

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2006

Supporting information

Metal-free chemoselective oxidation of sulfides to sulfoxides by hydrogen peroxide catalyzed by the *in situ* generated dodecyl hydrogen sulfate in the absence of any organic co-solvents

H. Firouzabadi, N. Iranpoor, A. A. Jafari, E. Riazimontazar

Chemistry Department, College of Sciences, Shiraz University, Shiraz 71454, Iran. Fax: +98-711-228-6008 & +98-711-228-0926 E-mail: <u>firouzabadi@chem.susc.ac.ir</u>; <u>iranpoor@chem.susc.ac.ir</u>

General procedure for sulfoxidation of sulfides (Table 2, entries 1, 4, 7-11):

A 10 mL flask was charged with 1 mL (8.0 mmol) of aqueous solution of H_2O_2 (35%), 0.029 g (0.10 mmol) of SDS, and 2 mmol sulfide. To the resulting mixture, 20µL (0.2 mmol) of aqueous HCl solution was added and stirred at room temperature. The progress of the reaction was followed by TLC. After complete disappearance of the reactant, the excess amount of H_2O_2 was destroyed by the addition of saturated aqueous solution of Na₂SO₃ to the reaction mixture. The product was extracted with EtOAc which was separated and dried over anhydrous Na₂SO₄. Evaporation of the solvent under diminished pressure resulted the almost pure product.

Methyl Phenyl Sulfoxide [MeS(O)Ph]:^[1]

¹H NMR (CDCl₃, 250 MHz): d= 2.73 (s, 3 H), 7.51–7.55 (m, 3 H), 7.64–7.69 (m, 2 H). ¹³C NMR (CHCl₃, 63 MHz): d= 43.83, 123.36, 129.24, 130.92, 145.51.

Ethyl Phenyl Sulfoxide [PhS(O)Et]:^[1]

¹H NMR(CDCl₃, 250 MHz): d= 1.20 (t, 3 H, *J* = 7.5 Hz), 2.69–3.15 (m, 2 H), 7.40–7.61 (m, 5 H), 7.52–7.58 (m, 3 H).

¹³C NMR (CHCl₃, 63 MHz): d= 5.8, 50.3, 124.1, 129.1, 130.1, 143.1.

Dibutyl Sulfoxide [CH₃CH₂CH₂CH₂CH₂S(O)CH₂CH₂CH₂CH₃]:^[1]

¹H NMR (CDCl₃, 250 MHz): d= 0.92 (t, 6 H, *J* = 7.5 Hz), 1.37–1.50 (m, 4 H), 1.70 (m, 4 H), 2.57–2.66 (m, 4 H).

¹³C NMR (CHCl₃, 63 MHz): d= 13.3, 21.7, 24.2, 51.8.

Diallyl Solfoxide [CH₂=CHCH₂S(O)CH₂CH=CH₂]:^[3]

¹H NMR (CDCl₃, 250 MHz): d= 3.43-3.59 (m, 4 H), 5.36-5.52 (m, 4 H), 5.83-5.92 (m, 2 H).

¹³C NMR (CHCl₃, 63 MHz): d= 54.2, 123.9, 126.0.

2-Benzhydrylsulfanyl-ethanol [Ph₂CHS(O)CH₂CH₂OH]:

¹H NMR (CDCl₃, 250 MHz): δ = 2.57-2.62 (m, 1H), 2.68-2.75 (m, 1H), 3.83-3.90 (m, 2H), 4.39 (s, 1H, OH), 5.23 (s, 1H), 7.33-7.42 (m, 6H), 7.52-7.59 (m, 4H).

¹³C NMR (63 MHz, CDCl₃): 52.0, 52.9, 68.9, 126.3, 126.8, 126.9, 1127.4, 1128.0, 134.1, 135.4 ppm.

MS (EI, 70 ev), m/e: M⁺=260.

Anal. Calcd for (C₁₅H₁₆O₂S): C, 69.20; H, 6.19. Found: C, 69.12; H, 6.15.

2-Cyanoethyl Phenyl Sulfoxide [PhS(O)CH₂CH₂CN]:^[1]

¹H NMR (CDCl₃, 250 MHz): δ = 2.71–3.08 (m, 4 H), 7.53 (m, 5 H).

¹³C NMR (CHCl₃, 63 MHz): 18.1, 48.4, 118.2, 123.36, 129.24, 130.92, 145.51.

General procedure for preparation of solid sulfoxides (Table 2, entries 2, 3, 5, 6):

A 10 mL flask was charged with 1 mL (8.0 mmol) of aqueous solution of H_2O_2 (35%), 0.029 g (0.10 mmol) of SDS, and 2 mmol sulfide. To the resulting mixture, 20µL (0.2 mmol) of aqueous HCl solution was added and stirred at room temperature. The progress of the reaction was followed by TLC. As the reaction proceeded, the solid sulfoxides precipitated out. After complete disappearance of the reactant, 5 mL of water was added to the reaction mixture and the solid sulfoxide was filtered off and washed with water and dried under dimished pressure.

Diphenyl Sulfoxide [PhS(O)Ph]:^[1]

¹H NMR (CDCl₃, 250 MHz): d= 7.43–7.68 (m).

¹³C NMR (CHCl₃, 63 MHz): d= 124.8, 129.3, 131.1, 145.8.

Benzyl Phenyl Sulfoxide [PhCH₂S(O)Ph]:^[1]

¹H NMR (CDCl₃, 250 MHz): d= 3.98 (d, 1 H, *J* = 14 Hz), 4.09 (d, 1 H, *J* = 14 Hz), 6.95– 7.00 (m, 2 H), 7.22–7.28 (m, 3 H), 7.35–7.45 (m, 5 H).

¹³C NMR (CHCl₃, 63 MHz): d= 63.2, 123.3, 127.9, 128.1, 128.5, 128.7, 129.9, 130.7, 142.3.

Benzyl Butyl Sulfoxide [PhCH₂S(O)CH₂CH₂CH₂CH₃]:

¹H NMR (CDCl₃, 250 MHz): d= 0.91 (t, 3 H, *J* = 7.4 Hz), 1.42 (m, 2H), 1.71 (m, 2H), 2.61 (t, 2 H, J=15.5), 3.96 (dd, 2 H, *J* = 13 Hz), 7.28–7.45 (m, 5 H).

¹³C NMR (CHCl₃, 63 MHz): d= 13.5, 22.0, 24.4, 50.5, 58.0, 128.2, 128.9, 129.8, 129.9.

Dibenzyl Sulfoxide [PhCH₂S(O)CH₂Ph]:^[2]

¹H NMR (CDCl₃, 250 MHz): d= 3.85 (d, 2 H, *J* = 13 Hz), 3.92 (d, 2 H, *J* = 13 Hz), 7.25–7.38 (m, 10 H).

¹³C NMR (CHCl₃, 63 MHz): d= 57.1, 128.2, 128.8, 130.2, 130.0.

References:

- [1]. V. G. Shukla, P. D. Salgaonkar, K G. Akamanchi, J. Org. Chem. 2003, 68, 5422.
- [2]. S. S. Kim, K. Nehru, S. S. Kim, D. W. Kim, H. C. Jung, Synthesis, 2002, 2484.
- [3]. K. Sato, M. Hyodo, M. Aoki, X. Zheng, R. Noyorip, Tetrahedron, 2001, 157, 2469.