Magnetism and phase formation in the candidate dilute magnetic semiconductor system $\text{In}_{2-x}\text{Cr}_x\text{O}_3$: bulk materials are dilute paramagnets

L. Bizo, M. Allix, H. Niu, M.J. Rosseinsky

Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK

Supporting Information
Figure S1. (a) Polyhedral representation of the crystal structure of $\text{In}_{1.95}\text{Cr}_{0.05}\text{O}_3$
(b) local coordination around the two symmetry-dependent octahedral sites ($8b$ In/Cr1 and $24d$ In/Cr2). Different colours represent symmetry-inequivalent Cr-O bonds. (c)
ORTEP representation (90% probability ellipsoids) of the structure of phase 1 (majority phase) of $\text{In}_{1.85}\text{Cr}_{0.15}\text{O}_3$ refined from neutron powder diffraction data at room temperature. In/Cr centres are represented in black.

(b) Fig. S2(a) Magnetization curves as a function of the applied field at room temperature for $\text{In}_{1.96}\text{Cr}_{0.04}\text{O}_3$, $\text{In}_{1.95}\text{Cr}_{0.05}\text{O}_3$, $\text{In}_{1.9}\text{Cr}_{0.1}\text{O}_3$ and $\text{In}_{1.85}\text{Cr}_{0.15}\text{O}_3$ and In_2O_3. M is expressed in e.m.u. per mol material.
(b) Saturation magnetisation (Mₘ in µ_B/Cr) in In₂₋ₓCrₓO₃ versus x (data are shown for x = 0.05 for different preparation methods and thermal treatments) in e.m.u./mol material.

![Figure S3](image_url)

Figure S3. Magnetization (M) in µ_B per Cr atom as a function of applied field (H) at T = 300K and 350K for In₁.₉₅Cr₀.₀₅O₃.

![Figure S4](image_url)

Figure S4. Magnetization (M) isotherm expressed in µ_B per atom for Cr₂O₃ and In₂O₃ at room temperature.
Figure S5. Dependence of magnetization (M) per Cr atom on applied field (H) at room temperature for x = 0.05, as prepared (black points) and annealed under three different reducing atmospheres.

Figure S6. Magnetization (M) expressed in μ_B per Cr atom function of applied field (H) for $\text{In}_{1.95}\text{Cr}_{0.05}\text{O}_3$ (sample B and C).
Figure S7. Magnetic susceptibility (derived by subtraction of 5T and 2T datasets) versus temperature of In$_{1.95}$Cr$_{0.05}$O$_3$ (sample C). The solid line shows the fit to the simple modified Curie-Weiss law given in the text.

Table S1. Cell parameters values of In-doped Cr$_2$O$_3$ as a secondary phase obtained from refinement of XRPD data for In$_{2-x}$Cr$_x$O$_3$ (x = 0.15, 0.2 and 0.25)

<table>
<thead>
<tr>
<th></th>
<th>x = 0.15</th>
<th>x = 0.2</th>
<th>x = 0.25</th>
<th>Cr$_2$O$_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>a / Å</td>
<td>4.9675522(10)</td>
<td>4.9664469(7)</td>
<td>4.9623895(10)</td>
<td>4.9570</td>
</tr>
<tr>
<td>c / Å</td>
<td>13.5967703(2)</td>
<td>13.59500690(13)</td>
<td>13.57928750(17)</td>
<td>13.5923</td>
</tr>
<tr>
<td>V / Å3</td>
<td>290.57(7)</td>
<td>290.40(4)</td>
<td>289.59(6)</td>
<td>289.242</td>
</tr>
</tbody>
</table>

- after Rietveld refinement the fractions (wt) of phases are:

x = 0.15: 93.68% bixbyite and 6.32% Cr$_2$O$_3$, for x = 0.2: 88.23% bixbyite and 11.77% Cr$_2$O$_3$, for x = 0.25: 82.81% bixbyite and 17.19% Cr$_2$O$_3$