

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2005

Biocatalytic Asymmetric Dihydroxylation of Conjugated Mono- and Poly-Alkenes to Yield Enantiopure Cyclic *cis*-Diols

Derek R. Boyd,^{a,b*} Narain D. Sharma,^{a,b} Nigel I. Bowers,^b Ian N. Brannigan,^b Melanie R. Grocock,^b John F. Malone,^b Gareth McConville,^b Christopher C. R. Allen^c

^a Centre for the Theory and Application of Catalysis, ^b School of Chemistry, and ^c QUESTOR Centre, The Queen's University of Belfast, Belfast, UK BT9 5AG

Fax: 02890 382117, e-mail: dr.boyd@qub.ac.uk

Supporting Information

¹H NMR spectra were recorded at 300MHz (Bruker Avance DPX-300) and at 500MHz (Bruker Avance DRX-500) in CDCl₃ solvent. Chemical shifts (δ) are reported in ppm relative to SiMe₄. Mass spectra were recorded at 70eV on a VG Autospec Mass Spectrometer. Accurate molecular weights were determined by the peak matching method with perfluorokerosene as standard. Elemental microanalyses were obtained on a Perkin-Elmer 2400 CHN microanalyser. Optical rotation ([α]_D) measurements were carried out with a Perkin-Elmer 214 polarimeter. Flash column chromatography and PLC were preformed on Merck Kieselgel type (250-400 mesh) and PF_{254/366} respectively. Circular dichroism (CD) spectra were recorded using a JASCO J-720 model in acetonitrile solvent. Melting points are uncorrected.

Commercially available (Aldrich Chemical Co) compounds included substrates **1a**-**1g**, **14a-f** and products **3a**, **3e**, **5**, and **12**. Substrates **9**, **14h-i** were synthesised according to the literature methods^[34,-36] and substrate **14g** was prepared by a similar route.^[35]

5-(1'-Ethylpropylidene)-1,3-cyclopentadiene 14g: Oil (4.98 g, 84%, yield); HRMS: *m/z* (M)⁺ = 134.1102, calcd. for C₁₀H₁₄: 134.1096. ¹H NMR: *d* = 1.22 (6H, t, *J* 7.5, 2x CH₂CH₃), 2.62 (4H, q, *J* 7.5, 2xCH₂CH₃), 6.51-6.57 (4H, m, 1-H, 2-H, 3-H, 4-H); ¹³C NMR (125MHz): *d*=14.59, 26.90, 120.38, 130.46, 132.07, 161.08; MS: *m/z* (%) = 134 (100, M⁺), 119 (29), 105 (66).

Biotransformation of substituted styrenes **1a-g by *P. putida* UV4 (TDO) and *P. putida* NCIMB 8859 (NDO):** Biotransformations of substrates **1a-1g** were carried out using whole cells of *P. putida* UV4 (TDO) and *P. putida* NCIMB 8859 (NDO) employing procedures similar to those reported earlier.^[13, 29,37] The aqueous medium, containing the mixture of bioproducts, was repeatedly extracted with EtOAc. The extract was dried (MgSO₄), concentrated under reduced pressure, and the crude mixture of bioproducts separated by multielution PLC. The alkene 1,2-diol metabolite was generally less polar (high *R*_f) than the corresponding arene *cis*-dihydrodiol (low *R*_f).

Styrene **1a** (with TDO)

cis-(1S, 2R)-1,2-Dihydroxy-3-vinylcyclohexa-3,5-diene **2a:** Recrystallized from CHCl₃ (125 mg, 32% yield), mp 53-54 °C; high *R*_f (20% ethyl acetate hexane); (lit.^[20] 54-55 °C); $[\alpha]_D^{20}$: + 113 (*c* 0.49, MeOH) (lit.^[20] +115); CD: ?/nm 235 (? e -8,60), 282 (?e 3.246); > 98% ee (from MEPBA boronates).

(1R)-1-Phenyl-1,2-dihydroxyethane **3a:** (12 mg, 3% yield); $[\alpha]_D^{20}$: -60 (*c* 0.85, CHCl₃); 88% ee (from MTPA esters).

Styrene **1a**, (with NDO)

(1R)-1-phenyl-1,2-dihydroxyethane **3a:** (240 mg, 60% yield); 80% ee (from MTPA esters).

3-Fluorostyrene **1b** (with TDO)

(1R)-1-(3'-Fluorophenyl)-1,2-dihydroxyethane **3b:** Recrystallized from MeOH (56 mg, 22% yield), mp 62-63 °C; *R*_f 0.30 (15% EtOAc in hexane); $[\alpha]_D^{20}$: -33 (*c* 0.64, CHCl₃); anal. calcd. for C₈H₉FO₂: C, 61.5, H, 5.8; found: C, 61.7, H, 6.1; ¹H NMR: *d* = 3.63 (1H, dd, *J*_{2a,2b} = 11.3 Hz, *J*_{2a,1} = 8.0 Hz, 2-H_A), 3.77 (1H, dd, *J*_{2b,2a} = 11.3 Hz, *J*_{2b,1} = 3.4 Hz, 2-H_B), 4.82 (1H, dd, *J*_{1,2a} = 8.0 Hz, *J*_{1,2b} = 3.4 Hz, 1-H), 6.99-7.41 (4H, m, ArH); MS: *m/z* (%) = 156 (55, M⁺), 138 (100); 62% ee (from MTPA esters).

