

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2005

Highly Enantioselective Aza-Baylis-Hillman Reactions Catalyzed by Chiral Thiourea Derivatives

Izzat T. Raheem, Eric N. Jacobsen*

Department of Chemistry and Chemical Biology Harvard University, 12 Oxford Street, Cambridge, MA 02138 USA Fax: (+1)-617-496-1880, e-mail: jacobsen@chemistry.harvard.edu

Supporting Information

General Procedures. All reactions were performed in oven-dried or flame-dried roundbottom flasks or vials. The flasks were fitted with rubber septa and reactions were conducted under a positive pressure of nitrogen, unless otherwise noted. Stainless steel syringes or cannulae were used to transfer air- and moisture-sensitive liquids. Flash chromatography was performed using silica gel 60 (230-400 mesh) from EM Science.

Materials. Commercial reagents were purchased from Sigma Aldrich, Alfa Aesar, EM Science, and Lancaster and used as received. All solvents were used after being freshly distilled unless otherwise noted.

Instrumentation. Proton nuclear magnetic resonance (¹H NMR) spectra and carbon nuclear magnetic resonance (¹³C NMR) spectra were recorded on a Varian Mercury-400 (400 MHz) or Inova-500 (500 MHz) NMR spectrometer. Chemical shifts for protons are reported in parts per million downfield from tetramethylsilane and are referenced to residual NMR solvent peak (CHCl₃: δ 7.26, (CD₃)₂SO: δ 2.49). Chemical shifts for carbon are reported in parts per million downfield from tetramethylsilane and are referenced to the carbon resonances of the solvent (CDCl₃: δ 77.0, (CD₃)₂SO: δ 39.5). Data are represented as follows: chemical shift, multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants in Hertz (Hz), and integration.

The mass spectroscopic data were obtained at the Harvard University mass spectrometry facility using a Micromass Platform II single quadrupole instrument.

Chiral HPLC analysis was performed on a Hewlett-Packard 1050 instrument.

Achiral gas chromatography (GC) analyses were performed on Hewlett-Packard 5890 Series II instruments equipped with FID detectors, a Hewlett-Packard 7673 Automatic Liquid Sampler and an HP-5 capillary column (30 m x 0.32 mm i.d. x 0.25 m film) using hydrogen as a carrier gas.

Infrared (IR) spectra were obtained using a Mattson Galaxy Series FTIR 3000 spectrophotometer referenced to a polystyrene standard. Data are represented as follows: frequency of absorption (cm^{-1}), intensity of absorption (s = strong, m = medium, w = weak).

Abbreviations used: EtOAc – ethyl acetate, THF – tetrahydrofuran, EtOH – ethanol, MeOH – methanol, Et₂O – diethyl ether, IPA – isopropyl alcohol, TEA – triethylamine, MS – molecular seives, LAH – lithium aluminum hydride, DBU - 1,8-Diazabicyclo-[5.4.0]undec-7-ene, DABCO - 1,4-Diazabicyclo[2.2.2]octane, EDC - 1-(3-(dimethyl-amino)propyl)-3-ethyl-carbodiimide hydrochloride, HOBt - 1-Hydroxybenzotriazole, Boc – *t*-butyl carbamate, Moc – methyl carbamate, DMSO – dimethyl sulfoxide, Ts – *p*-toluene sulfonyl, Ns (nosyl) – *p*-nitrobenzene sulfonyl, TLC – thin layer chromatography, dr – diastereomeric ratio, ee – enantiomeric excess.

Representative Experimental Procedures:

Thiourea catalyst (1c).

A. L-tert-leucine N',N'-benzylmethylamide hydrochloride. An oven-dried, 250 mL round-bottomed flask is charged with a stir bar, EDC (3.64 g, 19.02 mmol), and HOBt (2.57 g, 19.02 mmol). Freshly distilled CH₂Cl₂ (100 mL) is added, and the solution stirred for two minutes. Next, diisopropylethylamine (4.52 mL, 25.94 mmol) then N-benzylmethylamine (2.45 mL, 19.02 mmol), are added *via* syringe in one portion, at room temperature. Boc-L-tert-Leucine (4.00 g, 17.29 mmol) is added in one portion, the flask is sealed with a rubber septum, and the reaction is stirred vigorously under N₂ for 16 h at room temperature. The reaction is diluted with Et₂O (200 mL), and washed

with 0.5N HCl (2x 200 mL). The acidic aqueous layer is extracted with 100 mL Et_2O , and the combined organics are washed with saturated aqueous NaHCO₃ (1x 150 mL) and brine (1x 150 mL). The organics are dried over MgSO₄, filtered, and concentrated *in vacuo* to yield the crude Boc-amino amide as a white to light yellow oily semi-solid, which is sufficiently pure to use in the subsequent step.

In a 250 mL round-bottomed flask, the crude product is dissolved in anhydrous CH_2Cl_2 (45 mL) at room temperature. With vigorous stirring, 4N HCl in 1,4-dioxane (43.25 mL) is added over 5 minutes via syringe, and the reaction stirred for 1.5 h. The reaction is concentrated *in vacuo*, and subjected to high vacuum (=1 Torr) for 1 h to afford the crude salt as a white to light yellow semi-crystalline solid which is sufficiently pure to use in the subsequent step.

B. N,*N*-benzylmethyl-(2*S*)-isothiocyanato-3,3-dimethylbutyramide. In a 1 L round-bottomed flask equipped with a stir bar, the crude product from the previous step is dissolved in anhydrous CH_2Cl_2 (180 mL), and cooled to 0 °C with an external ice/brine bath. Saturated aqueous NaHCO₃ (180 mL) is added, and the biphasic mixture stirred vigorously (~500 rpm) for 10 minutes. The stirring is stopped, and thiophosgene (1.33 mL, 17.46 mmol) is added via syringe *to the organic layer*. Immediately, vigorous stirring is restored, the reaction is removed from the ice bath, and allowed to stir for 30 min at room temperature. The layers are separated and the aqueous layer is extracted with CH_2Cl_2 (2x 100 mL). The combined organics are dried over Na₂SO₄, filtered, concentrated *in vacuo*, and subjected to high vacuum (=1 Torr) for 10 min, to afford the crude isothiocyanate as a light orange oil. The isothiocyanate is sufficiently pure to use in the next step.

N-[(*1R*,*2R*)-2-amino-1-cyclohexylaminothiocarbonyl]-*L*-tert-leucine N',N'-С. benzylmethyl-amide. In a flame-dried 250 mL round-bottomed flask, (R,R)-1,2cyclohexanediamine (2.47 g, 21.61 mmol) is dissolved in anhydrous CH₂Cl₂ (75 mL). The crude isothiocyanate from the previous step, dissolved in anhydrous CH₂Cl₂ (5 mL), is added dropwise via syringe over 5 minutes. An additional 3x 2.5 mL portions of CH₂Cl₂ are used to effect quantitative transfer. The reaction is stirred at room temperature for 3 h, and then concentrated directly to a yellow to light orange, semicrystalline solid. The solid is purified by flash chromatography to yield the pure thiourea as a semi-crystalline solid (5.00 g, 84% from Boc-L-*tert*-Leucine). FTIR (thin film) cm⁻¹: 2932 (m), 2858 (w), 1624 (s), 1537 (s); ¹H NMR (500 MHz, CDCl₃, 20 °C; compound exists as a ~5.5:1 mixture of rotamers: the major rotamer is denoted by *) δ 7.42-7.20 (10H, m, ArH, ArH*), 5.75 (1H, d, J = 9.0 Hz, CH(*t*Bu)), 5.50 (1H, d, J = 7.5 Hz, $CH(tBu)^*$), 5.05 (1H, d, J = 15.5 Hz, Ph CH_2), 4.98 (1H, d, J = 14.5 Hz, Ph CH_2^*), 4.64 $(1H, d, J = 15.5 \text{ Hz}, \text{PhCH}_2), 4.28 (1H, d, J = 14.5 \text{ Hz}, \text{PhCH}_2^*), 3.22 (3H, s, \text{NCH}_3^*),$ 2.87 (3H, s, NCH₃), 2.57 (2H, m, CH(NH₂), CH(NH₂)*), 2.38 (4H, s, NH₂, NH₂*), 2.05 $(2H, d, J = 12.0 \text{ Hz}, \text{CHN}, \text{CHN}^* \text{ thiourea}), 1.88 (2H, d, J = 10.0 \text{ Hz}, \text{CH}_2(\text{CHNH}_2))$ CH₂(CHNH₂)*), 1.71 (6H, m, CH₂(CHNH₂), CH₂(CHNH₂)*, CH₂(CHN), CH₂(CHN)*), 1.33-1.19 (8H, m, CH₂, CH₂* cycl) 1.09 (9H, s, C(CH₃)₃)*, 1.07 (9H, s, C(CH₃)₃); 13 C NMR (100 MHz, DMSO- d_6 , 20 °C; compound exists as a mixture of rotamers) δ 182.9, 171.6, 171.4, 137.5, 137.1, 128.9, 128.4, 128.2, 128.1, 127.9, 127.7, 127.5, 127.1, 125.3, 59.4, 58.7, 54.2, 53.2, 50.2, 36.1, 35.8, 35.5, 34.3, 33.0, 31.4, 26.6, 26.5, 24.4, 24.3; LRMS (ApCI): 391.1 (100%) [M+H]⁺.

