

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2005

Rhodium-catalyzed, three-component reaction of diazo compounds with amines and azodicarboxylates

Haoxi Huang, Yuanhua Wang, Zhiyong Chen, Wenhao Hu*

Key Laboratory for Asymmetric Synthesis and Chirotechnology of Sichuan Province and Union Laboratory of Asymmetric Synthesis, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China, and Graduate School of Chinese Academy of Sciences, Beijing, China

Fax: +86(28)85229250, e-mail:huwh@cioc.ac.cn

Supporting Information

General methods: Melting points are uncorrected. NMR spectra were recorded on a Bruker-300 MHz spectrometer. MS (EI) Mass spectra were recorded on VG7070E. Elemental analyses were performed on a Carlo Erba-1106 instrument. Dichloromethane was distilled over calcium hydride. Toluene was distilled over sodium benzophenone ketyl.

General procedure for the reaction of ethyl diazoacetate with aniline and DEAD:

To a 10 mL CH₂Cl₂ solution of Rh₂(OAc)₄ (3.6 mg, 0.0081 mmol), aniline **2b** (82.8 mg, 0.89 mmol) and DEAD **3a** (154.8 mg, 0.89 mmol) was added ethyl diazoacetate **1a** (92.2 mg, 0.81 mmol) in 5 mL of CH₂Cl₂ under argon atmosphere via a syringe pump over 1 h under refluxing. After completed the addition, the reaction mixture was cooled to room temperature. Solvent was removed and a portion of the crude mixture was subjected to ¹H NMR analysis for determination of the product ratio. The crude product was purified by flash chromatography on silica gel by using 10 % EtOAc-light petroleum ether as eluent to give **4b** as a solid. Single crystal **4b** was grown in hexane and ethyl acetate solution. Products **4a~4h** and **6a** were obtained by the same procedure.

Ethyl [N,N'-bis(ethoxycarbonyl)hydrazino]-4-methoxy phenylamino- acetate 4a:

 $R_f = 0.23$ (30% EtOAc/ light petroleum); mp = 79.1-80.5°C; ¹H NMR (300 MHz, CDCl₃) & 6.76 (d, J = 8.9Hz, 2H), 6.69 (d, J = 8.9Hz, 2H), 6.26 (s, 1H), 6.17 (br, 1H), 4.81 (s, 1H), 4.28-4.80 (m, 4H), 4.17 (& J = 7.1Hz, 2H), 3.73 (s, 3H), 1.39 (t, J = 7.1Hz, 3H), 1.22-1.30 (m, 6H); ¹³C NMR (75MHz, CDCl₃) d 167.8, 155.7 (two C=O carbons), 153.4, 137.6, 115.3, 115.0, 66.5, 63.1, 62.6, 62.3, 55.8, 14.6, 14.3, 14.1; EIMS (70 eV) m/z (rel intensity) 383 [M⁺, 5], 310 [(M-COOEt)⁻⁺, 5], 208 [C₁₁H₁₄O₃⁺, 58], 134 [C₈H₈NO⁺, 100]; Anal. Calcd for C₁₇H₂₅N₃O₇: C, 53.26; H, 6.57; N, 10.96. Found: C, 53.09; H, 6.53; N, 10.68.

Ethyl [N,N'-bis(ethoxycarbonyl)hydrazino]-phenylaminoacetate 4b:

 $R_f = 0.35$ (30% EtOAc/ light petroleum); mp = 97.8-98.9°C; ¹H NMR (300 MHz, CDCl₃) d 7.21 (m, 2H), 6.81 (m, 1H), 6.74 (m, 2H), 6.21 (br, 2H), 5.03 (s, 1H), 4.33 (m, 4H), 4.14 (q, J = 7.1Hz, 2H), 1.34 (t, J = 7.1Hz, 3H), 1.25 (m, 6H); ¹³C NMR (75MHz, CDCl₃) d 167.8, 155.7 (two C=O carbons), 143.7, 129.6, 119.5, 113.9, 67.1, 63.2, 62.7, 62.4, 14.6, 14.4, 14.2; EIMS (70 eV) m/z (rel intensity) 353 [M⁺, 4], 280 [(M-COOEt)⁻⁺, 7], 178 [C₁₀H₁₂NO₂⁺, 84], 104 [C₇H₆N⁺, 100], 77 [C₆H₅⁺, 89]; Anal. Calcd for C₁₆H₂₃N₃O₆: C, 54.38; H, 6.56; N, 11.89. Found: C, 54.34; H, 6.57; N, 11.88.