cis-(1S, 2R)-1,2-Dihydroxy-5-fluoro-3-vinylcyclohexa-3,5-diene **2b:** Recrystallized from Et₂O/ hexane (700 mg, 27% yield), mp 43-44 °C; *R*_f 0.22 (15% EtOAc in hexane); $[\alpha]_D^{20}$: +28° (*c* 0.5, MeOH); anal. calcd. for C₈H₉FO₂: C, 61.5, H, 5.8;

found: C, 61.1, H, 5.9; ^1H NMR: d = 4.42 (1H, d, $J_{2,1}$ = 5.8 Hz, 2-H), 4.56 (1H, m, 1-H), 5.33 (1H, d, J_{cis} = 11.0 Hz, $\text{CH}=\text{CH}_2$), 5.65 (1H, d, J_{trans} = 17.6 Hz, $\text{CH}=\text{CH}_2$), 5.91 (2H, m, 4-H, 6-H), 6.42 (1H, dd, J_{cis} = 11.0 Hz, J_{trans} = 17.6 Hz, $\text{CH}=\text{CH}_2$); MS: m/z (%) = 156 (32, M^+), 138 (60), 97 (100); > 98% ee, (from MEPBA boronates).

3-Fluorostyrene **1b** (with NDO)

(1R)-3b: (36 mg, 14% yield); 62% ee (from MTPA esters).

3-Chlorostyrene **1c** (with TDO)

(1R)-1-(3'-Chlorophenyl)-1,2-dihydroxyethane **3c:** Recrystallized from CHCl_3 /hexane (78 mg, 14% yield), mp 102-104 °C; R_f 0.24 (20% EtOAc in hexane); $[\alpha]_D^{20}$: -11.0 (c 0.94, EtOH) (lit.^[14] +24.1 for 1S -**3c**); 42% ee (from MTPA esters).

cis-(1S, 2R)-1,2-Dihydroxy-5-chloro-3-vinylcyclohexa-3,5-diene **2c:** Oil (11 mg, 2% yield); R_f 0.16 (20% EtOAc in hexane); $[\alpha]_D^{20}$: +56 (c 0.81, EtOH); HRMS: m/z (M^+) = 172.0287, calcd. for $\text{C}_8\text{H}_9\text{ClO}_2$: 172.0291; ^1H NMR: d = 4.38 (1H, d, $J_{2,1}$ = 5.9 Hz, 2-H), 4.49 (1H, m, 1-H), 5.31 (1H, d, J_{cis} = 10.8 Hz, $\text{CH}=\text{CH}_2$), 5.59 (1H, d, J_{trans} = 17.6 Hz, $\text{CH}=\text{CH}_2$), 5.89 (2H, m, 4-H, 6-H), 6.37 (1H, dd, J_{cis} = 10.8 Hz, J_{trans} = 17.6 Hz, $\text{CH}=\text{CH}_2$); MS: m/z (%) = 172 (38, M^+), 154 (69), 91 (100). >98% ee (from MEPBA boronates).

3-Chlorostyrene **1c** (with NDO)

(1R)-3c: (100 mg, 18% yield); 56% ee (from MTPA esters).

3-Methylstyrene **1d** (with TDO)

(1R)-1-(3'-Methylphenyl)-1,2-dihydroxyethane **3d:** Recrystallized from CHCl_3 /hexane (26 mg, 8% yield), mp 111-112 °C; R_f 0.38 (15% EtOAc in hexane); $[\alpha]_D^{20}$: -62 (c 0.58, CHCl_3); anal. calcd. for $\text{C}_9\text{H}_{12}\text{O}_2$: C, 71.0; H, 8.0; found: C, 71.0, H, 8.3; ^1H NMR: d = 2.32 (3H, s, CH_3), 3.58 (1H, dd, $J_{2a,2b}$ = 11.0 Hz, $J_{2a,1}$ = 8.0 Hz, 2-H_A), 3.64 (1H, dd, $J_{2b,2a}$ = 10.9 Hz, $J_{2b,1}$ = 4.2 Hz, 2-H_B), 4.73 (1H, dd, $J_{1,2a}$ = 8.0 Hz., $J_{1,2b}$ = 4.0 Hz, 1-H), 7.08-7.21 (4H, m, ArH); MS: m/z (%) = 152 (100, M^+), 134 (100); 48% ee (from MTPA esters).

cis-(1S, 2R)-1,2-Dihydroxy-5-methyl-3-vinylcyclohexa-3,5-diene **2d:** (71 mg, 22% yield), mp 34-36 °C; R_f 0.30 (15% EtOAc in hexane); $[\alpha]_D^{20}$: +60 (c 0.48, MeOH); anal. calcd. for $\text{C}_9\text{H}_{12}\text{O}_2$: C, 71.0, H, 8.0, found: C, 71.4, H, 8.1; ^1H NMR: d = 2.01

(3H, s, Me), 4.40 (1H, d, $J_{2,1} = 5.6$ Hz, 2-H), 4.53 (1H, m, 1-H), 5.30 (1H, d, $J_{cis} = 11.0$ Hz, CH=CH₂), 5.63 (1H, d, $J_{trans} = 16.8$ Hz, CH=CH₂), 5.88 (2H, m, 4-H, 6-H), 6.44 (1H, dd, $J_{cis} = 11.0$ Hz, $J_{trans} = 16.8$ Hz, CH=CH₂); MS: m/z (%) = 152 (28, M⁺), 134 (42), 91(100); >98% ee (from MEPBA boronates).

