHz, $CDCl_3$): $\delta = 140.8$ (s), 128.6 (d), 128.4 (d), 126.2 (d), 86.3 (d), 71.1 (d), 34.6 (t), 31.9 (t), 12.5 ppm (q); MS (EI) *m/z* (%): 209 (M⁺, 0.1), 105 (49), 91 (100), 57 (39).

2-Nitro-1-phenylbutan-1-ol (11a)^[6,7,8,19]

Purified by flash chromatography hexane:ether (88:12). Diastereomeric ratios (*anti/syn*, 71:29, Table 2, entry 11) were determined by ¹H NMR. Enantiomeric excesses were determined by chiral HPLC (Chiralcel OD-H + Chiralpak AD-H), hexane:*i*-PrOH 95:5, 1 mL/min, *anti*_{major}(1*S*,2*R*) $t_r = 26.8$, *anti*_{minor}(1*R*,2*S*) $t_r = 22.5$, *syn*_{major}(1*S*,2*S*) $t_r = 31.1$, *syn*_{minor}(1*R*,2*R*) $t_r = 28.6$, absolute stereochemistry of the *anti* diastereomer assigned by comparison of the retention times in HPLC with literature data and that of the *syn* isomer assigned by analogy to other compounds in this work; *anti isomer* (1*S*,2*R*): $[\alpha]_D^{25} = -9.7$ (*c* = 1.01 in CH₂Cl₂, 94% ee); ¹H NMR (300 MHz, CDCl₃): δ 7.39-7.35 (m, 5H), 5.19 (d, *J* = 4.8 Hz, 1H),

4.61-4.55 (m, 1H), 2.62 (br s, 1H), 2.23-2.09 (m, 1H), 1.98-1.80 (m, 1H), 0.94 ppm (t, J = 7.5 Hz, 3H); ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 138.5$ (s), 129.1 (d), 128.7 (d), 126.2 (d), 94.6 (d), 74.2 (d), 21.3 (t), 10.3 ppm (q); *syn isomer* (1*S*,2*S*): $[\alpha]_D^{25} = +36.8$ (c = 0.54 in CH₂Cl₂, 92% ee); ¹H NMR (300 MHz, CDCl₃): $\delta = 7.39-7.35$ (m, 5H), 5.04 (d, J = 9.0 Hz, 1H), 4.66-4.60 (m, 1H), 2.62 (br s, 1H), 1.98-1.80 (m, 1H), 1.49-1.35 (m, 1H), 0.88 ppm (t, J = 7.5 Hz, 3H); ¹³C NMR (75.5 MHz, CDCl₃): δ 138.6 (s), 130.1 (d), 129.0 (d), 126.8 (d), 95.2 (d), 75.5 (d), 23.9 (t), 10.0 ppm (q).

1-(2-Methoxyphenyl)-2-nitrobutan-1-ol (11b)

Purified by flash chromatography hexane:ether (88:12). Diastereomeric ratios (*anti/syn*, 70:30, Table 2, entry 12) were determined by ¹H NMR. Enantiomeric excesses were determined by chiral HPLC (Chiralcel OD-H + Chiralpak AD-H), hexane:*i*-PrOH 95:5, 1 mL/min, *anti_{major}(1S,2R)* $t_r = 21.2$, *anti_{minor}(1R,2S)* $t_r = 23.5$, $syn_{major}(1S,2S)$ $t_r = 35.0$, $syn_{minor}(1R,2R)$ $t_r = 33.3$, absolute stereochemistry of both diastereomers assigned by analogy to other compounds in this work; *anti isomer* (1*S*,2*R*): $[\alpha]_D^{25} = -17.6$ (c = 0.84 in CH₂Cl₂, 93% ee); ¹H NMR (300 MHz, CDCl₃): $\delta = 7.37-7.28$ (m, 2H), 7.02-6.89 (m, 2H), 5.24 (t, J = 5.7 Hz, 1H), 4.81-4.75 (m, 1H), 3.89 (s, 3H), 3.31 (d, J = 6.3 Hz), 2.23-2.09 (m, 1H), 1.99-1.86 (m, 1H), 0.93 ppm (t, J = 7.5 Hz, 3H); ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 156.1$ (s), 129.6 (d), 128.3 (d), 125.9 (s), 121.0 (d), 110.6 (d), 92.5 (d), 72.1 (d), 55.4 (q), 21.7 (t), 10.4 ppm (q); syn *isomer* (1*S*,2*S*): $[\alpha]_D^{25} = +24.0$ (c = 0.48 in CH₂Cl₂, 95% ee); ¹H NMR (300 MHz, CDCl₃): $\delta = 7.37-7.28$ (m, 2H), 7.02-6.89 (m, 2H), 5.13 (t, J = 9.0 Hz, 1H), 4.88-4.83 (m, 1H), 3.90 (s, 3H), 3.27 (d, J = 6.3 Hz), 1.99-1.86 (m, 1H), 1.59-1.43 (m, 1H), 0.88 ppm (t, J = 7.5 Hz, 3H); ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 156.7$ (s), 130.0 (d), 128.9 (d), 126.1 (s), 121.2 (d), 110.9 (d), 94.4 (d), 73.4 (d), 55.4 (q), 24.1 (t), 10.2 ppm (q); MS (EI) m/z (%): 225 (M⁺, 26), 137 (100), 107 (32), 77 (18).