Ethyl [N,N'-bis(ethoxycarbonyl)hydrazino]- 4-chloroy phenylamino acetate 4c:

 $R_f = 0.34$ (30% EtOAc/ light petroleum); mp = 85.6-86.4°C; ¹H NMR (300 MHz, CDCl₃) d 7.15 (d, J = 8.9Hz, 2H), 6.68 (d, J = 8.9Hz, 2H), 6.21 (s, 1H), 6.11 (s, 1H), 5.06 (s, 1H), 4.27-4.38 (m, 4H), 4.16 (a), J = 7.1Hz, 2H), 1.34 (t, J = 7.1Hz, 3H), 1.23-1.27 (m, 6H); ¹³C NMR (75MHz, CDCl₃) d 167.6, 155.6 (two C=O carbons), 142.6, 129.4, 124.3, 115.2, 65.9, 63.4, 62.9, 62.4, 14.6, 14.3, 14.2; EIMS (70 eV) m/z (rel intensity) 387 [M⁺, 6], 280 [(M-C₆H₁₁N₂O₄)⁻⁺, 99], 140 [C₇H₆NCl⁺, 100]; Anal. Calcd for C₁₆H₂₂N₃O₆Cl: C, 49.55; H, 5.72; N, 10.84. Found: C, 49.48; H, 5.87; N, 10.83.

Ethyl [N,N'-bis(ethoxycarbonyl)hydrazino]-4-nitrophenylamino acetate 4d:

 $R_f = 0.25$ (30% EtOAc/ light petroleum); mp = 148.2-149.2°C; ¹H NMR (300 MHz, CDCl₃) d 8.12 (d, J = 9.1Hz, 2H), 6.78 (d, J = 9.1Hz, 2H), 6.35 (s, 1H), 6.30 (s, 1H), 5.75 (s, 1H), 4.34 (m, 4H), 4.20 (m, 2H), 1.24-1.38 (m, 9H); ¹³C NMR (75MHz,CDCl₃) d 167.1, 155.7 (two C=O carbons), 149.9, 140.1, 126.2, 113.0, 65.8, 63.7, 63.3, 62.5, 14.5, 14.4, 14.2; EIMS (70 eV) m/z (rel intensity) 398 [M⁺, 2], 223 [(M-C₆H₁₁N₂O₄)·⁺, 32], 176 [C₁₀H₁₀NO₂+, 28], 148 [C₇H₄N₂O₂+, 100]; Anal. Calcd for C₁₆H₂₂N₄O₈: C, 48.24; H, 5.57 N, 14.06. Found: C, 48.13; H, 5.54; N, 13.96.

Ethyl [*N,N'*-bis(ethoxycarbonyl)hydrazino]-2,4-dinitrophenylamino acetate 4e: $R_f = 0.25$ (30% EtOAc/ light petroleum); mp = 155.4-157.6°C; ¹H NMR (300 MHz, CDCl₃)?d 9.35 (d, J = 7.4Hz, 1H), 9.16 (d, J = 2.6Hz, 1H), 8.35 (q, $J_I = 7.4$ Hz, $J_2 = 2.6$ Hz, 1H), 7.26 (s, 1H), 6.41 (br, 2H), 4.31-4.45 (m, 4H**?**, 4.06 (m, 2H), 1.17-1.58 (m, 9H); ¹³C NMR(75MHz, CDCl₃) d 165.9, 156.1 (two

C=O carbons), 146.4, 138.2, 132.3, 130.4, 123.8, 116.1, 66.2, 64.2, 63.9, 62.8, 14.5, 14.3, 14.2; EIMS (70 eV) m/z (rel intensity) 443 [M⁺, 1], 29 [C₂H₅⁺, 100]; Anal. Calcd for C₁₆H₂₁N₅O₁₀: C, 43.34; H, 4.77; N, 15.80. Found: C, 43.22; H, 4.84; N, 15.42.