3-Methylstyrene 1d (with NDO)

(1R)-3d: (40mg, 12% yield); 56 % ee (from MTPA esters).

***α*-Methylstyrene 1e (with TDO)**

cis-(1S, 2R)-1,2-Dihydroxy-isopropenylcyclohexa-3,5-diene 2e: Recrystallized from CHCl₃/hexane (62 mg, 24% yield), mp. 78-80 °C; $[a]_D^{20} : +87$ (*c* 0.86, MeOH); anal. calcd. for C₉H₁₂O₂: C, 71.0; H, 8.0, found: C, 71.2, H, 7.9; ¹H NMR: d = 1.95 (3 H, s, CH₃), 4.40 (1H, d, $J_{2,1} = 5.6$ Hz, 2-H), 4.51 (1H, m, 1-H), 5.14 (1H, br s, C=CH₂), 5.37 (1H, br s, C=CH₂), 5.86 (1H, d, $J_{4,5} = 7.1$ Hz, 4-H), 6.05 (2H, m, 5-H, 6H); MS: m/z (%) = 152 (68, M⁺), 134 (42), 91(100); CD: ?/nm 218 (?e -9.487), 281 (?e 2.377); >98% ee (from MEPBA boronates).

***α*-Methylstyrene 1e (with NDO)**

1-Hydroxy-2-phenylprop-2-ene 4: Oil (8 mg, 12% yield); R_f 0.63 (5% MeOH in CHCl₃); ¹H NMR: d = 4.53 (2H, s, -CH₂OH), 5.34 (1H, d, $J_{3a,3b} = 1.2$ Hz, 3-H_A), 5.47 (1H, d, $J_{3b,3a} = 1.1$ Hz, 3-H_B), 7.21-7.42 (5H, m, ArH).^[38]

(1R)-1,2-Dihydroxy-2-phenylpropane 3e: (17 mg, 20% yield), R_f 0.30 (5% MeOH in CHCl₃); $[a]_D^{20} : -1.9$ (*c* 0.42, EtOH) (lit.^[39] -4.3); 46 % ee (from MTPA esters).

cis-β-Methylstyrene 1f (with TDO)

cis-(1S, 2R)-1,2-Dihydroxy-3-(*cis*-1'-propenyl)cyclohexa-3 5-diene 2f:

Recrystallized from Et₂O/hexane (108 mg, 42% yield), mp 112-115 °C; $[a]_D^{20} : +128$ (*c* 0.36, MeOH); anal. calcd. for C₉H₁₂O₂: C, 71.0, H 8.0, found: C, 71.4, H, 8.1; ¹H NMR: d = 1.78 (3H, d, $J_{Me,2'} = 7.3$ Hz, CH₃), 4.38 (1H, d, $J_{2,1} = 5.9$ Hz, 2-H), 4.48 (1H, m, 1-H), 5.80 (1H, d, $J_{4,5} = 7.3$ Hz, 4-H), 5.83 (1H, m, 2'-H), 6.01 (2H, m, 5-H, 6-H), 6.20 (1H, d, $J_{1',2'} = 10.7$ Hz, 1'-H); MS: m/z (%) = 152 (56, M⁺), 134 (48),

91(100);); CD: ?/nm 217.5 (? e -5.546), 280 (? e 1.446); >98% ee (from MEPBA boronates).

cis- β -Methylstyrene 1f (with NDO)

erythro-(1R, 2S)-1,2-Dihydroxy-1-phenyl propane, 3f: Recrystallized from hexane (20 mg, 15% yield), mp. 91-92 °C (lit.^[40] 89-90 °C); $[\alpha]_D^{20}$: -33 (c 0.78, CHCl₃) (lit.^[40] -35); HRMS: *m/z* (M)⁺ = 152.0834, calcd. for C₉H₁₀O₂: 152.0837; ¹H NMR: d = 1.01 (3H, d, *J*_{Me,2} = 6.2 Hz, CH₃), 3.96 (1H, m, 2-H), 4.62 (1H, d, *J*_{1,2} = 4.0 Hz, 1-H), 7.16-7.32 (5H, m, ArH); MS: *m/z* (%) = 152 (64, M⁺), 134, (74), 108(100); 82% ee (from MTPA esters).

trans- β -Methylstyrene 1g (with TDO)

cis-(1S, 2R)-1 2-Dihydroxy-3-(*trans*-1'-propenyl)cyclohexa-3,5-diene 2g:

Recrystallized from CHCl₃/EtO₂ (95 mg, 37% yield); mp 93-95 °C; $[\alpha]_D^{20}$: +78 (c 0.93, MeOH); anal. calcd. for C₉H₁₂O₂: C, 71.0, H, 8.0, found: C, 71.1, H, 8.2; ¹H NMR: d = 1.86 (3H, d, *J*_{Me,2} = 5.9 Hz, CH₃), 4.31 (1H, d, *J*_{2,1} = 5.7 Hz, 2-H), 4.47 (1H, m, 1-H), 5.76 (1H, d, *J*_{4,5} = 6.6 Hz, 4-H), 5.80 (1H, m, 2'-H), 6.08 (2H, m, 5-H, 6-H), 6.11 (1 H, d, *J*_{1,2} = 16.9 Hz, 1'-H); MS: *m/z* (%) = 152 (72, M⁺), 134 (54), 91(100); CD: ?/nm 235 (? e -8.596), 282 (? e 3.257); >98% ee (from MEPBA boronates).

trans- β -Methylstyrene 1g (with NDO)

trans-Cinnamic acid 5: (65 mg, 52% yield); identical to an authentic sample.