2-Nitro-1-o-tolylbutan-1-ol (11c)

Purified by flash chromatography hexane:ether (88:12). Diastereomeric ratios (*anti/syn*, 75:25, Table 2, entry 13) were determined by ¹H NMR. Enantiomeric excesses were determined by chiral HPLC

(Chiralpak AD-H), hexane:*i*-PrOH 95:5, 1 mL/min, anti_{major}(1*S*,2*R*) $t_r = 9.9$, anti_{minor}(1*R*,2*S*) $t_r = 11.0$, *syn*_{major}(1*S*,2*S*) $t_r = 13.8$, *syn*_{minor}(1*R*,2*R*) $t_r = 16.0$, absolute stereochemistry of both diastereomers assigned by analogy to other compounds in this work; anti isomer (1*S*,2*R*): $[\alpha]_D^{25} = +0.2$ (c = 1.02 in CH₂Cl₂, 89% ee); ¹H NMR (300 MHz, CDCl₃): $\delta = 7.54-7.51$ (m, 1H), 7.29-7.16 (m, 3H), 5.42 (d, J = 3.9 Hz, 1H), 4.58-4.52 (m, 1H), 2.37 (s, 3H), 2.25-2.19 (m, 1H), 1.91-1.82 (m, 1H), 0.93 ppm (t, J = 7.5 Hz, 3H); ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 136.6$ (s), 134.8 (s), 130.8 (d), 128.5 (s), 126.4 (d), 126.0 (d), 92.9 (d), 71.0 (d), 20.6 (t), 18.9 (q), 10.4 ppm (q), *syn isomer* (1*S*,2*S*) : $[\alpha]_D^{25} = +34.1$ (c = 0.40 in CH₂Cl₂, 90% ee); ¹H NMR (300 MHz, CDCl₃): $\delta = 7.41-7.38$ (m, 1H), 7.29-7.16 (m, 3H), 5.36 (d, J = 9.3 Hz, 1H), 4.73-4.65 (m, 1H), 2.44 (s, 3H), 1.91-1.82 (m, 1H), 1.45-1.32 (m, 1H), 0.87 ppm (t, J = 7.5 Hz, 3H); ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 136.9$ (s), 135.8 (s), 131.0 (d), 128.8 (s), 126.9 (d), 126.5 (d), 95.7 (d), 71.6 (d), 23.4 (t), 19.5 (q), 10.3 ppm (q); MS (EI) m/z (%): 209 (M⁺, 5), 121 (100), 119 (37), 93 (43), 91 (47).