D. N-[(1R,2R)-2-(2-hydroxy-3,5-di-tert-butylbenzylidine)amino-1-cyclohexylamino-thiocarbon-yl]-L-tert-leucine N',N'-benzylmethylamide (1c). To a flame-dried, 50 mL round-bottomed flask equipped with a stir bar is added the free amine thiourea from the previous step (1.00 g, 2.56 mmol), 3,5-di-tert-butylsalicylaldehyde (588 mg, 2.51 mmol), and Na₂SO₄ (2.30 g), and the flask is sealed with a rubber septum. Next, the flask is evacuated, anhydrous CH_2Cl_2 (15 mL) is added in one portion via syringe with vigorous stirring, and the flask is re-filled with N_2 . The solution turns bright yellow, and the reaction is stirred under N₂ for 1.5 h at room temperature. The entire reaction mixture is concentrated under reduced pressure, and the yellow residue is re-dissolved in anhydrous hexanes (45 mL). The mixture is filtered through an oven-dried sintered glass funnel into a flame-dried, pre-tared, 250-mL round-bottomed flask. The flask and filter pad are washed with additional anhydrous hexanes (3x 25 mL), and the filtrate is concentrated *in vacuo* and subjected to high vacuum (= 1 Torr) for 2 h to afford the pure catalyst as a yellow solid (1.51 g, >99%, 84% from Boc-L-tert-Leucine). The catalyst requires no additional purification. FTIR (thin film) cm⁻¹: 2957 (s), 2864 (w), 1630 (s), 1534 (s); ¹H NMR (600 MHz, CDCl₃, 20 °C; compound exists as a ~4:1 mixture of rotamers: the major rotamer is denoted by *) δ 13.25 (2H, s, ArOH, ArOH*), 8.35 (1H, s, CH=N*), 8.33 (1H, s, CH=N), 7.35-7.18 (10H, m, ArH, ArH*), 7.06 (1H, d, J = 2.2 Hz, ArH*), 7.05 (1H, d, J = 2.6 Hz, ArH), 6.41 (2H, br, NH, NH*), 6.08 (2H, br, NH, NH*), 5.70 (1H, br, CH(tBu)), 5.58 (1H, d, J = 9.2 Hz, CH(tBu)*), 4.91 (1H, d, J = 15.4 Hz, PhCH₂), 4.86 (1H, d, *J* = 14.6 Hz, PhCH₂*), 4.46 (1H, d, *J* = 15.4 Hz, PhCH₂), 4.18 (1H, d, J = 14.3 Hz, PhCH₂*), 3.78 (2H, br, CHN, CHN*), 3.09 (3H, s, CH3*), 2.78 (3H, s, CH3), 2.14 (2H, m, CHN, CHN*), 1.9-1.58 (8H, m, CH₂, CH₂* cycl), 1.50-1.27 (8H, m, CH₂, CH₂* cycl), 1.39 (9H, s, C(CH₃)₃*), 1.38 (9H, s, C(CH₃)₃) 1.26 (9H, s, C(CH₃)₃*), 1.25 (9H, s, $C(CH_3)_3$), 0.89 (9H, s, $C(CH_3)_3^*$), 0.85 (9H, s, $C(CH_3)_3$); ¹³C NMR (100 MHz, DMSO-d₆, 20 °C; compound exists as a mixture of rotamers) δ 182.5, 171.4, 166.1, 157.5, 139.4, 137.4, 135.5, 128.3. 127.5, 127.0, 126.3, 126.1, 117.7, 69.6, 58.3, 56.3, 52.9, 50.0, 36.1, 35.7, 34.5, 33.8, 33.1, 31.3, 29.3, 26.5, 26.4, 23.5, 23.3; LRMS (ApCI): 607.2 (100%) [M+H]⁺.

General procedure for the preparation of nitro-benzenesulfonyl imines:

A flame-dried 50 mL round-bottom flask was charged with activated 4Å MS (800 mg), amberlyst 15 (25 mg), *p*-nitrobenzenesulfonamide (1.01g, 5.00 mmol), and a stirbar. Freshly distilled toluene (20 mL) was added *via* syringe at room temperature, followed by aldehyde (5.50 mmol). A Dean-Stark trap equipped with reflux condenser was attached, all joints sealed with teflon tape, and the reaction heated to a vigorous reflux for 20 h. The reaction was allowed to cool to room temperature, and was then filtered through a pad of Celite. The pad was washed with 350 mL toluene, and the filtrate concentrated in vacuo to a solid. The solids were washed with 3 x 100 mL hexanes, and the solid collected on a scintered glass funnel. This material was sufficiently pure to use in the subsequent step, but could be further recrystallized in high yield from EtOAc/hexanes.

N-Benzylidene-4-nitro-benzenesulfonamide (6a). The product was isolated as a light tan powder (85%). FTIR (CH₂Cl₂ thin film, cm⁻¹): 1606 (s), 1569 (s), 1528 (s), 1450 (w), 1350 (m), 1333 (w), 1310 (m), 1224 (w), 1161 (s), 1088 (m), 856 (m), 796 (s), 739 (m); ¹H NMR (500 MHz, CDCl₃) d 9.13 (s, 1H), 8.39 (d, *J*=8.8 Hz, 2H), 8.21 (d, *J*=8.8 Hz, 2H), 7.96 (d, *J*=7.2 Hz, 2H), 7.67 (t, *J*=7.5 Hz, 1H), 7.53 (t, *J*=7.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) d 172.62, 150.84, 144.43, 136.06, 131.96, 129.97, 129.62, 129.41, 124.59; LRMS (ApCI): 291.0 (5%) [M+H]⁺, 261.0 (100%) [M-NO⁺]⁺.

N-(3-Methyl-benzylidene)-4-nitro-benzenesulfonamide (6b). The product was isolated as an off-white powder (81%). FTIR (CH₂Cl₂ thin film, cm⁻¹): 1600 (s), 1575 (s), 1529 (s), 1477 (w), 1347 (m), 1336 (m), 1311 (m), 1301 (m), 1257 (w), 1157 (s), 1087 (m), 1010 (w), 745 (m), 682 (w); ¹H NMR (400 MHz, CDCl₃) d 9.09 (s, 1H), 8.38 (d, *J*=8.8 Hz, 2H), 8.21 (d, *J*=8.4 Hz, 2H), 7.78 (s, 1H), 7.73 (d, *J*=7.3 Hz, 1H), 7.48 (d, *J*=7.3 Hz, 1H), 7.41 (t, *J*=7.3 Hz, 1H), 2.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) d 172.86, 150.79, 144.49, 139.65, 137.01, 132.14, 131.96, 129.70, 129.58, 129.49, 124.59, 21.40; LRMS (ApCI): 305.0 (2%) [M+H]⁺, 275.0 (100%) [M-NO⁺]⁺.

N-(3-Methoxy-benzylidene)-4-nitro-benzenesulfonamide (6c). The product was isolated as an off-white powder (79%). FTIR (CH₂Cl₂ thin film, cm⁻¹): 1600 (m), 1573 (s), 1531 (s), 1463 (w), 1349 (m), 1334 (m), 1311 (m), 1270 (m), 1161 (s), 1088 (m), 1038 (m), 856 (w), 811 (m), 762 (m), 682 (w), 645 (m); ¹H NMR (400 MHz, CDCl₃) d 9.08 (s, 1H), 8.37 (d, J=8.8 Hz, 2H), 8.20 (d, J=8.8 Hz, 2H), 7.35-7.55 (m, 3H), 7.19 (d, J=8.4 Hz, 1H), 3.83 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) d 172.66, 160.38, 150.83, 144.33, 133.41, 130.58, 129.62, 126.06, 124.61, 123.25, 113.84, 55.81; LRMS (ApCI): 321.0 (2%) [M+H]⁺, 291.0 (100%) [M-NO⁺]⁺.

N-(4-Chloro-benzylidene)-4-nitro-benzenesulfonamide (6d). The product was isolated as a white powder (87%). FTIR (CH₂Cl₂ thin film, cm⁻¹): 1602 (m), 1590 (s), 1561 (m), 1529 (s), 1401 (w), 1349 (m), 1333 (m), 1307 (m), 1159 (s), 1085 (s), 823 (w), 795 (s), 740 (s), 690 (m), 615 (m), 558 (m); ¹H NMR (400 MHz, CDCl₃) d 9.09 (s, 1H), 8.39 (d, *J*=8.8 Hz, 2H), 8.20 (d, *J*=8.8 Hz, 2H), 7.89 (d, *J*=8.4 Hz, 2H), 7.50 (d, *J*=8.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) d 171.12, 150.90, 144.16, 142.72, 132.98, 130.57, 130.11, 129.65, 124.64; LRMS (ApCI): 325.1 (1%) [M+H]⁺, 295.0 (100%) [M-NO⁺]⁺.

N-(3-Chloro-benzylidene)-4-nitro-benzenesulfonamide (6e). The product was isolated as a white powder (82%). FTIR (CH₂Cl₂ thin film, cm⁻¹): 1608 (s), 1563 (s), 1531 (s), 1351 (s), 1335 (m), 1312 (m), 1217 (w), 1162 (s), 1088 (m), 800 (m), 743 (m), 640 (m); ¹H NMR (500 MHz, CDCl₃) d 9.08 (s, 1H), 8.39 (d, *J*=9.3 Hz, 2H), 8.21 (d, *J*=8.8 Hz, 2H), 7.95 (s, 1H), 7.81 (d, *J*=7.8 Hz, 1H), 7.62 (d, *J*=9.3 Hz, 1H), 7.46 (t, *J*=7.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) d 171.12, 150.97, 143.98, 135.93, 135.76, 133.77, 130.88, 130.78, 130.45, 129.73, 124.67; LRMS (ApCI): 325.1 (2%) $[M+H]^+$, 295.0 (100%) $[M-NO^+]^+$.

N-(3-Bromo-benzylidene)-4-nitro-benzenesulfonamide (6f). The product was isolated as a white powder (85%). FTIR (CH₂Cl₂ thin film, cm⁻¹): 1606 (m), 1558 (m), 1530 (s), 1349 (s), 1335 (m), 1311 (m), 1161 (s), 1089 (m), 855 (w), 804 (m), 741 (m), 679 (w),

641 (w); ¹H NMR (400 MHz, CDCl₃) d 9.07 (s, 1H), 8.40 (d, J=8.8 Hz, 2H), 8.21 (d, J=8.4 Hz, 2H), 8.11 (s, 1H), 7.85 (d, J=7.7 Hz, 1H), 7.78 (d, J=7.7 Hz, 1H), 7.42 (apparent t, J=7.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) d 171.00, 150.97, 143.95, 138.67, 133.95, 133.76, 131.08, 130.88, 129.74, 124.67, 123.79; LRMS (ApCI): 370.8 (3%) [M+H]⁺, 338.8 (100%) [M-NO⁺]⁺.