Biotransformation of 2-methyl-1*H*-indene 9 by *P. putida* UV4 (TDO) and *P. putida* NCIMB 8859 (NDO)

2-Methyl-1*H*-indene 9 (with TDO)

(R)-2-Methyl-1*H*-inden-1-ol 11: (5 mg, 1% yield), *R*_f 0.6 (50% EtOAc in hexane); $[\alpha]_D^{20}$: -101 (c 0.25, CHCl₃); HRMS: *m/z* (M)⁺ = 146.0733, calcd. for C₁₀H₁₀O: 146.0732; ¹H NMR: d = 1.51 (1H, d, *J*_{OH,1} = 8.4 Hz, OH), 2.07 (3H, s, CH₃), 4.85 (1H, d, *J*_{1,OH} = 8.4 Hz, 1-H), 6.34 (1H, s, 3-H), 7.44-7.46 (4H, m, Ar-H); MS: *m/z*

(%) = 146 (100, M^+), 131 (91); CD: ?/nm 289.2 (? e -1.06), 227.1 (? e 1.24), 207.8 (? e -1.01); >98% ee (from MTPA esters).

(R/S)-2-methyl-1-indanone 12: (325 mg, 57% yield), R_f 0.7 (50% EtOAc in hexane); $[\alpha]_D^{20}$: 0 (c 0.25, $CHCl_3$) (lit.^[41] +42); 1H NMR: d = 1.30 (3H, d, $J_{Me,2}$ = 7.3 Hz, CH_3), 2.60-2.72 (2H, m, 3-H), 3.36 (1H, m, 2-H), 7.37-7.80 (4H, m, Ar-H); MS: m/z (%) = 146 (75, M^+), 131 (100).

(1S,2R)-1,2-Dihydroxy-2-methylindan 10: (170 mg, 26% yield), mp 93-94 °C; R_f 0.3 (50% EtOAc in hexane); $[\alpha]_D^{20}$: -23 (c 0.57, $CHCl_3$); anal. calcd. for $C_{10}H_{12}O_2$: C, 73.2, H, 7.4, found: C, 72.8 H, 7.2; 1H NMR: d = 1.43 (3H, s, CH_3), 2.95 (2H, ddd, $J_{3,OH}$ = 12.0 Hz, $J_{3,3'}$ = 16.0 Hz, $J_{3',1}$ = 5.3 Hz, 3-H, 3'-H), 4.64 (1H, d, $J_{1,3'}$ = 5.3 Hz, 1-H), 7.18-7.37 (4H, m, Ar-H); MS: m/z (%) = 164 (43, M^+), 104 (100); CD: ?/nm 289.2 (? e -1.06), 227.1 (? e 1.24), 207.8 (? e -1.01); >98 % ee (from di-MTPA esters).

2-Methyl-1*H*-indene 9 (with NDO)

(S)-2-Methyl 1*H*-inden-1-ol 11: Oil (15 mg, 67% yield); R_f 0.6 (50% EtOAc in hexane); $[\alpha]_D^{20}$: +107 (c 0.37, $CHCl_3$); >98% ee (from MTPA esters).

2-Hydroxymethyl-1*H*-indene 13: Oil (10 mg, 5% yield), R_f 0.4 (50% EtOAc in hexane); HRMS: m/z (M)⁺ = M^+ 146.0726, calcd. for $C_{10}H_{10}O$: 146.0732; 1H NMR: d = 1.70 (1H, br s, OH), 3.41 (2H, s, 1-H, 1-H'), 4.57 (2H, br s, CH_2OH), 6.74 (1H, s, 3-H), 7.14 -7.43 (4H, m, Ar-H); MS: m/z (%) = 146 (47, M^+), 115 (100).

Biotransformation of conjugated dienes 14a-d and trienes 14e-i by *P. putida* UV4 (TDO) and *P. putida* NCIMB 8859 (NDO)

Cyclopentadiene 14a (with TDO)

(1*R*,2*S*)-1,2-Dihydroxycyclopent-3-ene 15a: Oil (3.2 g, 32% yield); $[\alpha]_D^{20}$: +13 (c 0.4, $CHCl_3$) (lit.^[32] + 26, 38% ee); 1H NMR: d = 2.34 (1H, m, 5-H), 2.59 (1H, m, 5-H'), 4.30 (1H, m, 1-H), 4.57 (1H, m, 2-H), 5.78 (1H, m, 3-H), 5.92 (1H, m, 4-H); ^{13}C NMR (125MHz): d = 39.23, 70.57, 75.69, 131.39, 132.89; MS: m/z (%) = 100 (2, M^+), 82 (80), 39 (100); 20 % ee (from MEPBA boronates).