1-(4-Methoxyphenyl)-2-nitrobutan-1-ol (11i)^[20]

Purified by flash chromatography hexane:ether (88:12). Diastereomeric ratios (*anti/syn*, 61:39, Table 2, entry 14) were determined by ¹H NMR. Enantiomeric excesses were determined by chiral HPLC (Chiralpak AD-H), hexane:*i*-PrOH 95:5, 1 mL/min, $anti_{major}(1S,2R) t_r = 20.3$, $anti_{minor}(1R,2S) t_r = 21.0$, $syn_{major}(1S,2S) t_r = 31.0$, $syn_{minor}(1R,2R) t_r = 28.6$, absolute stereochemistry of both diastereomers assigned by analogy to other compounds in this work; $anti isomer (1S,2R): [\alpha]_D^{25} = -10.5$ (c = 0.68 in CH₂Cl₂, 89% ee); ¹H NMR (300 MHz, CDCl₃): $\delta = 7.30-7.27$ (m, 2H), 6.93-6.88 (m, 2H), 5.10 (d, J = 5.4 Hz, 1H), 4.58-4.52 (m, 1H), 3.80 (s, 3H), 2.22-2.04 (m, 1H), 2.00-1.88 (m, 1H), 0.95 ppm (t, J = 7.5 Hz, 3H); ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 159.8$ (s), 130.7 (s), 127.5 (d), 114.1 (d), 94.8 (d), 74.0 (d), 55.2 (q), 21.8 (t), 10.3 ppm (q); syn isomer (1S,2S): $[\alpha]_D^{25} = +45.8$ (c = 0.56 in CH₂Cl₂, 93% ee); ¹H NMR (300 MHz, CDCl₃): $\delta = 7.30-7.27$ (m, 2H), 4.98 (d, J = 9.0 Hz, 1H), 4.63-4.57 (m, 1H), 3.82 (s, 3H), 1.85-1.75 (m, 1H), 1.47-1.33 (m, 1H), 0.86 ppm (t, J = 7.5 Hz, 3H); ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 160.1$ (s), 130.7 (s), 128.1 (d), 114.3 (d), 95.3 (d), 75.1 (d), 55.3 (q), 23.9 (t), 10.0 ppm (q); MS (EI) m/z (%): 225 (M⁺, 12), 137 (100), 135 (31).

1-(4-Chlorophenyl)-2-nitrobutan-1-ol (11k)^[21]

Purified by flash chromatography hexane:ether (88:12). Diastereomeric ratios (*anti/syn*, 65:35, Table 2, entry 15) were determined by ¹H NMR. Enantiomeric excesses were determined by chiral HPLC (Chiralpak AD-H), hexane:*i*-PrOH 95:5, 1 mL/min, $anti_{major}(1S,2R) t_r = 12.4$, $anti_{minor}(1R,2S) t_r = 13.3$, $syn_{major}(1S,2S) t_r = 21.6$, $syn_{minor}(1R,2R) t_r = 17.8$, absolute stereochemistry of both diastereomers assigned by analogy to other compounds in this work; anti *isomer* (1S,2R): $[\alpha]_D^{25} = -9.2$ (c = 0.79 in CH₂Cl₂, 91% ee); ¹H NMR (300 MHz, CDCl₃): $\delta = 7.40-7.30$ (m, 4H), 5.17 (d, J = 4.8 Hz, 1H), 4.56-4.50 (m, 1H), 2.70 (br s), 2.23-2.01 (m, 1H), 1.94-1.78 (m, 1H), 0.94 ppm (t, J = 7.5 Hz, 3H); ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 137.0$ (s), 134.5 (s), 129.2 (d), 127.6 (d), 94.5 (d), 73.5 (d), 21.3 (t), 10.3 ppm (q); *syn isomer* (1S,2S): $[\alpha]_D^{25} = +66.5$ (c = 0.26 in CH₂Cl₂, 87% ee); ¹H NMR (300 MHz, CDCl₃): $\delta = 7.40-7.30$ (m, 4H), 5.03 (d, J = 8.7 Hz, 1H), 4.61-4.55 (m, 1H), 2.70 (br s, 1H), 2.23-2.01 (m, 1H), 1.50-1.21 (m, 1H), 0.89 ppm (t, J = 7.5 Hz, 3H); ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 137.1$ (s), 135.0 (s), 129.4 (d), 128.2 (d), 95.0 (d), 74.7 (d), 23.8 (t), 10.0 ppm (q); MS (EI) m/z (%): 229 (M⁺, 2), 182 (30), 141 (100), 77 (40).