N-Naphthalen-1-ylmethylene-4-nitro-benzenesulfonamide (**6g**). The product was isolated as an off-white powder (72%). FTIR (CH₂Cl₂ thin film, cm⁻¹): 1599 (m), 1585 (s), 1575 (m), 1528 (s), 1348 (m), 1333 (m), 1309 (m), 1161 (s), 1087 (m), 1013 (w), 826 (m), 763 (m), 613 (w); ¹H NMR (400 MHz, CDCl₃) d 9.27 (s, 1H), 8.36-8.46 (m, 3H), 8.24 (d, *J*=8.8 Hz, 2H), 8.02 (d, *J*=8.4 Hz, 1H), 7.97 (d, *J*=8.1 Hz, 1H), 7.91 (d, *J*=8.4 Hz, 1H), 7.89 (d, *J*=8.1 Hz, 1H), 7.69 (apparent t, *J*=7.5 Hz, 1H), 7.61 (apparent t, *J*=7.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) d 172.50, 150.82, 144.54, 137.49, 137.12, 132.82, 130.29, 129.94, 129.87, 129.72, 129.60, 128.40, 127.77, 124.61, 124.12; LRMS (ApCI): 340.9 (100%) [M+H]⁺, 311.0 (87%) [M-NO⁺]⁺, 295.0 (25%) [M-NO₂]⁺.

4-Nitro-N-thiophen-2-ylmethylene-benzenesulfonamide (6h). The product was isolated as a light tan powder (68%). FTIR (CH₂Cl₂ thin film, cm⁻¹): 1602 (m), 1563 (m), 1531 (s), 1341 (s), 1332 (m), 1160 (s), 1091 (m), 804 (m), 740 (m); ¹H NMR (500 MHz, CDCl₃) d 9.19 (s, 1H), 8.38 (d, J=8.8 Hz, 2H), 8.19 (d, J=9.3 Hz, 2H), 7.80-7.90 (m, 2H), 7.52 (t, J= 4.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) d 170.62, 150.77, 144.21, 137.72, 128.49, 128.33, 127.22, 126.12, 126.01; LRMS (ApCI): 296.3 (3%) [M+H]⁺, 266.3 (100%) [M-NO⁺]⁺.

N-Furan-3-ylmethylene-4-nitro-benzenesulfonamide (6i). The product was isolated as a brown powder (48%, ~90% pure). FTIR (CH₂Cl₂ thin film, cm⁻¹): 1605 (m), 1566 (m), 1536 (s), 1349 (s), 1332 (m), 1161 (s), 1087 (m), 804 (m), 742 (m), 679 (w); ¹H NMR (500 MHz, CDCl₃) d 9.08 (s, 1H), 8.38 (d, J=8.8 Hz, 2H), 8.17 (m, 3H), 7.54 (s, 1H), 6.84 (br, 1H); ¹³C NMR (100 MHz, CDCl₃) d 164.14, 153.43, 150.98, 146.09, 144.46, 129.53, 124.58, 123.47, 108.13; LRMS (ApCI): 281.3 (3%) [M+H]⁺, 251.3 (100%) [M-NO⁺]⁺.

General procedure for the preparation of racemic aza-Baylis-Hillman adducts:

A flame dried 10 mL round-bottom flask was charged with N-Benzylidene-4-nitrobenzenesulfonamide (600 mg, 2.07 mmol) and DABCO (232 mg, 2.07 mmol). The flask was evacuated and purged with N₂. CH₂Cl₂ (5 mL) and methyl acrylate (745 μ L, 8.27 mmol) were added via syringe at room temperature, and the reaction stirred for 24 hours. The reaction was then quenched with 625 μ L 4 N HCl in dioxane. The reaction was diluted with 30 mL CH₂Cl₂, and washed 2 x 30 mL H₂O and 1 x 30 mL brine. The crude adduct was purified by flash chromatography (100% CH₂Cl₂) to afford the pure racemic aza-Baylis-Hillman adduct as a white solid (641 mg, 82.2%). This material was determined to be racemic (ChiralPak AS, 1.0 mL/min, 254 nm, 40% IPA/hexanes, t_r(ent 1) = 11.760 min, t_r(ent 2) = 17.481 min). FTIR (CH₂Cl₂ thin film, cm⁻¹): 3293 (br), 3108 (w), 3068 (w), 1720 (s), 1632 (w), 1607 (w), 1531 (s), 1440 (m), 1350 (s), 1312 (m), 1166 (s), 1091 (m), 1062 (m), 855 (m), 738 (s); ¹H NMR (500 MHz, CDCl₃) d 8.22 (d, *J*=8.8 Hz, 2H), 7.92 (d, *J*=8.8, 3 Hz, 2H), 7.14-7.27 (m, 5H), 6.23 (s, 1H), 6.15 (d, *J*=9.3 Hz, 1H), 5.82 (s, 1H), 5.40 (d, *J*=9.3 Hz, 1H), 3.64 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) 165.96, 150.08, 146.74, 138.49, 138.01, 128.94, 128.50, 128.41, 128.32, 126.64, 124.30, 59.86, 52.50; LRMS (ApCI): 377.0 (2%) [M+H]⁺, 347.0 (30%) [M-NO⁺]⁺, 330.0 (32%) [M-NO₂]⁺, 175.0 (100%) [M-sulfonamide]⁺.

General procedure for the preparation of enantioenriched aza-Baylis-Hillman adducts:

An oven-dried 0.5-dram vial was charged with N-Benzylidene-4-nitrobenzenesulfonamide (29 mg, 0.100 mmol), catalyst (6 mg, 0.010 mmol), DABCO (11.2 mg, 0.100 mmol), and activated 3Å MS (40 mg). The vial was evacuated and purged with N₂. Pre-cooled, freshly distilled, anhydrous xylenes (700 μ L) and methyl acrylate (75 μ L, 0.800 mmol) were added via syringe at 4 °C, and the reaction stirred for specified period of time. The reaction was diluted with anhydrous MeOH (150 μ L) then *immediately* quenched with 60 μ L 4 N HCl in dioxane. The crude adduct was purified by flash chromatography to afford the pure aza-Baylis-Hillman adduct.

2-[(4-Nitro-benzenesulfonylamino)-(S)-phenyl-methyl]-acrylic acid methyl ester (7a). The reaction was run for 36h. The crude adduct was purified by flash chromatography to afford the pure aza-Baylis-Hillman adduct as a white solid (49%). This material was determined to be 95% ee (ChiralPak AS, 1.0 mL/min, 280 nm, 40% IPA/hexanes, $t_r(major) = 11.566$ min, $t_r(minor) = 17.618$ min). $[\alpha]^{23}{}_{\rm D} = +27.7^{\circ}$ (c=2 EtOH); FTIR (CH₂Cl₂ thin film, cm⁻¹): 3293 (br), 3108 (w), 3068 (w), 1720 (s), 1632 (w), 1607 (w), 1531 (s), 1440 (m), 1350 (s), 1312 (m), 1166 (s), 1091 (m), 1062 (m), 855 (m), 738 (s); ¹H NMR (500 MHz, CDCl₃) d 8.22 (d, *J*=8.8 Hz, 2H), 7.92 (d, *J*=8.8, 3 Hz, 2H), 7.14-7.27 (m, 5H), 6.23 (s, 1H), 6.15 (d, *J*=9.3 Hz, 1H), 5.82 (s, 1H), 5.40 (d, *J*=9.3 Hz, 1H), 3.64 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) d 165.96, 150.08, 146.74, 138.49, 138.01, 128.94, 128.50, 128.41, 128.32, 126.64, 124.30, 59.86, 52.50; LRMS (ApCI): 377.0 (2%) [M+H]⁺, 347.0 (30%) [M-NO⁺]⁺, 330.0 (32%) [M-NO₂]⁺, 175.0 (100%) [M-sulfonamide]⁺.

2-[(4-Nitro-benzenesulfonylamino)-(*S***)-***m***-tolyl-methyl]-acrylic acid methyl ester (7b). The reaction was run for 24h. The crude adduct was purified by flash chromatography to afford the pure aza-Baylis-Hillman adduct as a white solid (40%). This material was determined to be 93% ee (ChiralPak AS, 1.0 mL/min, 280 nm, 40% IPA/hexanes, t_r(major) = 10.938 min, t_r(minor) = 16.007 min). [\alpha]^{23}_{D} = +49.6^{\circ} (c=0.50 EtOH); FTIR (CH₂Cl₂ thin film, cm⁻¹): 3295 (m), 1720 (s), 1632 (w), 1608 (m), 1531 (s),**

1440 (m), 1349 (s), 1312 (w), 1166 (s), 1093 (w), 1065 (w), 855 (w), 738 (m); ¹H NMR (500 MHz, CDCl₃) d 8.24 (d, *J*=8.8 Hz, 2H), 7.92 (d, *J*=8.8 Hz, 2H), 7.04 (t, *J*=7.5 Hz, 1H), 6.95 (d, *J*=7.3 Hz, 1H), 6.84-6.87 (m, 2H), 6.16 (s, 1H), 5.97 (d, *J*=8.8 Hz, 1H), 5.75 (s, 1H), 5.28 (d, *J*=9.3 Hz, 1H), 3.58 (s, 3H), 2.16 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) d 165.81, 150.16, 146.11, 138.21, 138.01, 137.17, 129.47, 128.81, 128.44, 128.27, 127.93, 126.31, 124.11, 59.21, 52.31, 21.33; LRMS (ApCI): 391.0 (5%) $[M+H]^+$, 361.0 (50%) $[M-NO^+]^+$, 189.0 (100%), $[M-sulfonamide]^+$.