Cyclohexa-1,3-diene 14b (with TDO)

The mixture of bioproducts, (1*R*,2*S*)-1,2-dihydroxycyclohex-3-ene **15b** and *cis*-1,2-dihydroxycyclohexa-3,5-diene **16**, could not be separated by chromatographic methods. *cis*-Dihydrodiol **16** (10% yield) was isolated (PLC) as a 4-phenyl-1,2,4-triazoline-3,5-dione cycloduct and identified by comparison with an authentic sample.

(1*R*,2*S*)-1,2-Dihydroxycyclohex-3-ene 15b: (25 mg, 12% yield), $[\alpha]_D^{20} : +107$ (*c* 0.5, CHCl_3) (lit.^[32] +39, 37% ee.); ^1H NMR: $\delta = 1.76$ (2H, m, H-5/H-5'), 2.08 (1H, m, 6-H), 2.19 (1H, m, 6'-H), 3.83 (1H, m, 1-H), 4.13 (1H, m, 2-H), 5.74 (1H, m, 4-H), 5.93 (1H, m, 3-H); ^{13}C NMR (125MHz): $\delta = 23.52, 25.92, 66.53, 68.86, 126.99, 131.43$; MS: m/z (%) = 114(6, M^+), 86 (37), 70(100); > 98% ee (from di-MTPA esters).

Cyclohexa-1,3-diene **14b** (with NDO)

(1*R*,2*S*)-1,2-Dihydroxycyclohex-3-ene 15b: (8 mg, 8% yield); > 98% ee (from di-MTPA esters).

1,3-Cycloheptadiene **14c** (with TDO)

(1*R*,2*S*)-1,2-Dihydroxycyclohept-3-ene 15c: (550 mg, 20% yield), $[\alpha]_D^{20} : +59$ (*c* 0.6, CHCl_3) (lit.^[32] +12.9, 21% ee); ^1H NMR: $\delta = 1.51$ (1H, m, 7-H), 1.62 (1H, m, 7'-H), 1.77 (1H, m, 6-H), 2.05 (2H, m, 5-H and 6'-H), 2.20 (1H, m, 5'-H), 3.93 (1H, d, $J_{1,2} = 5.9$ Hz, 1-H), 4.31 (1H, m, 2-H), 5.34 (1H, m, 4-H), 5.90 (1H, m, 3-H); MS: m/z (%) = 128 (4, M^+), 110(60), 81(90), 55(100); > 98% ee (from di-MTPA esters).

1,3-Cycloheptadiene **14c** (with NDO)

(1*R*,2*S*)-1,2-Dihydroxycyclohept-3-ene 15c: (480 mg, 24% yield); > 98% ee (from di-MTPA esters).

1,3-Cyclooctadiene **14d** (with TDO)

(1*R*,2*S*)-1,2-Dihydroxycyclooct-3-ene 15d: (1.1 g, 4%); $[\alpha]_D^{20} : -19$ (*c* 0.7, CHCl_3) (lit.^[32] +1.4, 21% ee); ^1H NMR: $\delta = 1.25\text{--}1.90$ (6H, m, 8-H, 8'-H, 7-H, 7'-H, 6-H, 6'-H).

H), 2.11-2.32 (2H, m, 5-H, 5-H'), 3.96(1H, m, 1-H), 4.64 (1H, ddd, $J_{2,1} = 3.10$ Hz, $J_{2,3} = 7.4$ Hz, $J_{2,4} = 1.56$ Hz, 2-H), 5.25 (1H, ddd, $J_{3,2} = 7.4$ Hz, $J_{3,4} = 10.9$ Hz, $J_{3,1} = 1.1$ Hz, 3-H), 5.82(1H, m, 4-H); MS: m/z (%) = 142(10, M^+), 124(55), 81(85), 57(100); > 98% ee (from di-MTPA esters).

1,3-Cyclooctadiene **14d** (with NDO)

(1R,2S)-1,2-Dihydroxycyclooct-3-ene 15d: (8 mg, 4%); > 98% ee (from di-MTPA esters).

Cycloheptatriene **14e** (with TDO)

(1R,2S)-1,2-Dihydroxycyclohepta-3,5-diene 15e: (60 mg, 29% yield); $[a]_D^{20} : + 21$ (c 0.5, CHCl_3) (lit.^[32] + 6.4, 24% ee); ^1H NMR: d = 2.46 (1H, m, 7-H), 2.58 (1H, m, 7'-H), 4.05 (1H, m, 1-H), 4.38 (1H, m, 2-H), 5.67-5.93 (4H, m, 3-H, 4-H, 5-H, 6-H); ^{13}C NMR (125MHz): d = 33.82, 73.03, 125.31, 125.62, 129.98, 130.86; MS: m/z (%) = 126 (3, M^+), 108 (22), 79 (100); > 98% ee (from di-MTPA esters). *cis*-Diol **15e** could only be separated, from the isomeric bioprodut, *cis*-1,2-dihydroxycyclohepta-3,6-diene **15e'**, as the 4-phenyl-1,2,4-triazoline-3,5-dione cycloadduct. The experimental data recorded for diol **15e** was, thus, collected from: (i) the isomeric mixture of diols (ii) the di-MTPA ester of the cycloadduct and (iii) an enantiopure sample of diol **15e** obtained using NDO.

cis-1,2-Dihydroxycyclohepta-3,6-diene 15e': (30 mg, 15% yield); ^1H NMR: d = 2.85 (1H, dt, $J_{5,5'} = 20.7$ Hz, $J_{5,4} = 5.7$ Hz, 5-H), 2.93 (1H, m, 5'-H), 4.42 (2H, d, $J_{2,3} = 2.8$ Hz, H-1/H-2), 5.75 (2H, dd, $J_{3,2} = 2.8$ Hz, $J_{3,4} = 11.6$ Hz, 3-H), 5.83 (2H, ddd, $J_{4,3} = 11.6$ Hz, $J_{4,5} = 5.7$ Hz, $J_{4,5'} = 3.7$ Hz, 4-H, 6-H); MS: m/z (%) = 126 (4, M^+), 108 (21), 79 (100).

