

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2007

Supporting Information

Gold(I)- and Acid-Catalyzed Intermolecular Ring-Opening of

Unactivated Vinylcyclopropanes with Sulfonamide

Wen-Jian Shi, Yanyun Liu, Pietro Butti, and Antonio Togni*

Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, ETH Zürich, CH-8093 Zürich, Switzerland. Fax: (+41)-44-632-1310; e-mail: togni@inorg.chem.ethz.ch

Table of Contents.

- 1. General procedure for the synthesis of new substrates.
- 2. General procedure of the gold(I)- or HOTf-catalyzed intermolecular ring-opening of unactivated VCPs 1 with sulfonamides.
- 3. Deuterium labelling experiment with TsND₂.
- 4. General procedure for competition experiments (Hammett study).
- 5. Analytical data of new products.
- 6. Crystal data and structure data for product 2ab.
- 7. ¹H and ¹³C NMR spectra of new compounds.

General remarks.

All reactions and manipulation were performed using standard Schlenk techniques under an Ar atmosphere. All solvents were distilled prior to use. Gold complexes AuCl(PPh₃), AuCl(PEt₃) and AuCl₃ were commercial products. Other gold(I) complexes were prepared by treating one equiv of AuCl(SMe₂) with the corresponding phosphine ligands in DCM at room temperature, and AuCl(SMe₂) was synthesized according to the reported procedure.¹ All unactivated VCPs **1** were prepared from the corresponding ketones by using Wittig reaction, unless otherwise stated.² TsND₂ was prepared as reported.³ ¹H and ¹³C NMR spectra were recorded on Bruker AVANCE spectrometers DPX 200, DPX 250, DPX 300, and DPX 700. HRMS was performed by the MS-Service of the Laboratory of Organic Chemistry, ETH Zurich.

1. General procedure for the synthesis of new substrates (General procedure A). **b**-Methyl-**b**-phenyl vinylcyclopropane (11)

To a mixture of cyclopropylmethyl triphenylphosphonium bromide (3.0 g, 7.5 mmol) and acetophenone (600 mg, 5.0 mmol) in 20 mL of ether, KO^tBu (842 mg, 7.5 mmol) was added in one portion at room temperature under an Ar atmosphere. The suspension was stirred overnight, filtered, concentrated and purified by silica gel chromatography using *n*-hexane as eluent to afford 640 mg of colorless liquid **11** (80 % yield).

¹H NMR (300 MHz, CDCl₃): .7.51-7.30 (m, 5H, Ar-*H*), 5.31 (dd, J = 1.2 Hz, J = 9.3 Hz, 0.18H, C*H*, minor), 4.97 (dd, J = 1.2 Hz, J = 9.6 Hz, 0.82H, C*H*, major), 2.28 (d, J = 1.2 Hz, 0.54H, C*H*₃, minor), 2.15 (d, J = 1.5 Hz, 2.46H, C*H*₃, major), 1.80-1.72 (m, 0.18H, C*H*, minor), 1.64-1.52 (m, 0.82H, C*H*, major), 0.98-0.92 (spt, 0.36H, C*H*₂, minor), 0.80-0.71 (spt, 1.64H, C*H*₂, major), 0.59-0.54 (m, 0.36H, C*H*₂, minor), 0.51-0.46 (m, 1.64H, C*H*₂, major). ¹³C NMR (75.5 MHz, CDCl₃): .143.8, 142.3, 134.3, 133.3, 132.7, 131.9, 128.3, 128.2, 128.1, 126.5, 126.4, 125.4, 25.1, 16.1, 11.3, 7.4. HRMS (EI) Calcd for C₁₂H₁₆: 158.1090. Found: 158.1089.

a-(4-tert-Butyl)phenyl vinylcyclopropane (1c)

According to **General procedure A**, α -(4-*tert*-butyl)-phenyl vinylcyclopropane **1c** was obtained from the corresponding ketone. Colorless liquid, 96% yield.

¹H NMR (300 MHz, CDCl₃): d 7.69 (d, J = 8.4 Hz, 2H, Ar-H), 7.50 (d, J = 8.4 Hz, 2H, Ar-H), 5.41 (s, 1H, CH), 5.03 (s, 1H, CH), 1.83-1.74 (spt, 1H, CH), 1.47 (s, 9H, CH₃), 0.98-0.92 (spt, 2H, CH₂), 0.75-0.70 (m, 2H, CH₂). ¹³C NMR (75.5 MHz, CDCl₃): d 150.5, 149.1, 125.8, 125.1, 108.4, 34.6, 31.5, 15.7, 6.7.HRMS (EI) Calcd for C₁₅H₂₀: 200.1560. Found: 200.1562.

a-Cyclohexyl vinylcyclopropane (1m)

According to **General procedure A**, α -cyclohexyl vinylcyclopropane **1m** was obtained from the corresponding ketone. Colorless liquid, 50% yield.