2-[(*S***)-(3-Methoxy-phenyl)-(4-nitro-benzenesulfonylamino)-methyl]-acrylic acid methyl ester (7c).** The reaction was run for 24h. The crude adduct was purified by flash chromatography to afford the pure aza-Baylis-Hillman adduct as an off-white solid (42%). This material was determined to be 96% ee (ChiralPak AS, 1.0 mL/min, 280 nm, 40% IPA/hexanes, $t_r(major) = 14.252 \text{ min}$, $t_r(minor) = 23.276 \text{ min}$). [α]²⁶_D = +47.1° (c=2 EtOH); FTIR (CH₂Cl₂ thin film, cm⁻¹): 3289 (s), 3106 (w), 2955 (m), 2927 (m), 1720 (s), 1606 (m), 1531 (s), 1439 (m), 1350 (s), 1313 (m), 1268 (m), 1166 (s), 1092 (w), 1062 (w), 855 (w), 737 (m); ¹H NMR (500 MHz, CDCl₃) d 8.24 (d, *J*=8.8 Hz, 2H), 7.93 (d, *J*=8.8 Hz, 2H), 7.12 (t, *J*=8.0 Hz, 1H), 6.71-6.79 (m, 2H), 6.65 (s, 1H), 6.25 (s, 1H), 6.06 (d, *J*=9.3 Hz, 1H), 5.82 (s, 1H), 5.35 (d, *J*=9.3 Hz, 1H), 3.69 (s, 3H), 3.63 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) d 165.96, 159.96, 150.05, 146.69, 139.57, 138.46, 130.02, 128.58, 128.40, 124.27, 118.92, 113.14, 112.92, 59.62, 55.40, 52.50; LRMS (ApCI): 405.9 (2%) [M+H]⁺, 359.9 (20%) [M-NO₂]⁺, 205.1 (100%), [M-sulfonamide]⁺.

2-[(*S***)-(4-Chloro-phenyl)-(4-nitro-benzenesulfonylamino)-methyl]-acrylic acid methyl ester (7d).** The reaction was run for 24h. The crude adduct was purified by flash chromatography to afford the pure aza-Baylis-Hillman adduct as a white solid (36%). This material was determined to be 87% ee (ChiralPak AS, 1.0 mL/min, 270 nm, 40% IPA/hexanes, $t_r(major) = 11.457$ min, $t_r(minor) = 17.787$ min). $[\alpha]^{23}{}_D = +27.0^\circ$ (c=0.35 EtOH); FTIR (CH₂Cl₂ thin film, cm⁻¹): 3280 (m), 2955 (s), 2930 (s), 2859 (m), 2251 (w), 1722 (s), 1676 (s), 1633 (s), 1504 (m), 1472 (s), 1354 (m), 1252 (s), 1184 (m), 1098 (s), 982 (w), 837 (s), 777 (m), 710 (m); ¹H NMR (500 MHz, CDCl₃) d 8.27 (d, *J*=8.8 Hz, 2H), 7.96 (d, *J*=9.3 Hz, 2H), 7.24 (d, *J*=8.6 Hz), 7.10 (d, *J*=8.6 Hz), 6.23 (s, 1H), 6.06 (d, *J*=9.3 Hz, 1H), 5.81 (s, 1H), 5.48 (d, *J*=9.3 Hz, 1H), 3.66 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) d 165.88, 150.41, 146.65, 137.41, 137.21, 130.94, 128.66, 128.31, 128.01, 127.24, 124.62, 59.65, 52.51; LRMS (ApCI): 410.9 (32%) [M+H]⁺, 381.0 (83%) [M-NO⁺]⁺, 364.0 (67%) [M-NO₂]⁺, 209.0 (100%), [M-sulfonamide]⁺.

2-[(*S***)-(3-Chloro-phenyl)-(4-nitro-benzenesulfonylamino)-methyl]-acrylic acid methyl ester (7e).** The reaction was run for 16h. The crude adduct was purified by flash chromatography to afford the pure aza-Baylis-Hillman adduct as a white solid (33%). This material was determined to be 94% ee (ChiralPak AS, 1.0 mL/min, 220 nm, 40% IPA/hexanes, $t_r(major) = 11.018$ min, $t_r(minor) = 17.408$ min). [α]²³_D = +39.5° (c=0.35 EtOH); FTIR (CH₂Cl₂ thin film, cm⁻¹): 3282 (m), 1715 (s), 1531 (s), 1439 (m), 1350 (s), 1312 (m), 1197 (w), 1166 (s), 1093 (w), 1065 (w), 855 (w), 738 (m); ⁻¹H NMR (500 MHz, CDCl₃) d 8.26 (d, *J*=9.3 Hz, 2H), 7.93 (d, *J*=8.8 Hz, 2H), 7.05-7.14 (m, 2H), 7.17-7.21 (m, 2H), 6.25 (s, 1H), 6.17 (d, *J*=9.3 Hz, 1H), 5.82 (s, 1H), 5.36 (d, *J*=9.8 Hz, 1H), 3.66 (s, 3H); ⁻¹³C NMR (100 MHz, CDCl₃) d 165.78, 150.20, 146.60, 140.05, 137.84, 134.92, 130.23, 129.07, 128.52, 126.83, 124.80, 124.67, 124.38, 59.54, 52.65; LRMS

(ApCI): 410.9 (32%) $[M+H]^+$, 381.0 (83%) $[M-NO^+]^+$, 364.0 (67%) $[M-NO_2]^+$, 209.0 (100%), $[M-sulfonamide]^+$.

2-[(*S*)-(**3-Bromo-phenyl**)-(**4-nitro-benzenesulfonylamino**)-methyl]-acrylic acid methyl ester (**7f**). The reaction was run for 16h. The crude adduct was purified by flash chromatography to afford the pure aza-Baylis-Hillman adduct as an off-white solid (39%). This material was determined to be 92% ee (ChiralPak AS, 1.0 mL/min, 280 nm, 40% IPA/hexanes, $t_r(major) = 11.594$ min, $t_r(minor) = 20.227$ min). $[\alpha]^{23}_{D} = +40.8^{\circ}$ (c=0.75 EtOH); FTIR (CH₂Cl₂ thin film, cm⁻¹): 3294 (m), 1719 (s), 1631 (w), 1531 (s), 1440 (m), 1350 (s), 1313 (w), 1166 (s), 1092 (w), 1066 (w), 855 (w), 738 (m); ¹H NMR (500 MHz, CDCl₃) d 8.26 (d, *J*=9.0 Hz, 2H), 7.92 (d, *J*=8.5 Hz, 2H), 7.35 (m, 1H), 7.22 (s, 1H), 7.11-7.13 (m, 2H), 6.26 (s, 1H), 6.08 (d, *J*=9.0 Hz, 1H), 5.83 (s, 1H), 5.35 (d, *J*=9.5 Hz, 1H), 3.67 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) d 165.74, 150.19, 146.52, 140.29, 137.90, 131.39, 130.49, 129.74, 129.06, 128.55, 125.38, 124.44, 123.01, 59.27, 52.70; LRMS (ApCI): 454.7, 456.7 (10%, 12%) [M+H]⁺, 424.8, 426.8 (45%, 52%) [M-NO⁺]⁺, 407.9, 409.8 (49%, 56%) [M-NO₂]⁺, 252.9, 254.9 (96%, 100%) [M-sulfonamide]⁺.

2-[(*S***)-Naphthalen-1-yl-(4-nitro-benzenesulfonylamino)-methyl]-acrylic acid methyl ester (7g).** The reaction was run for 24h. The crude adduct was purified by flash chromatography to afford the aza-Baylis-Hillman adduct as an off-white solid (27%). This material was determined to be 91% ee (ChiralPak AS, 1.0 mL/min, 280 nm, 40% IPA/hexanes, $t_r(major) = 12.531$ min, $t_r(minor) = 29.498$ min). $[\alpha]^{23}{}_{D} = +24.1^{\circ}$ (c=0.50 EtOH); FTIR (CH₂Cl₂ thin film, cm⁻¹): 3291 (br), 1720 (s), 607 (w), 1530 (s), 1441 (m), 1352 (s), 1310 (m), 1165 (s), 1090 (m), 1057 (m), 736 (s), 609 (w); ⁻¹H NMR (500 MHz, CDCl₃) d 8.07 (d, *J*=8.8 Hz, 2H), 7.90 (m, 1H), 7.80 (m, 3H), 7.72 (m, 1H), 7.46 (m, 2H), 7.29 (m, 2H), 6.37 (s, 1H), 6.30 (d, *J*=8.0 Hz, 1H), 5.84 (s, 1H), 5.66 (d, *J*=8.5 Hz, 1H), 3.64 (s, 3H); ⁻¹³C NMR (100 MHz, CDCl₃) d 167.66, 151.47 142.94, 140.74, 136.82, 134.61, 131.41, 128.55, 128.49, 128.04, 126.26, 126.17, 125.73, 125.14, 124.88, 123.50, 123.01, 53.26, 51.38; LRMS (ApCI): 427.1 (2%) [M+H]⁺, 397.1 (51%) [M-NO⁺]⁺, 381.1 (40%) [M-NO₂]⁺, 225.0 (44%) [M-sulfonamide]⁺.