Cycloheptatriene **14e** (with NDO)

(1R,2S)-1,2-Dihydroxycyclohepta-3,5-diene 15e: (48 mg, 24% yield); > 98% ee (from di-MTPA esters).

5-(1'-Methylethylidene)-1,3-cyclopentadiene **14f** (with TDO)

(1*R*,2*S*)-5-(1'-Methylethylidene)-3-cyclopentene-1,2-diol 15f: (250 mg, 19% yield);

$[\alpha]_D^{20}$: + 103 (*c* 1.0, CHCl₃) (lit.^[32] + 27.7; 30% ee); ¹H NMR: d = 1.81, 1.92 (3H each, s, 2xCH₃), 4.64 (1H, d, *J*_{3,4} = 6.0 Hz, 2-H), 4.69 (1H, d, *J*_{4,3} = 6.0 Hz, 1-H), 5.88 (1H, d, *J*_{4,3} = 5.8 Hz, 4-H), 6.48 (1H, dd, *J*_{3,4} = 5.8 Hz, *J*_{3,2} = 1.5 Hz, 3-H); ¹³C NMR (125MHz): d = 20.95, 21.00, 69.86, 75.24, 130.10, 132.17, 133.81, 139.13; MS: *m/z* (%) = 140 (64, M⁺), 122 (42), 79 (100); > 98% ee (from di-MTPA esters).

5-(1'-Methylethylidene)-1,3-cyclopentadiene 14f (with NDO)

(1*R*,2*S*)-5-(1'-Methylethylidene)-3-cyclopentene-1,2-diol 15f: (14 mg, 7% yield); > 98% ee (from di-MTPA esters).

5-(1'-Ethylpropylidene)-1,3-cyclopentadiene 14g (with TDO)

(1*R*,2*S*)-5-(1'-Ethylpropylidene)-3-cyclopentene-1,2-diol 15g: Recrystallized from EtOAc/hexane (88 mg, 7% yield), mp 55-57 °C; $[\alpha]_D^{20}$: + 139 (*c* 0.5, CHCl₃); HRMS: *m/z* (M)⁺ = 168.1151, calcd. for C₁₀H₁₆O₂: 168.1150; ¹H NMR: d = 1.01 (3H, t, *J*_{5,6} = 7.7 Hz, CH₂CH₃), 1.07 (3H, t, *J*_{8,7} = 7.6 Hz, CH₂CH₃), 2.13-2.23 (2H, m, CH₂CH₃), 2.29-2.35 (2H, m, CH₂CH₃), 4.65-4.70 (2H, m, 1-H, 2-H), 5.90 (1H, dd, *J*_{3,4} = 6.0 Hz, *J*_{3,2} = 2.0 Hz, 3-H), 6.48 (1H, d, *J*_{4,3} = 6.0 Hz, 4-H); ¹³C NMR (125MHz): d = 13.47, 13.59, 24.72, 25.25, 69.62, 75.15, 131.96, 134.28, 138.43, 141.89; MS: *m/z* (%) = 168 (57, M⁺), 150 (72), 139 (64), 135 (59), 121 (100); > 98% ee (from di-MTPA esters).

1*R*,2*S*)-5-(1'-Methylethylidene)-3-cyclopentene-1,2-(1*S*)-dicamphanate 17: Diol 15f (25 mg, 0.18 mmol) was reacted with (−)-(1*S*)-camphanic chloride (87 mg, 0.4 mmol) in dry pyridine solution (0.3 cm³). After stirring the reaction mixture at room temperature (12 h), pyridine was removed under reduced pressure. The residue obtained was purified by PLC (40% EtOAc in hexane; *R*_f 0.4) to give the dicamphanate 17 as white needles from CHCl₃/hexane (75 mg, 84%), mp 182-183 °C;

$[\alpha]_D^{20}$: + 163 (*c* 0.43, CHCl₃); anal. calcd. for C₂₈H₃₆O₈: C, 67.2, H, 7.3, found: C, 66.8, H 7.0; ¹H NMR: d = 0.93, 0.97, 1.02, 1.06, 1.09, 1.094 (3H each, s, 6xCH₃), 1.81 and 1.87 (3H each, s, C(CH₃)₂), 1.70-2.45 (8H, m, 2 x camphanic-H), 5.86 (1H, d, *J*_{3,4} = 5.8 Hz, 3-H), 6.01 (2H, s, 1-H, 2-H), 6.63 (1H, d, *J*_{4,3} = 5.8 Hz, 4-H).