2-Nitro-1-(4-nitrophenyl)butan-1-ol (111)^[20,22]

Purified by flash chromatography hexane:ether (88:12). Diastereomeric ratios (*anti/syn*, 74:26, Table 2, entry 16) were determined by ¹H NMR. Enantiomeric excesses were determined by chiral HPLC (Chiralpak AD-H), hexane:*i*-PrOH 90:10, 1 mL/min, *anti* $t_r = 12.8$, syn_{major} (1*S*,2*S*) $t_r = 29.2$, $syn_{minor}(1R,2R)$ $t_r = 19.1$ and (Chiralcel OD-H), hexane:*i*-PrOH 90:10, 1 mL/min, *anti*_{major}(1*S*,2*R*) $t_r = 13.1$, *Anti*_{minor}(1*R*,2*S*) $t_r = 12.2$, $syn t_r = 16.0$, absolute stereochemistry of both diastereomers assigned by analogy to other compounds in this work; *anti isomer* (1*S*,2*R*): $[\alpha]_D^{25} = -19.9$ (c = 0.89 in CH₂Cl₂, 91% ee); ¹H NMR (300 MHz, CDCl₃): δ 8.28-8.23 (m, 2H), 7.61-7.57 (m, 2H), 5.33 (d, J = 4.5 Hz, 1H), 4.61-4.54 (m, 1H), 2.94 (br s, 1H), 2.26-2.13 (m, 1H), 1.84-1.75 (m, 1H), 0.94 ppm (t, J = 7.5 Hz, 3H); ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 147.9$ (s), 145.5 (s), 127.2 (d), 123.9 (d), 94.1 (d), 73.2 (d), 21.2 (t), 10.3

ppm (q); syn isomer (1*S*,2*S*): $[\alpha]_D^{25} = +40.9$ (c = 0.36 in CH₂Cl₂, 75% ee); ¹H NMR (300 MHz, CDCl₃): $\delta = 8.28-8.23$ (m, 2H), 7.61-7.57 (m, 2H), 5.18 (d, J = 8.1 Hz, 1H), 4.65-4.59 (m, 1H), 2.94 (br s, 1H), 2.01-1.89 (m, 1H), 1.56-1.43 (m, 1H), 0.92 ppm (t, J = 7.5 Hz, 3H); ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 148.2$ (s), 145.6 (s), 127.8 (d), 124.1 (d), 94.5 (d), 74.3 (d), 23.8 (t), 10.0 ppm (q); MS (EI) *m/z* (%): 240 (M⁺, 0.1), 193 (34), 152 (66), 151 (100), 150 (91), 77 (74).

4-Nitro-1-phenylhexan-3-ol (11p)^[17,18]

Purified by flash chromatography hexane:ether (88:12). Diastereomeric ratios (*anti/syn*, 39:61, Table 2, entry 17) were determined by ¹H NMR. Enantiomeric excesses were determined by chiral HPLC (Chiralpak AD-H), hexane:*i*-PrOH 95:5, 1 mL/min, $syn_{major}(1S,2S) t_r = 18.9$, $syn_{minor}(1R,2R) t_r = 18.0$, *anti_{major}(1S,2R)* $t_r = 12.7$, *anti_{minor}(1R,2S)* $t_r = 13.4$, absolute stereochemistry of both diastereomers assigned by analogy to other compounds in this work; *syn isomer* (1*S*,2*S*): $[\alpha]_D^{25} = -22.8$ (*c* = 0.66 in CH₂Cl₂, 80% ee), Lit^[17] $[\alpha]_D^{24} = -28.6$ (*c* = 1.2 in CHCl₃, 95% ee); ¹H NMR (300 MHz, CDCl₃): $\delta = 7.32-7.18$ (m, 5H), 4.42-4.33 (m, 1H), 3.92-3.86 (m, 1H), 2.98-2.80 (m, 1H), 2.78-2.64 (m, 1H), 2.40 (br s, 1H), 2.12-1.95 (m, 1H), 1.92-1.69 (m, 3H), 0.95 ppm (t, *J* = 7.5 Hz, 3H); ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 140.8$ (s), 128.6 (d), 128.4 (d), 126.2 (d), 94.3 (d), 71.0 (d), 35.2 (t), 31.5 (t), 23.8 (t), 10.1 ppm (q); *anti isomer* (1*S*,2*R*): $[\alpha]_D^{25} = -17.4$ (*c* = 0.56 in CH₂Cl₂, 80% ee); ¹H NMR (300 MHz, CDCl₃): $\delta = 7.32-7.18$ (m, 5H), 4.42-4.33 (m, 1H), 4.04-3.99 (m, 1H), 2.98-2.80 (m, 1H), 2.78-2.64 (m, 1H), 2.40 (br s, 1H), 2.12-1.95 (m, 1H), 1.92-1.69 (m, 3H), 0.95 ppm (t, *J* = 7.5 Hz, 3H); ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 140.7$ (s), 128.5 (d), 128.4 (d), 126.2 (d), 94.3 (d), 71.0 (d), 35.2 (t), 31.5 (t), 23.8 (t), 10.1 ppm (q); *anti isomer* (1*S*,2*R*): $[\alpha]_D^{25} = -17.4$ (*c* = 0.56 in CH₂Cl₂, 80% ee); ¹H NMR (300 MHz, CDCl₃): $\delta = 7.32-7.18$ (m, 5H), 4.42-4.33 (m, 1H), 4.04-3.99 (m, 1H), 2.98-2.80 (m, 1H), 2.78-2.64 (m, 1H), 2.40 (br s, 1H), 2.12-1.95 (m, 1H), 1.92-1.69 (m, 3H), 0.97 ppm (t, *J* = 7.5 Hz, 3H); ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 140.7$ (s), 128.5 (d), 128.4 (d), 126.2 (d), 93.8 (d), 71.3 (d), 34.7 (t), 31.7 (t), 21.5 (t), 10.5 ppm (q).

