Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2008
Reactivity of Ammonia Ligands of the Antitumor Agent Cisplatin:
μ-Amido Complex Formation with enPd^{II} and the Help of Ag^{+}. Unique
Dodecanuclear Pt_{4}Pd_{4}Ag_{4} Platform for Four Cytosine Model Nucleobases.

Gunnar Kampf, Pablo J. Sanz Miguel, Marta Morell Cerdà, Michael Willermann, Alexandra
Schneider, and Bernhard Lippert*

[a] Fakultät Chemie
Technische Universität Dortmund
Otto-Hahn-Strasse 6, 44221 Dortmund (Germany)

[b] Departamento de Química Inorgánica
Universidad Autónoma de Madrid
28049 Madrid (Spain)
Supporting Information

Figure S1: 1H NMR spectrum (D$_2$O, pD 7.2) of [Pt(µ-pz)(µ-NH$_2$)(NH$_3$)(py)Pd(en)]$^{2+}$ (3) (top) and 195Pt edited 1H NMR spectrum (bottom). The protons of the µ-NH$_2$ group show a characteristic upfield shift (as compared to typical NH$_3$ resonances), display 195Pt coupling (46 Hz), and exchange for deuterium ions only after several days. The 195Pt NMR resonance (not shown) is observed at −2470 ppm.
Figure S2: 1H NMR spectrum (D$_2$O, pD 6.0) of a solution derived from cis-$\text{[Pt(NH}_3\text{)_2(1-MeC-N3)(D}_2\text{O})]}^{2+}$, $\text{[Pd(en)(D}_2\text{O)}_2]^{2+}$ with pD adjusted to 6, and with 2 equiv of AgNO$_3$ per Pt added, after 5 d at room temperature. The major components are compounds Y and 10, with very little 9 present.

Figure S3: View of the packing along b axis in 10.
Figure S4: View of the packing in a unit cell of 11.
Figure S5: View of the packing along b axis in 10.