Crystal data for 17: $C_{28}H_{36}O_8$, $M_r = 500.6$, orthorhombic, $a = 6.2750(5)$, $b = 17.6613(16)$, $c = 23.480(2)$ Å, $U = 2602.2(4)$ Å³, $T = 293$ K, $Mo-K\alpha$ radiation, $\lambda = 0.71069$ Å, space group $P2_12_12_1$, $Z = 4$, $F(000) = 1072$, $D_x = 1.278$ g cm⁻³, $\mu = 0.093$ mm⁻¹, 0.35 x 0.20 x 0.04 mm, Bruker CCD area detector diffractometer, f and w scan, $2.9 < 2\theta < 57.1^\circ$, measured/independent reflections: 29559/5959, direct methods solution, full matrix least squares refinement on F_o^2 , anisotropic displacement parameters for non-hydrogen atoms, hydrogens located in difference Fourier but included at positions determined by the geometry of the molecule using the riding model, with isotropic vibration parameters, $R1 = 0.047$ for 3009 data with $F_o > 4\sigma(F_o)$, 334 parameters, $wR2 = 0.126$ (all data), $GoF = 0.85$, $\Delta r_{\min, \max} = -0.20/0.20$ e Å⁻³. Crystallographic data (excluding structure factors) for this structure have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC 260441. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK [fax: (internat.) + 44 1223/336-033; e-mail: deposit@ccdc.cam.ac.uk].

5-Cyclopentyliden-1,3-cyclopentadiene, 14h (with TDO)

(1R,2S)-5-Cyclopentyliden-3-cyclopentene-1,2-diol 15h: Recrystallized from EtOAc/ hexane (60 mg, 5% yield), mp 58-60 °C; $[a]_D^{20} : +122$ (*c* 0.2, CHCl₃); HRMS: *m/z* (M)⁺ = 166.0999, calcd. for C₁₀H₁₄O₂: 166.0994; ¹H NMR: $\delta = 1.67$ -1.74 (4H, m, 2x3'-H, 2x4'-H), 2.34-2.42 (4H, m, 2x2'-H, 2x5'-H) 4.57 (1H, d, $J_{2,1} = 5.85$ Hz, 2-H), 4.70 (1H, d, $J_{1,2} = 5.8$ Hz, 1-H), 5.88 (1H, d, $J_{4,3} = 5.1$ Hz, 4-H), 6.35 (1H, dd, $J_{3,2} = 1.5$ Hz, $J_{3,4} = 5.1$ Hz, 3-H); ¹³C NMR (125MHz): $\delta = 26.30, 26.55, 30.64, 31.21, 70.91, 75.20, 133.17, 133.41, 135.14, 141.41$; MS: *m/z* (%) = 166 (66, M⁺), 148 (71), 148 (100), 120 (71), 105 (70); > 98% ee (from di-MTPA esters).

5-Cyclohexyliden-1,3-cyclopentadiene 14i (with TDO)

(1R,2S)-5-Cyclohexyliden-3-cyclopentene-1,2-diol 15i: (61 mg, 5% yield); $[a]_D^{20} : +114$ (*c* 0.5, CHCl₃); HRMS: *m/z* (M)⁺ = 180.1155, calcd. for C₁₁H₁₆O₂: 180.1150; ¹H NMR: $\delta = 1.60$ (6H, m, 2x3'-H, 2x4'-H, 2x5'-H), 2.25-2.27 (2H, m, 2x6'-H), 2.33-2.43 (2H, m, 2x2'-H), 4.68 (1H, d, $J_{2,1} = 6.1$ Hz, 2-H), 4.70 (1H, d, $J_{1,2} = 6.1$ Hz, 1-H), 5.89 (1H, d, $J_{4,3} = 6.0$ Hz, 4-H), 6.51 (1H, dd, $J_{3,4} = 6.0$ Hz, $J_{3,2} = 1.4$ Hz, 3-H); ¹³C

NMR (125MHz): δ = 26.11, 27.98, 29.21, 31.51, 31.65, 69.22, 75.04, 131.52, 134.06, 136.30, 138.44; MS: m/z (%) = 180 (37, M^+), 162 (100), 133 (42), 107 (46), 91 (84); > 98% ee (from di-MTPA esters).

Application of *cis*-(1*R*,2*S*)-5-(1'-methylethylidene)-3-cyclopentene-1,2-diol **15f in the synthesis of (2*S*,3*S*,4*S*,5*S*)-2,3:4,5-bis-(*iso*-propylidenedioxy) cyclopentanone**

21

(i)(3a*R*,6a*S*)-2,2-Dimethyl-4-(1-methylethylidene)-4,6a-dihydro-3a*H*-cyclopenta[*d*][1,3]dioxole **18:**