2-Nitro-1,3-diphenylpropan-1-ol (12)

Purified by flash chromatography hexane:ether (88:12). Diastereomeric ratios (*anti/syn*, 68:32, Table 2, entry 18) were determined by ¹H NMR. Enantiomeric excesses were determined by chiral HPLC (Chiralcel OD-H), hexane:*i*-PrOH 90:10, 1 mL/min, $anti_{major}(1S,2R)$ $t_r = 14.9$, $anti_{minor}(1R,2S)$ $t_r = 10.1$,

*syn*_{major}(1*S*,2*S*) $t_r = 12.7$, *syn*_{minor}(1*R*,2*R*) $t_r = 11.1$, absolute stereochemistry of both diastereomers assigned by analogy to other compounds in this work; *anti isomer* (1*S*,2*R*): $[\alpha]_D^{25} = +27.0$ (*c* = 1.04 in CH₂Cl₂, 83% ee); ¹H NMR (300 MHz, CDCl₃): $\delta = 7.33-7.28$ (m, 5H), 7.17-7.13 (m, 3H), 6.99-6.97 (m, 2H), 5.17 (d, *J* = 5.1 Hz, 1H), 4.85-4.79 (m, 1H), 3.31 (dd, *J* = 15.0, 11.1 Hz, 1H), 3.10 (dd, *J* = 14.7, 3.0 Hz, 1H), 2.48 ppm (br s, 1H); ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 138.2$ (s), 135.6 (s), 128.8 (d), 128.8 (d), 128.7 (d), 128.7 (d) 127.2 (d), 126.1 (d), 94.4 (d), 74.3 (d), 33.9 ppm (t); *syn isomer* (1*S*,2*S*): $[\alpha]_D^{25} = -14.9$ (*c* = 0.79 in CH₂Cl₂, 54% ee); ¹H NMR (300 MHz, CDCl₃): $\delta = 7.50-7.10$ (m, 8H), 7.03 (dd, *J* = 7.8, 2.4 Hz, 2H), 5.09 (d, *J* = 8.4 Hz, 1H), 4.95 (ddd, *J* = 10.8, 8.4, 3.9 Hz, 1H), 3.13 (dd, *J* = 14.4, 10.8 Hz, 1H), 2.77 ppm (dd, *J* = 14.4, 3.9 Hz, 1H), 2.48 ppm (br s, 1H); ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 138.4$ (s), 129.4 (d), 129.2 (d), 128.8 (d), 128.6 (d), 127.5 (d), 126.8 (d), 94.9 (d), 75.4 (d), 36.7 ppm (t); MS (EI) *m/z* (%): 257 (M⁺, 0.1), 210 (55), 105 (69), 91 (100), 77 (67).