Ethyl [N,N'-bis(isopropoxycarbonyl)hydrazino]-phenylaminoacetate 4f:

 $R_f = 0.43$ (30% EtOAc/ light petroleum); ¹H NMR (300 MHz, CDCl₃) d 7.19 (m, 2H), 6.76-6.83 (m, 3H), 6.26 (s, 1H), 6.16 (s, 1H), 5.05 (m, 2H), 4.86 (s, 1H), 4.19-4.32 (m, 2H), 1.25-1.37 (m, 15H); ¹³C NMR (75MHz, CDCl₃) d 167.8, 155.3 (two C=O carbons), 143.9, 129.4, 119.2, 113.9, 70.8, 69.9, 66.9, 62.5, 21.9, 21.7, 14.1; EIMS (70 eV) m/z (rel intensity) 381 [M⁺, 6], 280 [(M-COOEt)⁻⁺, 5], 178 [C₁₀H₁₂NO₂⁺, 86], 104 [C₇H₆N⁺, 100], 77 [C₆H₅⁺, 29]; Anal. Calcd for C₁₈H₂₇N₃O₆: C, 56.68; H, 7.13; N, 11.02. Found: C, 56.32; H, 7.11; N, 10.90.

Ethyl [*N,N'*-bis(*tert*-butoxycarbonyl)hydrazino]-phenylaminoacetate **4g:** $R_f = 0.57 (30\% \text{ EtOAc/ light petroleum}); {}^{1}\text{H NMR} (300 \text{ MHz, CDCl}_3) d 7.09-7.30 (m, 2H), 6.74-6.82 (m, 3H), 6.21 (s, 1H), 6.11 (s, 1H), 5.02 (s, 1H), 4.22-4.29 (m, 2H), 1.16-1.48 (m, 21H); {}^{13}\text{C NMR} (75\text{MHz, CDCl}_3) d 167.9, 155.3 (two C=O carbons), 144.0, 129.5, 119.2, 113.9, 82.3, 81.4, 67.5, 62.5, 28.2, 28.0, 14.1; EIMS (70 eV) <math>m/z$ (rel intensity) 409 [M⁺, 3], 178 [C₁₀H₁₂NO₂⁺, 48], 104 [C₇H₆N⁺, 33], 77 [C₆H₅⁺, 17], 57 [C₄H₉⁺, 100]; Anal. Calcd for C₂₀H₃₁N₃O₆: C, 58.66; H, 7.63; Found: C, 58.46; H, 7.63.

Ethyl [N,N'-bis(ethoxycarbonyl)hydrazino]-a-(benzeamino)-phenyl ethanone 4h:

 $R_f = 0.40 \ (30\% \ EtOAc/ \ light petroleum); mp = 105.3-106.4°C; ^1H NMR \ (300 \ MHz, CDCl_3) d 8.21, (m, 2H), 7.62 (m, 1H), 7.50 (m, 2H), 7.22 (m, 2H), 6.84 (m, 3H), 6.72 (s, 1H), 6.25 (s, 1H); 5.48 (s, 1H), 4.03-4.15 (m, 4H), 1.19-1.28 (m, 6H); <math>^{13}C$ NMR $(75MHz, CDCl_3)$ d $^{1}90.9$, 155.8 (two C=O carbons), 143.8, 143.5, 134.3, 129.7, 129.3, 128.9, 119.3, 114.2, 66.8, 63.3, 62.2, 14.5, 13.4; EIMS $(70 \ eV) \ m/z$ (rel intensity) 385 [M⁺, 1], 280 [(M-PhCO)⁻⁺, 64], 105 [PhCO⁺, 100], 77 [C₆H₅ ⁺, 100]; Anal.Calcd for $C_{20}H_{23}N_3O_5$: C, 62.33; H, 6.01; N, 10.90. Found: C, 62.13; H, 6.06; N, 10.86.

Methyl 2-phenyl-2-phenyliminoacetate 6a:

 $R_f = 0.71 \ (10\% \ EtOAc/ \ light petroleum); \ ^1H \ NMR \ (300 \ MHz, CDCl_3) \ d 7.87 \ (m, 2H), 7.48 \ (m, 3H), 7.34 \ (m, 2H), 7.14 \ (m, 1H), 6.96 \ (m, 2H); 3.63 \ (s, 3H); \ ^{13}C \ NMR \ (75MHz, CDCl_3) \ d 165.6, 160.1, 150.2, 131.9, 129.9, 129.3, 129.1, 128.6, 125.1, 119.6, 52.0. EIMS \ (70 \ eV) \ m/z \ (rel intensity) \ 239 \ [M^+, 52], 180 \ [(M-COOMe)^{-+}, 100], 77 \ [C_6H_5^+, 100]; \ Anal. \ Calcd \ for \ C_{15}H_{13}NO_2?1/4H_2O: C, 73.92; H, 5.59; N, 5.75. Found: C, 73.88; H, 5.73; N, 5.61.$