2-[(4-Nitro-benzenesulfonylamino)-(S)-thiophen-2-yl-methyl]-acrylic acid methyl ester (7h). The reaction was run for 36h. The crude adduct was purified by flash chromatography to afford the pure aza-Baylis-Hillman adduct as a white solid (30%). This material was determined to be 99% ee (ChiralPak AS, 1.0 mL/min, 280 nm, 10% EtOH/hexanes, $t_r(major) = 28.247 \text{ min}$, $t_r(minor) = 36.662 \text{ min}$). [α]²³_D = +26.0° (c=0.8 EtOH); FTIR (CH₂Cl₂ thin film, cm⁻¹): 3295 (br), 3108 (w), 2956 (w), 2920 (w), 1714 (s), 1632 (m), 1531 (s), 1440 (m), 1350 (s), 1313 (m), 1167 (s), 1092 (w), 1064 (w), 855 (m), 738 (s); ¹H NMR (500 MHz, CDCl₃) d 8.27 (d, *J*=8.5 Hz, 2H), 7.97 (d, *J*=9 Hz, 2H), 7.16 (d, *J*=5.0 Hz, 1H), 6.84 (t, *J*=3.5 Hz, 1H), 6.76 (d, *J*=3.5 Hz, 1H), 6.27 (d, *J*=10.0 Hz, 1H), 6.25 (s, 1H), 5.87 (s, 1H), 5.57 (d, *J*=9.5 Hz, 1H), 3.69 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) d 165.88, 150.65, 146.66, 142.31, 137.99, 128.68, 128.62, 127.36, 126.14, 125.65, 124.36, 56.63, 52.64; LRMS (ApCI): 381.1 (4%) [M+H]⁺, 353.0 (10%) [M-NO⁺]⁺, 335.9 (5%) [M-NO₂]⁺, 181.0 (100%), [M-sulfonamide]⁺.

2-[(*S***)-Furan-3-yl-(4-nitro-benzenesulfonylamino)-methyl]-acrylic acid methyl ester (7i)**. The reaction was run for 36h. The crude adduct was purified by flash chromatography afford the pure aza-Baylis-Hillman adduct as an off-white solid (25%). This material was determined to be 98% ee (ChiralPak AS, 1.0 mL/min, 280 nm, 40% IPA/hexanes, $t_r(major) = 14.313$ min, $t_r(minor) = 20.353$ min). $[\alpha]^{23}{}_D = +27.3^{\circ}$ (c=0.5 EtOH); FTIR (CH₂Cl₂ thin film, cm⁻¹): 3292 (m), 2956 (m), 2930 (w), 1718 (s), 1631 (w), 1607 (w), 1531 (s), 1439 (m), 1350 (s), 1312 (m), 1165 (s), 1092 (m), 1062 (m), 855 (w), 738 (m), 610 (w); ¹H NMR (500 MHz, CDCl₃) d 8.29 (d, *J*=8.8 Hz, 2H), 7.97 (d, *J*=8.8 Hz, 2H), 7.28 (m, 1H), 7.19 (s, 1H), 6.15 (m, 2H), 6.06 (d, *J*=9.8 Hz, 1H), 5.78 (s, 1H), 5.29 (d, *J*=9.8 Hz, 1H), 3.67 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) d 165.96, 150.17, 146.84, 143.99, 140.00, 137.86, 128.61, 128.21, 124.50, 124.35, 109.21, 53.44, 52.55; LRMS (ApCI): 367.1 (2%) [M+H]⁺, 337.1 (32%) [M-NO⁺]⁺, 320.0 (32%) [M-NO₂]⁺, 165.1 (80%), [M-sulfonamide]⁺.

Isolation of aza-Baylis-Hillman intermediate as the dihydrochloride salt (10a):

A flame dried 10 mL round-bottom flask was charged with a stir bar, imine (6a) (75 mg, 0.259 mmol), thiourea catalyst (1c, 15.6 mg, 0.026 mmol), and DABCO (29 mg, 0.259 mmol). The flask was cooled to 4 °C, and charged with pre-cooled, freshly distilled xylenes (1.75 mL) and methyl acrylate (187 µL, 2.07 mmol). The reaction was allowed to stir for 12 h at 4 °C, over which time a bright yellow precipitate formed. Distilled H₂O (1.75 mL) was added, and the biphasic mixture was stirred vigorously for an additional 3-6 hours at 4 °C. HCl (200 µL, 4 N in dioxane) was added. An additional 5 mL H₂O was added, and the reaction was stirred vigorously for 5 mins. The layers were allowed to separate, and the organic layer removed. The aqueous layer was washed 3x 20 mL CH₂Cl₂ and the combined organic layers were back-extracted with 3x 5 mL H₂O and the combined *aqueous* layers were concentrated directly *in vacuo* at 60 $^{\circ}$ C. The resulting clear oil was further pumped on high vacuum for 24 h to removed residual $H_{2}O_{1}$ affording the dihydrochloride salt of the aza-Baylis-Hillman intermediate (10a) as a glassy solid (61.2 mg, 42%). FTIR (CH₂Cl₂ thin film, cm⁻¹): 1734 (s), 1630 (w), 1530 (s), 1459 (w), 1438 (w), 1351 (s), 1313 (w), 1166 (s), 1089 (w), 853 (w), 739 (m); ¹H NMR (500 MHz, d₆-DMSO, 10-16 : 1 mixture of diastereomers, with signal corresponding to major indicated) d 9.72 (d, J=10.3 Hz 1H), 8.07 (d, J=8.3 Hz, 2H), 7.79 (d, J=8.3 Hz, 2H), 7.18 (d, J= 4.9 Hz, 2H), 6.95-7.10 (m, 3H), 4.93 (dd, J=10.5, 6.0 Hz, 1H), 4.16 (d, J=13.2 Hz, 1H), 3.72-3.91 (m, 7H), 3.70 (s, 3H), 3.42-3.63 (m, 6H), 2.90 (m, 1H); 13 C NMR (100 MHz, d_6 -DMSO) d 170.97, 149.69, 146.80, 136.04, 128.93, 128.80, 128.62, 127.95, 124.56, 61.69, 59.24, 53.62, 51.10, 46.24, 43.45; LRMS (ESI): 489.2 (100%) [M-2HC1]⁺.

Base-mediated elimination of 10:

A flame-dried 5 mL round-bottom flask was charged with dihydrochloride salt (**10a** from above, 150 mg, 0.267 mmol) and dissolved in anhydrous DMSO (2 mL) or MeOH (2 mL) at room temperature. Freshly distilled DBU (84 μ L, 0.560 mmol) was added *via* syringe, and the reaction stirred for 16 h. The reaction was then diluted with 5 mL CH₂Cl₂, 1 N HCl (5 mL) was added with vigorous stirring, the layers were allowed to separate, and the organic layer removed. The aqueous layer was extracted with 3x 10 mL CH₂Cl₂, dried over Na₂SO₄, and concentrated *in vacuo* to afford the crude aza-Baylis-Hillman adduct (7**a**), which matched the ¹H NMR and ¹³C NMR spectra as previously reported (*vide supra*). As discussed, ee's of this product were substantially eroded (ranging between 12-67% ee based on reaction time, reaction temperature, and choice of base).

Determination of absolute configuration (not discussed in Communication):

2-Methyl-3-(4-nitro-benzenesulfonylamino)-3-phenyl-propionic acid methyl ester. A flame-dried 10mL round-bottom flask was charged with a stir bar, aza-Baylis-Hillman adduct **7a** (131 mg, 0.350 mmol), and sodium borohydride (133 mg, 3.50 mmol). Anhydrous absolute ethanol (16 mL) was added followed by veratrole (134 uL, 1.05 mmol). The reaction was allowed to stir at ambient temperature for 16 h. The solvent was removed under reduced pressure, and the residual yellow oil partitioned between water (25 mL) and CH₂Cl₂ (25 mL). The organic layer was extracted, and the aqueous layer extracted an additional 2x with 25 mL CH₂Cl₂, dried over Na₂SO₄, and concentrated *in vacuo*. The crude product was purified by flash chromatography (100% CH₂Cl₂) to

afford the desired product (109 mg, 81%), from which a total of 66 mg was the diastereomerically pure *cis*-product.

3-Amino-2-methyl-3-phenyl-propionic acid methyl ester. A flame-dried 5mL roundbottom flask was charged with the pure cis propionic acid methyl ester (66 mg, 0.175 mmol) and anhydrous DMF (1 mL). Mercapto acetic acid (24.2 uL, 0.348 mmol) was added via syringe, followed by DBU (267 uL, 1.75 mmol). The reaction was stirred under N₂ for 24 h. The reaction was diluter with EtOAc (20 mL) and washed 3x 25 mL NaHCO₃. The combined aqueous extracts were washed with 2x 15mL EtOAc, and the organic extracts dried over Na₂SO₄, filtered, and concentrated *in vacuo* to afford the crude product (38 mg crude). The crude product was sufficiently pure by ¹HNMR to be carried on to the next step without further purification.

2-Methyl-3-phenyl-3-(toluene-4-sulfonylamino)-propionic acid methyl ester. A flame-dried 5 mL round-bottom flask was charged with the crude cis deprotected propionic acid methyl ester (38 mg) and anhydrous CH_2Cl_2 (0.5 mL). Freshly distilled triethylamine (31 uL, 0.215 mmol) was added via syringe in one portion under N₂, followed by addition of *p*-toluensulfonyl chloride (41 mg, 0.215 mmol) in one portion as a solid. The mixture was stirred at room temperature of 6h, at which point TLC analysis showed complete consumption of starting material. The reaction was diluted with 10mL CH_2Cl_2 , and washed 2x NaHCO₃ (sat'd), and 1x with H₂O. The crude product was purified by flash chromatography (5:1 to 2:1 hexanes/EtOAc) to afford the desired tosylated product (28 mg, 46% over 2 steps). All spectral data matched literature values.^[16]

N-(3-Hydroxy-2-methyl-1-phenyl-propyl)-4-methyl-benzenesulfonamide. LAH (8.1mg, 0.231 mmol) was suspended in anhydrous THF (0.5 mL) at 0 °C. A solution of pure tosylated propionic acid methyl ester dissolved in anhydrous THF (0.25 mL) was added dropwise to the LAH suspension under N₂. The reaction was slowly warmed to room temperature, and allowed to stir for 2.5h. The reaction was quenched with 3 drops of H₂O, diluted with 10 mL CH₂Cl₂, and filtered through a short pad of Celite. The Celite pad was washed exhaustively with excess CH₂Cl₂ and MeOH, and the collected solvent removed *in vacuo*. The crude product was purified by preparative thin layer chromatography (1:1 hexanes/EtOAc) to afford the desired product (23.7 mg, 91%). All spectral data matched literature values,^[17] confirming the absolute configuration of the adducts to be (*S*). $[\alpha]^{26}_{D} = +25.4^{\circ}$ (c=1 MeOH) (lit: $[\alpha]^{26}_{D} = +26.1^{\circ}$ (c=1 MeOH)).^[18]

^[16] T. Muraoka, S. Kamiya, I. Matsuda, K. Itoh, *Chem. Commun.* **2002**, *12*, 1284 - 1285.