¹H NMR (300 MHz, CDCl₃): 4.62 (s, 1H, C*H*), 4.52 (s, 1H, C*H*), 2.01-1.70 (m, 6H), 1.39-1.17 (m, 6H), 0.68-0.62 (spt, 2H, C*H*₂), 0.45-0.40 (m, 2H, C*H*₂). ¹³C NMR (75.5 MHz,

CDCl₃): .156.8, 104.5, 45.3, 32.7, 26.8, 26.4, 14.8, 6.4. HRMS (EI) Calcd for $C_{11}H_{18}$: 150.1403. Found: 150.1404.

2. General procedure for the gold(I) or HOTf catalyzed intermolecular ring-opening of unactivated VCPs 1 with sulfonamides (General procedure B).

For Gold(I)-catalyzed ring-opening reaction:

To a suspension of AuPPh₃OTf, prepared *in situ* from AuCl(PPh₃) (10.0 mg, 0.02 mmol) and AgOTf (5.6 mg, 0.02 mmol) in 2 mL of toluene, TsNHMe was added (39 mg, 0.2 mmol), followed by α -phenyl vinylcyclopropane **1a** (88 mg, 0.6 mmol). The resulting mixture was stirred for 24 h at 50 °C. Then, the reaction mixture was cooled to room temperature, evaporated under vacuum, and the residue was purified by silica gel column chromatography (eluent: EtOAc/petroleum ether = 1/3) to afford the product **2ae** (63 mg, 97% yield) as colorless liquid.

For HOTf catalyzed ring-opening reaction:

To the solution of α -phenyl vinylcyclopropane **1a** (88 mg, 0.6 mmol) and TsNHMe (39 mg, 0.2 mmol) in 2 mL toluene at 50 °C, HOTf (3.0 mg, 0.02 mmol) was added using Micro-syringe. The resulted solution was stirred for 24 h. Then, the reaction mixture was cooled to room temperature, evaporated and purified by silica gel column chromatography (eluent: EtOAc/petroleum ether = 1/3) to afford the product **2ae** (60 mg, 92% yield) as colorless liquid.

3. Deuterium labelling experiment with TsND₂.⁴

By adopting AuPPh₃OTf as catalyst, the experiment with TsND₂ (60% deuterium, 40 mg, 0.2 mmol) and α -phenyl vinylcyclopropane **1a** (88 mg, 0.6 mmol) was carried out according to the above **General procedure B**, yielding 25 mg (40% yield) of the product *d*-**2ac** as colorless liquid and with a deuterium content of 38% at the methyl group exclusively, as shown in the equation. The deuterium incorporation of the products was analyzed by ¹H (700 MHz), ¹³C NMR (176.0 MHz) and ¹³C-¹H HZQC NMR spectroscopy.

4. General procedure for competition experiments (Hammett study).⁵

Using PPh₃AuOTf as catalyst:

To a suspension of AuPPh₃OTf, prepared *in situ* from AuCl(PPh₃) (10.0 mg, 0.02 mmol) and AgOTf (5.6 mg, 0.02 mmol) in 2 mL toluene, TsNHMe was added (39 mg, 0.2 mmol), followed by α -phenyl vinylcyclopropane **1a** (88 mg, 0.6 mmol) and α -(4-chloro)-phenyl vinylcyclopropane **1d** (108 mg, 0.6 mmol), and then the resulted mixture was stirred for 24 h at 50 °C. Then, the reaction mixture was cooled to room temperature, evaporated under vacuum, and the residue was purified by silica gel column chromatography (eluent: EtOAc/petroleum ether = 1/3) to afford a mixture of **2ae** and **2da** (61 mg) as colorless liquid. The ratio of the two products (1.0: 2.1) was determined by ¹H NMR (700 MHz) spectroscopy by integration of the methyl signal and corresponds to $K_{rel} = k_R/k_H$. Data are shown in Table 1.

entry	R	\mathbf{s}_p of \mathbf{R}	$k_{\rm rel} = k_{\rm R}/k_{\rm H}$	logk _{rel}
1	CF ₃	0.54	1/15.6	-1.19
2	Cl	0.23	1.0/2.1	-0.32
3	F	0.06	1.0/1.3	-0.12
4	Н	0	1.0	0
5	Me	-0.14	2.2/1	0.34
6	^t Bu	-0.2	2.6/1.0	0.41

Table 1. Data of the Hammett study using PPh₃AuOTf as catalyst

Figure 1. Hammett plot of ring-opening of **1a-f** with TsNHMe using PPh₃AuOTf as catalyst.