Computational Methods.

Density functional theory calculations have been carried out using the B3LYP exchange–correlation functionals, together with the standard 6-31G* basis sets.^[23] Unrestricted calculations (UB3LYP) were used due to the radical nature of the complex. All calculations were carried out with the Gaussian 03 suite of programs.^[24]

Total Energy and Cartesian coordinates of the complex 2-Cu(OAc)₂

```
E(UB+HF-LYP) = -2831.01285924 au
S**2 = 0.7519
```

Cu	0.00000000000	0.00000000000	0.00000000000
С	0.00000000000	0.00000000000	2.860478360000
С	2.180073690157	0.00000000000	2.045661298722
С	0.457752569230	0.145608819941	4.171052067065
С	2.708843396818	0.133934103293	3.323613729238
Н	2.795401796138	-0.059277118249	1.153845080658
С	1.828805730268	0.211590504446	4.404756287685
Н	-0.253666030627	0.206622637970	4.989220150279
Н	3.783392618578	0.183221475726	3.464308982004
Н	2.206388132232	0.325504137977	5.416985315000
N	0.855236921747	-0.062823482647	1.825642979274
N	-1.709960579869	0.100676096428	1.097512433403
С	-1.471500735574	-0.147551318640	2.527635883674
Н	-1.770445725615	-1.166953078840	2.777780333326
Н	-2.058563229650	0.524213227610	3.168140600162
Н	-1.758743620419	1.135365973235	0.946120567926
С	-2.946375166032	-0.416360549770	0.427497288821
С	-3.357087873803	-1.942584008553	0.488425177281
С	-4.269252046748	0.321844389871	0.800840600323
С	-4.076299166110	-2.124038408455	-0.887018974541
С	-4.610211864113	-1.982586271322	1.459976513551
С	-5.324009034752	-0.803209492050	0.734545339431
Н	-4.214859156523	0.764267828725	1.801000394636

H	-4.478472242083	1.143359106450	0.108654420294
С	-5.389930816518	-1.294532488123	-0.734408401542
Н	-3.445057270973	-1.781911597683	-1.712464034299
Н	-4.284703937084	-3.181460946089	-1.075297575944
Н	-6.295701875664	-0.515880605311	1.151375679079
Н	-5.438029553110	-0.453638570406	-1.434697765691
Н	-6.278563213164	-1.908208688194	-0.913908007553
Н	-2.714592391234	-0.191649314983	-0.614969457854
С	-4.348825107296	-1.725967706154	2.955572152078
Н	-3.681608735466	-2.489606966516	3.375388887995
Н	-3.922159455268	-0.748135434098	3.176316755681
Н	-5.292953138824	-1.790653499919	3.510440523080
С	-5.395690865199	-3.311606207113	1.410505167301
Н	-4.814947623271	-4.120327460282	1.870505103228
Н	-6.324711451221	-3.214826882790	1.985560792115
Н	-5.669342228190	-3.636889530175	0.405733570190
С	-2.251810112927	-2.971040326541	0.706472572711
Н	-1.448366881440	-2.854082158826	-0.026177119787
Н	-1.802165456673	-2.913851378577	1.705090799854
Н	-2.657578783500	-3.984403500535	0.600038562130
0	1.725878830334	-0.319842007359	-0.914511980912
0	-0.613510388498	1.292460406517	-1.323713260334
С	-1.191022863250	2.396773931039	-0.993888472474
С	1.343327417517	-1.410296034220	-1.480948103408
0	-1.645287337115	2.673103248283	0.138247131685
0	0.206858416751	-1.888774772137	-1.249780135078
С	2.292643786306	-2.074961408003	-2.452606662481
Н	2.293156821930	-1.510258702427	-3.392127353296
Н	3.314143237784	-2.060442226955	-2.061360738374
Н	1.978163467388	-3.100397918492	-2.656520940258
С	-1.306895148506	3.414870766015	-2.120155169869
Н	-0.304840889229	3.716937119699	-2.443896746255
Н	-1.798221707761	2.957857419547	-2.985524735783
Н	-1.867050346689	4.292331533930	-1.791480472878