^[17] K. Burgess, M.J. Ohlmeyer, J. Org. Chem. **1991**, 56, 1027-1036.

^[18] F.A. Davis, G.V. Reddy, C.-H. Liang, *Tetrahedron Lett.* 1997, 38, 5139-5142.

Screen of Nucleophilic Additives:

Initial screen for reactivity:

additive	conversion	comments
PPh ₃	12%	3d at RT
PPh ₂ Me	85%	24h at 4°C
PMe ₃		decomposition
O=PPh ₃	NR	
DABCO	65%	24h at 4°C
quinuclidine	60%	24h at 4°C
3-HQD	40%	3d at 4°C
3-NH ₂ -quinuclidine	20%	3d at 4°C
quinine	<2%	3d at RT
quinidine	<2%	3d at RT
DBU	25% 70%	24h at 4°C 48h at RT (much decomp)
DMAP	NR	
pyridine	NR	
N,N'-dimethyl piperazine	<2%	
vaious NHCs		messy, complete decomp.

N-heterocyclic carbenes screened (reaction tested with both direct free carbene addition, as well as in situ generated carbene):

R= *t*Bu, Ar= Mes, 2,4-diisopropylphenyl

Nucleophilic additive screen for enantioselectivity and reactivity:

Synthetic transformations:

2-[(4-Nitro-benzenesulfonylamino)-phenyl-methyl]-acrylic acid (8a). A 5 mL roundbottom flask was charged with a stirbar, **7a** (30 mg, 0.08 mmol) and 20% aqueous HCl (600 μ L). The flask was equipped with a reflux condenser, and the reaction brought to reflux for 2 h. The reaction was cooled to room temperature, and then extracted with 3x 10 mL EtOAc. The combined organics were dried over Na₂SO₄, and then concentrated *in vacuo*. The resulting crude product was purified by flash chromatography to afford the desired nosyl amino acid as an off-white solid (27.5 mg, 92%). ¹H NMR (500 MHz, CD₃OD) d 8.24 (d, *J*=8.8 Hz, 2H), 7.93 (d, *J*=8.8 Hz, 2H), 7.05-7.25 (m, 5H), 6.26 (s, 1H), 5.78 (s, 1H), 5.48 (s, 1H).

2-{[Benzyl-(4-nitro-benzenesulfonyl)-amino]-phenyl-methyl}-acrylic acid methyl ester (8b). A flame dried 10 mL round-bottom flask was charged with 7a (25 mg, 0.067 mmol), a stirbar, and anhydrous DMF (500 μ L). Cs₂CO₃ (33.2 mg, 0.102 mmol) was added in one portion, followed by addition of 4-bromobenzyl bromide (16.6 mg, 0.067

mmol). The resulting mixture was stirred at room temperature for 16 h, and then diluted with 1:1 Et₂O/EtOAc (20 mL). The organics were washed with 3x 25 mL brine, dried over Na₂SO₄, filtered, and dried *in vacuo*. Purification by flash chromatography (1:5 EtOAc/hexanes) afforded the pure product as a white solid (29.7 mg, 82%). ¹H NMR (500 MHz, CDCl₃) d 8.17 (d, *J*=8.8 Hz, 2H), 7.68 (d, *J*=8.8 Hz, 2H), 7.15-7.25 (m, 5H), 7.03 (d, *J*=7.3 Hz, 2H), 6.81 (d, *J*=8.3 Hz, 2H) 6.43 (s, 1H), 6.18 (s, 1H), 5.70 (s, 1H), 4.50 (m, 2H), 3.59 (s, 3H).

2-Methyl-3-(4-nitro-benzenesulfonylamino)-3-phenyl-propionic acid methyl ester (8c). A flame-dried 5 mL round-bottom flask was charged with 7a (30 mg, 0.08 mmol) and a stirbar. In a glovebox was added the Pfaltz catalyst (CAS#: 583844-38-6, 3.46 mg, 2 μ mol, 2.5 mol%). The flask was evacuated, filled with CH₂Cl₂, and then back-filled five times with H₂. The reaction was stirred under an H₂ atmosphere (balloon) for 12 h. The crude reaction mixture was filtered through a short pad of silica, eluting with EtOAc, and concentrated *in vacuo* to afford the desired product in >95% purity (29 mg, 97%). The product was formed in an 8.5:1 mixture of diastereomers, with chemical shifts for the major diastereomer reported. ¹H NMR (500 MHz, CDCl₃) d 8.04 (d, *J*=8.8 Hz, 2H), 7.70 (d, *J*=8.8 Hz, 2H), 6.90-7.15 (m, 5H), 6.19 (d, *J*=8.8 Hz, 1H), 4.64 (dd, J=9.3, 6.4 Hz, 1H), 3.55 (s, 3H), 2.97(dq, *J*=6.9, 6.9, 1H), 1.15 (d, *J*=7.3 Hz, 3H).

2-Hydroxy-2-hydroxymethyl-3-(4-nitro-benzenesulfonylamino)-3-phenyl-propionic acid methyl ester (8d). A flame-dried 5 mL round-bottom flask was charged with a stirbar, NMO (7 mg, 0.059 mmol), H₂O (0.20 mL) and acetone (0.10 mL). The flask was cooled to 0 °C, and OsO₄ (2.5% by wt in *t*-BuOH, 30 µL, 2.7 µmol, 5 mol%) was added *via* syringe. Next, **7a** (20 mg, 0.053 mmol) was added as a solution in acetone (0.10 mL). The reaction was warmed to room temperature, and stirred for 16 h. Na₂SO₃ (25 mg) was added, the reaction stirred for an additional 1 h, and then diluted with CH₂Cl₂ (10 mL). The organics were washed with 1x 10 mL H₂O, and 1x 10 mL brine. The combined aqueous washes were then further extracted with 1x 10 mL EtOAc, and the combined organics dried over Na₂SO₄, filtered, and concentrated *in vacuo*. Purification by flash chromatography (10% MeOH in CH₂Cl₂) afforded the pure diol (14.2 mg, 66%) as a 4:1 mixture of diastereomers. The chemical shifts for the major diastereomer are reported. ¹H NMR (500 MHz, CDCl₃) d 7.95 (d, *J*=8.8 Hz, 2H), 7.62 (d, *J*=8.8 Hz, 2H), 6.90-7.15 (m, 5H), 6.19 (d, *J*=9.8 Hz, 1H), 4.82 (d, J=9.3 Hz, 1H), 3.96 (s, 3H), 3.70 (d, *J*=11.2 Hz, 1H), 3.18 (d, *J*= 11.7 Hz, 3H).

2-[(4-Nitro-benzenesulfonylamino)-(3-vinyl-phenyl)-methyl]-acrylic acid methyl ester (8e). A flame-dried 0.5-dram round-bottom flask was charged with $Pd(OAc)_2$ (< 1 mg, 3.2 µmol, 5 mol%) and S-Phos (3 mg, 7 µmol). Anhydrous DMF (100 µL) was added, and the mixture stirred at room temperature for 30 min, until the reaction was homogenous. A flame-dried 5 mL round-bottom flask was charged with 7f (25 mg, 0.055 mmol), vinyl tributyltin (23.3 µL, 0.08 mmol), and anhydrous DMF (0.25 mL). The flask was purged, and back-filled with N₂ twice. To this stirring mixture was added the catalyst/ligand solution from above via syringe. A condenser was attached, and the reaction heated to 90 °C for 24 h. The reaction was then cooled to room temperature, and diluted with 10 mL Et₂O/EtOAc (1:1), the organics were washed with 1x 10 mL H₂O and

1x 10 mL brine, dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The product was purified by flash chromatography (1:4 EtOAc/hexanes) to afford the desired product (13.2 mg, 59%). ¹H NMR (400 MHz, CDCl₃) d 8.21 (d, J=8.8 Hz, 2H), 7.90 (d, J=8.8 Hz, 2H), 7.05-7.25 (m, 4H), 6.55 (m, 1H), 6.25 (s, 1H), 6.08 (d, J=9.2 Hz, 1H), 5.84 (s, 1H), 5.62 (d, J=17.6 Hz, 1H), 5.15-5.45 (m, 2H), 3.65 (s, 3H).

5-[(4-Nitro-benzenesulfonylamino)-methyl]-3-phenyl-4,5-dihydro-isoxazole-5-

carboxylic acid methyl ester (8f). A flame-dried 5 mL round-bottom flask was charged with chlorobenzaldoxime^[19] (10.5 mg, 0.067 mmol) and anhydrous CH₂Cl₂ (0.5 mL) and cooled to -78 °C *via* a dry ice/acetone bath. Et₃N (10 µL, 0.067 mmol) was added *via* syringe, and the reaction stirred for 10 mins at this temperature. Next, **7a** (30 mg, 0.08 mmol) dissolved in CH₂Cl₂ (150 µL) was added dropwise *via* syringe, and the reaction was warmed slowly to -30 °C for 1 h, and then further warmed to 4 °C, and stirred for 12 h. The reaction was further allowed to warm to room temperature, and poured onto saturated aqueous NH₄Cl (15 mL), and extracted with 3x CH₂Cl₂. The combined organics were dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The product was purified by preparative thin layer chromatography (3% MeOH in CH₂Cl₂) to afford the desired product as an off-white solid (28.5 mg, 86%). The product was obtained as a 1.7:1 mixture of diastereomers, with chemical shifts for the major diastereomer reported. ¹H NMR (500 MHz, CDCl₃) d 7.97 (d, *J*=8.8 Hz, 2H), 7.69 (d, *J*=8.8 Hz, 2H), 7.20-7.40 (m, 5H), 6.95-7.15 (m, 5H), 6.37 (d, *J*=10.3 Hz, 1H), 5.01 (d, J=10.3 Hz, 1H), 3.79 (s, 3H), 3.55 (m, 2H).