¹H NMR spectra of product mixtures of competition experiments using PPh₃AuOTf as catalyst.

Using HOTf as catalyst:

To the solution of α -phenyl vinylcyclopropane **1a** (88 mg, 0.6 mmol), α -(4-chloro)-phenyl vinylcyclopropane **1d** (108 mg, 0.6 mmol) and TsNHMe (39 mg, 0.2 mmol) in 2 mL toluene at 50 °C, HOTf (3.0 mg, 0.02 mmol) was added using Micro-syringe. The resulted solution was stirred for 24 h. Then, the reaction mixture was cooled to room temperature, evaporated and purified by silica gel column chromatography (eluent: EtOAc/petroleum ether = 1/3) to afford a mixture of product **2ae** and **2da** (60 mg) as colorless liquid. The ratio of the two products (1.0: 2.0) was determined by ¹H NMR (700 MHz) spectroscopy by integration of the methyl signal and corresponds to $K_{rel} = k_R/k_H$. Data are shown in Table 2.

entry	R	\mathbf{s}_p of \mathbf{R}	$k_{\rm rel} = k_{\rm R}/k_{\rm H}$	logk _{rel}
1	Cl	0.23	1.0/2.0	-0.30
2	F	0.06	1.0/1.3	-0.11
3	Н	0	1.0	0
4	Me	-0.14	2.1/1	0.32
5	^t Bu	-0.2	2.7/1.0	0.43

Table 2. Data of the Hammett study using HOTf as catalyst

Figure 2. Hammett plot of ring-opening of 1a-e with TsNHMe using HOTf as catalyst

1H NMR spectrum for the experiments of Hammett study using HOTf as catalyst (700 MHz)

1H NMR spectrum for the experiments of Hammett study (700 MHz)

5. Analytical data of new products.

(E)-N-(4-Phenylpent-3-enyl)benzenesulfonamide (2aa)

73% yield. Colorless liquid.

¹H NMR (250 MHz, CDCl₃): d 7.92-7.90 (m, 2H, Ar-*H*), 7.63-7.23 (m, 8H, Ar-*H*), 5.60 (td, J = 7.2 Hz, 1H, C*H*), 4.66 (t, J = 6.0 Hz, 1H, N*H*), 3.12 (q, J = 6.9 Hz, 2H, C*H*₂-N), 2.41 (dd, J = 6.9 Hz, 2H, C*H*₂), 2.01 (s, 3H, C*H*₃). ¹³C NMR (75.5 MHz, CDCl₃): d 143.1, 138.3, 132.6, 129.1, 128.2, 127.1, 125.7, 123.1, 42.9, 29.1, 16.0. HRMS (EI) Calcd for C₁₇H₁₉NO₂S: 301.1131. Found: 301.1130.

2-Methyl-2-phenyl-1-(phenylsulfonyl)pyrrolidine (3aa)

¹H NMR (300 MHz, CDCl₃): d 7.72 (d, J = 7.2 Hz, 2H, Ar-*H*), 7.56-7.24 (m, 8H, Ar-*H*), 3.79-3.72 (m, 1H, CH₂-N), 3.66-3.58 (m, 1H, CH₂-N), 2.21-2.13 (m, 1H, CH₂), 2.05-1.99 (m, 1H, CH₂), 1.93 (s, 3H, CH₃), 1.91-1.81 (m, 2H, CH₂). ¹³C NMR (75.5 MHz, CDCl₃): d

146.3, 141.3, 132.0, 128.7, 128.1, 127.0, 126.7, 125.9, 70.0, 50.0, 45.8, 26.5, 22.5. HRMS (EI) Calcd for C₁₇H₁₉NO₂S: 301.1131. Found: 301.1128.

(E)-4-Bromo-N-(4'-phenylpent-3'-enyl)benzenesulfonamide (2ab)

30% yield. White solid. M.P. 101-103 °C.

¹H NMR (250 MHz, CDCl₃): d 7.77-7.63 (m, 4H, Ar-*H*), 7.35-7.25 (m, 5H, Ar-*H*), 5.58 (td, J = 7.3 Hz, 1H, Ar-*H*), 4.60 (t, J = 6.0 Hz, 1H, N*H*), 3.13 (q, J = 6.8 Hz, 2H, C*H*₂-N), 2.43 (q, J = 6.8 Hz, 2H, C*H*₂), 2.01 (s, 3H, C*H*₃). ¹³C NMR (75.5 MHz, CDCl₃): d 143.0, 139.1, 138.6, 132.4, 128.6, 128.3, 127.6, 127.1, 125.6, 122.8, 42.9, 29.0, 16.1. HRMS (EI) Calcd for C₁₇H₁₈BrNO₂S: 379.0236. Found: 379.0233.