Dimethyl 2-phenyliminomalonate 6b:

 $R_f = 0.43$ (10% EtOAc/ light petroleum); ¹H NMR (300 MHz, CDCl₃) d 7.33, (m, 2H), 7.22 (m, 1H), 6.99 (m, 2H), 3.96 (m, 3H), 3.67 (s, 3H); ¹³C NMR (75MHz, CDCl₃) d 162.8, 161.4, 151.6, 147.3, 129.1, 127.2, 119.6, 53.6, 52.6. EIMS (70 eV) m/z (rel intensity) 221 [M⁺, 30], 162 [(M-COOMe)⁺, 58], 118 [C₈H₈N⁺, 34], 77 [C₆H₅

⁺, 100]; Anal. Calcd for C₁₁H₁₁NO₄: C, 59.73; H, 5.01; N, 6.33. Found: C, 59.63; H, 5.01; N, 6.31.

General procedure for the reaction of dimethyl diazomalonate with 4-nitrobenzenamine and DEAD: To a 8 mL toluene solution of Rh₂(OAc)₄ (2.2 mg, 0.0049 mmol), 4-nitrobenzenamine 2d (75 mg, 0.54 mmol) and DEAD 3a (85.5 uL, 0.54 mmol) under argon atmosphere was added dimethyl diazomalonate 1c (78 mg, 0.49 mmol) in 5 mL of toluene via a syringe pump over 1 h under refluxing. After completed the addition, the reaction mixture was cooled to room temperature. Solvent was removed, and a portion of the crude mixture was subjected to ¹H NMR analysis for determination of the product ratio. The crude product was purified by flash chromatography on silica gel by using 15% EtOAc-light petroleum ether as eluent to give 7 as a white solid, yield 50%. Products 6b was obtained by the same procedure.

Dimethyl [N,N'-bis(ethoxycarbonyl)hydrazino]-4-nitrophenylamino malonate 7:

 $R_f = 0.23$ (30% EtOAc/ light petroleum); mp = 137.5-138.4°C; ¹H NMR (300 MHz, CDCl₃) & 8.08 (q, $J_I = 7.9$ Hz, $J_2 = 2.0$ Hz, 2H), 6.96 (q, $J_I = 7.9$ Hz, $J_2 = 2.0$ Hz, 2H), 6.72 (s, 1H), 6.23 (s, 1H), 4.22-4.08 (m, 4H), 3.86 (s, 6H), 1.28-1.09 (m, 6H); ¹³C NMR (75MHz, CDCl₃) d 165.7 (two C=O carbons), 155.5, 155.2, 148.9, 140.2, 125.7, 114.5, 79.3, 63.9, 62.7, 54.5, 14.5, 14.3. EIMS (70 eV) m/z (rel intensity) 385 [(M+Na)⁺, 465]; Anal. Calcd for $C_{17}H_{22}N_4O_{10}$: C, 46.16; H, 5.01; N, 12.66. Found: C, 45.96; H, 4.96; N, 12.58.

Dimethyl 2-(4-nitrophenylimino)-malonate 6c: A toluene solution (8.0 mL) of **7** (40 mg. 0.09 mmol) was refluxed for 24 h. The reaction mixture was cooled to room temperature. Solvent was removed, and a portion of the crude mixture was

subjected to ¹H NMR analysis for determination of the conversion. The crude product was purified by flash chromatography on silica gel by using 15% EtOAc-light petroleum ether as eluent to give **6c** (23.4 mg, 0.088 mmol), yield 98%.

$$\begin{array}{c} \text{MeOOC} \\ \\ \text{MeOOC} \end{array} \hspace{-0.5cm} - \hspace{-0.5cm} \text{NO}_2 \\ \end{array}$$

Dimethyl 2-(4-nitrophenylimino)-malonate 6c:

 $R_f = 0.53$ (30% EtOAc/ light petroleum); ¹H NMR (300 MHz, CDCl₃) d 8.24 (m, 2H), 7.04 (m, 2H), 4.01 (s, 3H), 3.70 (s, 3H); ¹³C NMR (75MHz, CDCl₃) d 161.3, 160.8, 153.4, 152.9, 146.1, 125.0, 119.5, 54.1, 53.2. EIMS (70 eV) m/z (rel intensity) 266 [(M+1)⁺, 267]; Anal. Calcd for $C_{11}H_{10}N_2O_6$: C, 49.63; H, 3.79; N, 10.52. Found: C, 50.01; H, 3.95; N, 10.40.