A suspension of *cis*-(1*R*,2*S*)-5-(1'-methylethylidene)-3-cyclopentene-1,2-diol **15f** (1.5 g, 10.7 mmol) in 2,2'-dimethoxypropane (25 cm³) containing a trace of *p*-toluenesulfonic acid was stirred at room temperature (3 h). The reaction mixture was evaporated, the residue extracted (Et₂O), the extract washed (aq. NaHCO₃ solution), dried (Na₂SO₄), and concentrated under reduced pressure. The crude product was purified (PLC) to give acetonide **18** as oil (1.83 g, 95% yield); $[a]_D^{20}$: +219 (c 1.1, CHCl₃); HRMS: m/z (M)⁺ = 180.1150, calcd. for C₁₁H₁₆O₂: 180.1150; ¹H NMR: δ = 1.40, 1.41 (3H each, s, 2xCH₃), 1.83, 1.93 (3H each, s, C(CH₃)₂), 5.06 (1H, d, $J_{6a,3a}$ = 6.1 Hz, 6a-H), 5.11 (1H, d, $J_{3a,6a}$ = 6.1 Hz, 3a-H), 5.93 (1H, d, $J_{4,5}$ = 5.7 Hz, 4-H), 6.43 (1H, d, $J_{5,4}$ = 5.7 Hz, 5-H); ¹³C NMR (125MHz): δ = 20.93, 21.40, 25.58, 27.36, 77.80, 83.25, 110.20, 130.94, 131.76, 132.75, 137.02; MS: m/z (%) = 180 (76, M^+), 165 (74), 123 (100), 121 (64), 107 (71).

(3a*S*,4*R*,5*R*,6*aR*)-2,2-dimethyl-6-(1-

methylethylidene)perhydrocyclopenta[*d*][1,3]dioxole-4,5-diol **19:** To a stirred solution of acetonide **18** (1 g, 5.56 mmol) in CH₂Cl₂ (100 cm³) was added osmium tetroxide (catalytic amount) and *N*-methylmorpholine-*N*-oxide (650 mg, 5.56 mmol). After stirring the reaction mixture (18 h) a saturated aq. solution of Na₂SO₃ (5 cm³) was added and the stirring continued (0.5 h). The CH₂Cl₂ layer was separated, dried (Na₂SO₄), and the solvent distilled off. The residual crude product was purified by flash column chromatography (4% MeOH in CHCl₃) to yield acetonide diol **19**, (370 mg, 31% yield); it crystallized from EtOAc/ hexane, mp 102-103 °C; $[a]_D^{20}$: + 85 (c 0.5, CHCl₃); anal. calcd. for C₁₁H₁₈O₄: C, 61.7, H, 8.5, found: C, 61.7, H 8.7; ¹H NMR: δ = 1.36, 1.47 (3H each, s, 2xCH₃), 1.89, 1.91 (3H each, s, C(CH₃)₂), 4.09 (1H, d, $J_{3a,6a}$ = 5.9 Hz, 3a-H), 4.49 (1H, d, $J_{6a,3a}$ = 5.9 Hz, 6a-H), 4.72 (1H, d, $J_{4,5}$ =

5.0 Hz, 4-H), 5.12 (1H, d, $J_{5,4} = 5.0$ Hz, 5-H); ^{13}C NMR (125MHz): d = 20.93, 21.65, 25.58, 27.70, 72.76, 78.00, 78.23, 84.39, 112.21, 131.75, 141.44; MS: m/z (%) = 214 (34, M $^+$), 199 (42), 156 (47), 138 (58).

(3aR,3bR,6aR,7aR)-2,2,5,5-tetramethyl-7-(1-methylethylidene)perhydro[1,3]dioxolo[4',5':3,4]cyclopenta[d][1,3]dioxole 20: Treatment of acetonide diol **19** (300 mg, 1.4 mmol) in a similar manner to diol **15f** gave the *bis*-acetonide **20** (340

mg, 96% yield) which crystallized from hexane, mp 73-74 °C; $[\alpha]_D^{20} : +65$ (c 1.2, CHCl_3); HRMS: m/z (M) $^+ = 254.1521$ calcd. for $\text{C}_{14}\text{H}_{22}\text{O}_4$: requires 254.1515; ^1H NMR: d = 1.33, 1.38 (6H each, s, 2xC(CH₃)₂), 1.87 (6H, s, C(CH₃)₂), 4.52 (2H, d, $J_{3a,7a} = 5.6$ Hz, 3a-H, 3b-H), 5.20 (2H, m, $J_{7a,3a} = 5.6$ Hz, 6a-H, 7a-H); ^{13}C NMR (125MHz): d = 21.51, 25.35, 27.15, 80.41, 83.60, 110.81, 133.34, 140.35; MS: m/z (%) = 254 (15, M $^+$), 239 (46), 181 (40), 137 (100).

(2S,3S,4S,5S)-2,3:4,5-bis-(*iso*-Propylidenedioxy)cyclopentanone 21: A slow stream of ozone enriched O₂ was bubbled through a cooled (-78 °C) CH₂Cl₂ solution (20 cm³) of *bis*-acetonide **20** (250 mg, 1 mmol) until the blue colour disappeared (0.5 h). Triphenylphosphine (1.0 g, 4 mmol) was then added to the reaction mixture and it was stirred at room temperature (0.5 h). The crude product was purified by flash column chromatography (25% Et₂O in hexane) to give ketone **21** (200 mg, 89% yield); it crystallized from Et₂O/hexane, mp 74-75 °C; $[\alpha]_D^{20} : +141$ (c 1.0, CHCl_3) (lit.^[33] + 124); HRMS: m/z (M) $^+ = 228.0990$, calcd. for $\text{C}_{11}\text{H}_{16}\text{O}_5$: 228.0998; ^1H NMR: d = 1.36, 1.41 (6H each, s, 2xC(CH₃)₂), 4.59 (2H, d, $J_{3a,7a} = 5.0$ Hz, 2x3a-H), 4.68 (2H, d, $J_{7a,3a} = 5.0$ Hz, 2x7a-H).