Literature

- G. Blay, E. Climent, I. Fernández, V. Hernández-Olmos, J. R. Pedro, *Tetrahedron: Asymmetry* 2007, *18*, 1603-1612, and references cited therein.
- [2] Y. Kogami, T. Nakajima, T. Ikeno, T. Yamada, *Synthesis* **2004**, 1947-1950.
- [3] M. Bandini, F. Piccinelli, S. Tommasi, A. Umani-Ronchi, C. Ventrici, *Chem. Commun.* 2007, 616-618.
- [4] T. Purkarthofer, K. Gruber, M. Gruber-Khadjawi, K. Waich, W. Skrank, D. Mink, H. Griengl, Angew. Chem. Int. Ed. 2006, 45, 3454-3456.
- [5] M. Terada, H. Ube, S. Yokoyama, H. Shimizu, (Takasago International Corporation, Japan). PCT
 Int. Appl., 2005, PIXXD2 WO 2005077908 A1 20050825 [*Chem. Abs.* 2005, 143, 229737].
- [6] K. Maruoka, T. Ooi, PCT Int. Appl., 2004, PIXXD2 WO2004076459 A1 20040910 [Chem. Abs.
 2004, 141, 260392].
- [7] T. Ooi, K. Doda, K. Maruoka, J. Am. Chem. Soc. 2003, 125, 2054-2055.
- [8] D. Uraguchi, S. Sakaki, T. Ooi, J. Am. Chem. Soc. 2007, 129, 12392-12393.
- [9] K. Bayley, *Tetrahedron* **1972**, *28*, 3981-3986, racemic.

- [10] A. Solladie-Cavallo, G. Lapitajs, P. Buchert, A. Klein, S. Colonna, A. Manfredi, J. Org. Chem.
 1987, 330, 357-363, racemic.
- [11] S. E. Denmark, B. S. Kesler, Y.C. Moon, J. Org. Chem. 1992, 57, 4912-24, racemic.
- [12] N. Hirata, M. Hayashi, Synth. Commun. 2007, 37, 1653-1657, racemic.
- [13] J. C. Borah, J. Boruwa, B. Kalita, A. K. Hazarika, N. C. Barua, *Indian J. Chem.* 2005, 44B, 1961-1965.
- [14] Y. Xiong, F. Wang, X. Huang, Y. Wen, X. Feng, Chem. Eur. J. 2007, 13, 829-833.
- [15] R. Ballini, G. Bosica, E. Marcantoni, P. Vita, G. Bartoli, J. Org. Chem. 2000, 65, 5854-5857, racemic.
- [16] Y. Sohtome, Y. Hashimoto, K. Nagasawa, Eur. J. Org. Chem. 2006, 2894-2897.
- [17] H. Sasai, T. Tokunaga, S. Watanabe, T. Suzuki, N. Itoh, M. Shibasaki, J. Org. Chem. 1995, 60, 7388-7389.
- [18] M. Shibazaki, H. Sasai, Jpn. Kokai Tokkyo Koho, 1997, JKXXAF JP 09253502 A 19970930
 Heisei. [*Chem. Abs.* 1997, 127, 346210].
- [19] D. Seebach, A. K. Beck, T. Mukhopadhyay, E. Thomas. *Helv. Chim. Acta* 1982, 65, 1101-1133.
- [20] A. G. M. Barrett, C. Robyr, C. D. Spilling, J. Org. Chem. 1989, 54, 1233-1234, racemic.
- [21] U. V. Desai, D. M. Pore, R. B. Mane, S. B. Solabannar, P. P. Wadgaonkar, *Synth. Commun.* 2004, 34, 19-24, racemic.
- [22] A. J. Parratt, D. J. Adams, A. A. Clifford, C. M. Rayner, Chem. Commun. 2004, 2720-2721, racemic
- [23] (a) A. D. Becke, J. Chem. Phys. 1993, 98, 5648–5652; (b) C. Lee, W. Yang and R. G. Parr, Phys. Rev. B: Condens. Matter Mater. Phys. 1988, 37, 785-789.
- [24] M. J. Frisch, et al., GAUSSIAN 03 (Revision C.02), Gaussian, Inc., Wallingford, CT, 2004.