2-[(4-Nitro-benzenesulfonylamino)-phenyl-methyl]-oxirane-2-carboxylic acid methyl ester (8g). A flame-dried 5 mL round-bottom flask was charged with 7a (25 mg, 0.067 mmol) and anhydrous THF (0.4 mL) at room temperature. Benzyltrimethylammonium hydroxide (Triton B, 42 mg, 0.10 mmol) was added, followed by dropwise addition of *t*-BuOOH (23 mL, 0.133 mmol). The reaction was allowed to stir at room temperature for 16 h. The reaction was then diluted with CH₂Cl₂, and the organic layer washed with 2x 10 mL saturated aqueous NaHCO₃ and 1x 10 mL H₂O. The organics were dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The product was purified by preparative thin layer chromatography (1:1 EtOAc/hexanes) to afford the desired product as a white solid. The product was obtained as an 8:1 mixture of diastereomers, with the chemical shifts for the major diastereomer reported. ¹H NMR (500 MHz, CDCl₃) d 8.12 (d, *J*=8.8 Hz, 2H), 7.81 (d, *J*=8.8 Hz, 2H), 7.05-7.23 (m, 5H), 6.13 (d, *J*=9.8 Hz, 1H), 4.86 (d, *J*=9.8 Hz, 1H), 3.71 (s, 3H), 3.06 (d, *J*=5.9 Hz, 1H), 2.77 (d, *J*=5.4 Hz, 1H).

4-Methyl-4-nitro-2-[(4-nitro-benzenesulfonylamino)-phenyl-methyl]-pentanoic acid methyl ester (8h). A flame-dried 5 mL round-bottom flask was charged with 2nitropropane (9 μ L, 0.096 mmol) and anhydrous THF (0.1 mL). At room temperature, DBU (24.2 μ L, 0.176 mmol) was added, and the reaction stirred for 5 mins. Finally, **7a** (30 mg, 0.08 mmol) dissolved in THF (100 mL) was added dropwise *via* syringe, and the reaction stirred at room temperature for 4 h. The reaction was then poured onto a 1:1:1 mixture of brine, H₂O, and 1 N HCl, extracted with 3x 10 mL CH₂Cl₂, dried over Na₂SO₄, filtered, and concentrated *in vacuo*. Purification by preparative thin layer

^[19] S. Kanemasa, S. Kobayashi, J. Chem. Soc. Jpn. **1993**, 66, 2685-2693.

chromatography (1:2 EtOAc/hexanes) afforded the pure product as a white solid (19 mg, 51%). The primary byproduct was elimination of sulfonamide. The product was formed as a 1:1 mixture of diastereomers, with the chemical shifts of both diastereomers reported. ¹H NMR (500 MHz, CDCl₃) d 8.06 (d, J=8.8 Hz, 2H), 8.01 (d, J=8.8 Hz, 2H), 7.73 (d, J=8.8 Hz, 2H), 7.68 (d, J=8.8 Hz, 2H), 6.85-7.12 (m, 10 H), 6.32 (d, J=10.0 Hz, 1H), 5.82 (d, J= 9.0 Hz, 1H), 4.66 (dd, J=9.5, 6.0 Hz, 1H), 4.48 (dd, J=9.5, 9.5 Hz, 1H), 3.51 (s, 3H), 3.30 (s, 3H), 2.75 (m, 1H), 2.60-2.73 (m, 2H), 2.54 (m, 1H), 2.43 (m, 1H), 2.24 (m, 1H), 1.60 (s, 3H), 1.59 (s, 3H), 1.52 (s, 3H), 1.49 (s, 3H).

2,4-Bis-methoxycarbonyl-5-(4-nitro-benzenesulfonylamino)-5-phenyl-pentanoic acid methyl ester (8i). A flame-dried 5 mL round-bottom flask was charged with pentane-2,4-dione (10 μ L, 0.096 mmol) in anhydrous THF (100 μ L). At room temperature, DBU (24.2 μ L, 0.176 mmol) was added, and the reaction stirred for five minutes. Finally, **7a** (30 mg, 0.08 mmol) dissolved in THF (100 mL) was added dropwise *via* syringe, and the reaction stirred at room temperature for 6 h. The reaction was then poured onto a 1:1:1 mixture of brine, H₂O, and 1 N HCl, extracted with 3x 10 mL CH₂Cl₂, dried over Na₂SO₄, filtered, and concentrated *in vacuo*. Purification by preparative thin layer chromatography (3% MeOH in CH₂Cl₂) afforded the pure product as an off-white solid (27.5 mg, 72%). The product was formed as a 5:1 mixture of diastereomers, with the chemical shifts of the major diastereomer reported. ¹H NMR (500 MHz, CDCl₃) d 8.03 (d, *J*=8.8 Hz, 2H), 7.69 (d, *J*=8.8 Hz, 2H), 6.85-7.15 (m, 5H), 6.21 (d, *J*=9.3 Hz, 1H), 4.62 (dd, *J*=8.8, 8.8 Hz, 1H), 3.69 (dd, *J*=10.3, 3.9 Hz, 1H), 3.42 (s, 3H), 2.70 (ddd, *J*=10.5, 9.0, 3.0, 1H), 2.46 (ddd, *J*=14.0, 10.5, 3.5 Hz, 1H), 2.21 (s, 3H), 2.15 (s, 3H), 2.05 (m, 1H).

4-Acetyl-2-[(4-nitro-benzenesulfonylamino)-phenyl-methyl]-5-oxo-hexanoic acid methyl ester (8j). A flame-dried 5 mL round-bottom flask was charged with dimethyl malonate (11 μ L, 0.096 mmol) in anhydrous THF (100 μ L). At room temperature, DBU (24.2 μ L, 0.176 mmol) was added, and the reaction stirred for 5 minutes. Next, **7a** (30 mg, 0.08 mmol) dissolved in THF (100 mL) was added dropwise *via* syringe, and the reaction stirred at room temperature for 3 h. The reaction was then poured onto a 1:1:1 mixture of brine, H₂O, and 1 N HCl, extracted with 3x 10 mL CH₂Cl₂, dried over Na₂SO₄, filtered, and concentrated *in vacuo*. Purification by preparative thin layer chromatography (1:2 EtOAc/hexanes) afforded the pure product as an off-white solid (38.5 mg, 95%). The product was formed as a 5:1 mixture of diastereomers, with the chemical shifts of the major diastereomer reported. ¹H NMR (500 MHz, CDCl₃) d 8.04 (d, *J*=8.8 Hz, 2H), 7.70 (d, *J*=8.8 Hz, 2H), 6.90-7.15 (m, 5H), 6.27 (d, *J*=8.5 Hz, 1H), 4.65 (dd, *J*=8.0, 8.0 Hz, 1H), 3.73 (s, 3H), 3.71 (s, 3H), 3.44 (s, 3H), 3.40-3.48 (m, 1H), 2.86 (m, 1H), 2.35 (m, 1H), 2.17 (m, 1H).

3-Cyano-2-[(4-nitro-benzenesulfonylamino)-phenyl-methyl]-propionic acid methyl ester (8k). A flame-dried 5 mL round-bottom flask was charged with **7a** (30 mg, 0.08 mmol) and dissolved in absolute EtOH (0.25 mL). KCN dissolved in H₂O (100 μ L) was added *via* syringe and the reaction stirred at room temperature for 24 h. The reaction was then diluted with CH₂Cl₂ (20 mL), and poured onto saturated aqueous NaHCO₃. The layers were separated, the aqueous layer extracted with 3x 15 mL CH₂Cl₂, and the

combined organics dried over Na₂SO₄, filtered, and concentrated *in vacuo*. Purification by preparative thin layer chromatography (1:1 EtOAc/hexanes) afforded the pure product as an off-white solid (27.6 mg, 86%). The product was formed as a 1.8:1 mixture of diastereomers, with the chemical shifts of the major diastereomer reported. ¹H NMR (500 MHz, CDCl₃) d 8.05 (d, *J*=8.8 Hz, 2H), 7.74 (d, *J*=8.8 Hz, 2H), 7.85-6.92 (m, 5H), 6.44 (d, *J*=9.8 Hz, 1H), 4.76 (m, 1H), 3.59 (s, 3H), 3.24 (m, 1H), 2.60-2.80 (m, 2H).

Representative Data for GC Kinetics:

General procedure for all GC kinetics experiments:

An oven-dried 0.5-dram vial was charged with an oven-dried stirbar, DABCO, biphenyl (internal standard), and imine. CHCl₃ (1 mL) was added, and the reaction was stirred until homogenous (usually < 1 min). A t=0 time point was taken by removing 25 μ L of the reaction mixture, diluting it to 100 μ L, and directly subjecting it to GC analysis. The reaction was initiated by addition of freshly distilled methyl acrylate *via* syringe, and subsequent GC monitoring was carried out under identical sampling methods. Conversion is reported in terms of relative product appearance as determined by GC.

Determination of order in Imine.

[Imine] = 0.010 MAverage relative rate = 0.0081

Run 2 Run 1 0.01 M Imine - Run 2 0.01 M Imine - Run 1 4.5 4.5 4 4 y = 0.0073x - 0.4942 3.5 y = 0.0088x - 0.5002 3.5 $R^2 = 0.9752$ 3 $R^2 = 0.9846$ 3 2.5 2 1.5 1.5 3 [product] 2.5 2 Гe. 1.5 1 1 0.5 0.5 0 0 100 200 300 400 600 0 500 100 200 700 0 300 400 500 600 time (min) time (min)

[Imine] = 0.025 MAverage relative rate = 0.0186

Run 1

[Imine] = 0.0375 M Average relative rate = 0.0260

[Imine] = 0.05 M Average relative rate = 0.0320

S20

[Imine] = 0.075 M Average relative rate = 0.0385

[Imine] = 0.10 MAverage relative rate = 0.0406

Run 3

Imine Rate Profile: Saturation Kinetics

Determination of order in DABCO.

[DABCO] = 0.025 M Average relative rate = 0.0093

Run 1

[DABCO] = 0.0375 M Average relative rate = 0.0107

Run 1

Run 2

[DABCO] = 0.050 M Average relative rate = 0.0155

[DABCO] = 0.075 M Average relative rate = 0.0259

[DABCO] = 0.10 M Average relative rate = 0.0315

DABCO Rate Profile: First Order

Determination of order in Acrylate.

[Acrylate] = 0.10 M Average relative rate = 0.0104

Run 1

[Acrylate] = 0.20 M Average relative rate = 0.0186

[Acrylate] = 0.30 M Average relative rate = 0.0249

Run 2

[Acrylate] = 0.40 M Average relative rate = 0.0315

[Acrylate] = 0.50 M Average relative rate = 0.0445

Run 1

Run 1

Acrylate Rate Profile: First Order

ReactIR Kinetics data:

Standard Order Plots:

0th order plot

1st order plot

2nd order plot

Modeled Rate Plots:

poynomial coefficients:	1.16983E-16	
	-1.30985E-13	
	6.28658E-11	
	-1.7495E-08	
	3.26827E-06	
	-0.000430389	
	0.031445952	
6th order polynomial: y =	= 1E-16x6 - 1E-13x5 + 6E-′	1x4 - 2E-08x3 + 3E-06x2 - 0.0004x + 0.0314

rate = k[I']

Derivation of rate law:

Rate Law 1: assuming no retro reaction (no contribution from k-2)

rate = d**P**/dt = k₃[**I**'] $K_{2} = \frac{[\mathbf{I'}]}{[\mathbf{I}][\mathbf{C}]} \quad (equilibrium approximation)$ $d[\mathbf{I}]/dt = 0 \quad (steady-state approximation)$ $0 = k_{1}[\mathbf{A}][\mathbf{B}] - k_{-1}[\mathbf{I}] - k_{2}[\mathbf{I}][\mathbf{C}]$ $k_{1}[\mathbf{A}][\mathbf{B}] = k_{-1}[\mathbf{I}] + k_{2}[\mathbf{I}][\mathbf{C}]$ $[\mathbf{I}] = \frac{k_{1}[\mathbf{A}][\mathbf{B}]}{k_{-1} + k_{2}[\mathbf{C}]}$ $K_{2} = \frac{[\mathbf{I'}]}{\left(\frac{k_{1}[\mathbf{A}][\mathbf{B}][\mathbf{C}]}{k_{-1} + k_{2}[\mathbf{C}]}\right)} \implies [\mathbf{I'}] = \kappa_{2} \left(\frac{k_{1}[\mathbf{A}][\mathbf{B}][\mathbf{C}]}{k_{-1} + k_{2}[\mathbf{C}]}\right)$ $\Longrightarrow \left[rate = \frac{k_{3}K_{2}k_{1}[\mathbf{A}][\mathbf{B}][\mathbf{C}]}{k_{-1} + k_{2}[\mathbf{C}]}\right]$

Rate Law 2: assuming there is a retro reaction

$$rate = d\mathbf{P}/dt = k_{3}[\mathbf{I}']$$

$$K_{2} = \frac{[\mathbf{I}']}{[\mathbf{I}][\mathbf{C}]} \quad (equilibrium approximation)$$

$$d[\mathbf{I}]/dt = 0 \quad (steady-state approximation)$$

$$0 = k_{1}[\mathbf{A}][\mathbf{B}] + k_{2}[\mathbf{I}'] - k_{1}[\mathbf{I}] - k_{2}[\mathbf{I}][\mathbf{C}]$$

$$0 = k_{1}[\mathbf{A}][\mathbf{B}] + k_{2}K_{2}[\mathbf{I}][\mathbf{C}] - k_{1}[\mathbf{I}] - k_{2}[\mathbf{I}][\mathbf{C}]$$

$$0 = k_{1}[\mathbf{A}][\mathbf{B}] - [\mathbf{I}] (-k_{2}K_{2}[\mathbf{C}] + k_{1} + k_{2}[\mathbf{C}]) = k_{1}[\mathbf{A}][\mathbf{B}]$$

$$[\mathbf{I}] = \frac{k_{1}[\mathbf{A}][\mathbf{B}]}{k_{1} + (k_{2} - k_{2}K_{2})[\mathbf{C}]}$$

$$K_{2} = \frac{[\mathbf{I}']}{\left(\frac{k_{1}[\mathbf{A}][\mathbf{B}][\mathbf{C}]}{k_{1} + (k_{2} - k_{2}K_{2})[\mathbf{C}]}\right)} \implies [\mathbf{I}'] = K_{2}\left(\frac{k_{1}[\mathbf{A}][\mathbf{B}][\mathbf{C}]}{k_{1} + (k_{2} - k_{2}K_{2})[\mathbf{C}]}\right)$$

$$rate = \frac{k_{3}K_{2}k_{1}[\mathbf{A}][\mathbf{B}][\mathbf{C}]}{k_{1} + (k_{2} - k_{2}K_{2})[\mathbf{C}]}$$

Both derivations give a rate law in the form:

(implies saturation kinetics in imine)

KIE experiments:

Preparation of a-deuterio-methyl acrylate. This material was prepared in an analogous manner to that described by McQuade *et. al.*^[13a] but an increase in the deuterium incorporation could be realized by a double cycling of the reaction.

a-deuterio-methyl acrylate. A flame-dried 250 mL round-bottom flask was charged with a stirbar and DABCO (31.1 g, 277.6 mmol). CH₃OD (45 mL) was added, followed by addition of freshly distilled methyl acrylate (25 mL, 277.6 mmol) via syringe. The reaction was stirred vigorously for 48 hours, and then diluted with o-dichlorobenzene (120 mL). The combined organics were washed with 4x 200 mL H₂O and 1x 200 mL brine, and the rigorously dried over Na₂SO₄ and MgSO₄. The product was purified by fractional distillation to afford α -deuterio-methyl acrylate (79% d-incorporation, 20-35% yield). This material was then re-subjected to the above reaction conditions. A flamedried 100 mL round-bottom flask was charged with a stirbar and DABCO (9.96 g, 88.8 mmol). CH₃OD (20 mL) was added, followed by addition of α -deuterio-methyl acrylate (8 mL, 88.8 mmol) via syringe. The reaction was stirred vigorously for 48 hours, and then diluted with o-dichlorobenzene (50 mL). The combined organics were washed with 4x 100 mL H₂O and 1x 100 mL brine, and the rigorously dried over Na₂SO₄ and MgSO₄. The product was purified by fractional distillation to afford α -deuterio-methyl acrylate (94% d-incorporation, 20-35% yield). ¹H-NMR (300 MHz, CDCl3): d 6.40 (m, 1H), 6.12 (m, 0.06 H), 5.83 (m, 1H), 3.75 (s, 3H). This material could be stored at 0 $^{\circ}$ C without a noticeable loss in d-incorporation, and was used in all KIE experiments.

H : Average rate = 0.0315

^[13a] K.E. Price, S.J. Broadwater, H.M. Jung, D.T. McQuade, Org. Lett. 2005, 7, 147-150.

3**a** - 95% ee

Totals :	2.29515e4	335.4

Signal 2: DAD1 C, Sig=254.4 Ref=550,100

Peak ≢	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area

1	11.537	MM	1.3349	1.04346e4	130.27666	52.3621
2	16.886	MM	2.0703	9493.19824	76.42282	47.6379
Tota:	ls :			1.99278e4	206.69948	

3b – 93% ee

3c - racemate

Totals	•	1.79333e4	177.90777

Signal 2: DAD1 E, Sig=280,20 Ref=550,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %

1	11.565	BV	1.1857	1.09957e4	130.85185	51.6300
2	19.771	VB	1.8734	1.03014e4	67.01318	48.3700
Total	.8 :			2.12971e4	197.86503	

3f – 92% ee

Signal 2: DAD1 E, Sig=280,20 Ref=550,100

Peak ≢	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area ¥
- ()		****	******			
1	12.236	FM	1.9191	2.06537e4	179.36861	51.1345
2	28.644	MM	5.3161	1.97373e4	61.87867	48.8655

Totals : 4.03910e4 241.24728

3g – 91% ee

Signal 4: DAD1 E, Sig=280,20 Ref=550,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %

1	27.791	MM	2.2371	2110.28223	15.72216	51.5389
2	35.916	MM	3.3391	1984.25977	9.90420	48.4611
Total	ls :			4094.54199	25.62636	

Signal 2: DAD1 E, Sig=280,20 Ref=550,100

Peak #	RetTime Type [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	28.247 MM	1.9800	1.51101e4	127.18702	99.4182
2	36.662 MM	2.0704	88.43224	7.11801e-1	0.5818
Peak #	RetTime Type [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area %
Tota	18 :		1.51985e4	127.89890	ē 8

dihydrochloride salt 10a:

<u>dihydrochloride salt 10a + 2 equiv. DBU at t=4 min:</u>

(note: immediate appearance of methyl acrylate, loss of N-H proton, and change in splitting pattern of **a**-C-H proton)