(*E*)-4-Methyl-*N*-(4?-phenylpent-3?-enyl)benzenesulfonamide (2ac)

33% yield. Colorless liquid.

¹H NMR (250 MHz, CDCl₃): d 7.78 (d, J = 8.3 Hz, 2H, Ar-H), 7.34-7.26 (m, 7H, Ar-H), 5.58 (td, J = 7.3 Hz, 1H, CH), 4.48 (t, J = 6.0 Hz, 1H, NH), 3.11 (q, J = 6.8 Hz, 2H, C H_2 -N), 2.45 (s, 3H, C H_3 -Ar), 2.41 (dd, J = 7.0 Hz, 2H, C H_2), 2.02 (s, 3H, C H_3). ¹³C NMR (75.5 MHz, CDCl₃): d 143.4, 143.1, 138.4, 136.9, 129.7, 128.2, 127.13, 127.07, 125.6, 123.1, 42.8, 29.1, 21.5, 16.1. HRMS (EI) Calcd for C₁₈H₂₁NO₂S: 315.1288. Found: 315.1289.

(E)-1-(4?-Phenylpent-3?-enyl)-1H-benzotriazole (2ad)

10% yield. Pale yellow liquid.

¹H NMR (200 MHz, CDCl₃): d 8.11 (d, J = 8.0 Hz, 1H, Ar-H), 7.60-7.25 (m, 8H, Ar-H), 5.77 (t, J = 7.4 Hz, 1H, CH), 4.80 (t, J = 7.0 Hz, 2H, C H_2 -N), 2.96 (dd, J = 7.2 Hz, 2H, C H_2), 1.89 (s, 3H, C H_3). ¹³C NMR (63.0 MHz, CDCl₃): d 146.0, 143.2, 138.8, 128.2, 127.2, 127.1, 125.7, 123.8, 122.3, 120.1, 47.8, 29.4, 15.9. HRMS (EI) Calcd for C₁₇H₁₇N₃: 263.1417. Found: 263.1416.

(E)-4-Methyl-N-methyl-N-(4'-phenylpent-3'-enyl)benzenesulfonamide (2ae)

97% yield. Colorless liquid.

¹H NMR (250 MHz, CDCl₃): d 7.72 (d, J = 8.3 Hz, 2H, Ar-H), 7.42-7.26 (m, 7H, Ar-H), 5.74 (bt, J = 7.0 Hz, 1H, CH), 3.15 (t, J = 7.3 Hz, 2H, CH₂-N), 2.82 (s, 3H, CH₃-N), 2.49 (dd, J = 7.5 Hz, 2H, CH₂), 2.45 (s, 3H, Ar-CH₃), 2.07 (s, 3H, CH₃). ¹³C NMR (63.0 MHz, CDCl₃): d 143.38, 143.30, 137.3, 134.8, 129.7, 128.2, 127.4, 126.9, 126.0, 125.7, 123.6, 49.8, 34.9, 27.6, 21.5, 16.0. HRMS (EI) Calcd for C₁₉H₂₃NO₂S: 329.1444. Found: 329.1443.

(*E*)-4-Methyl-*N*-methyl-*N*-[4?-(4??-methylphenyl)pent-3?-enyl]benzenesulfonamide (2ba)

99% yield. Colorless liquid.

¹H NMR (700 MHz, CDCl₃): d 7.72 (d, J = 8.4 Hz, 2H, Ar-H), 7.33 (d, J = 7.7 Hz, 2H, Ar-H), 7.29 (d, J = 8.4 Hz, 2H, Ar-H), 7.5 (d, J = 7.7 Hz, 2H, Ar-H), 5.71 (t, J = 7.0 Hz, 1H, CH), 3.15 (t, J = 7.7 Hz, 2H, C H_2 -N), 2.82 (s, 3H, C H_3 -N), 2.48 (dd, J = 7.0 Hz, 2H, C H_2), 2.45 (s, 3H, C H_3 -Ar), 2.37 (s, 3H, C H_3 -Ar). ¹³C NMR (63 MHz, CDCl₃): d 143.2, 140.5, 137.1, 136.6, 134.9, 129.7, 128.9, 127.4, 125.5, 122.7, 49.8, 34.9, 27.6, 21.5, 21.0, 16.0. HRMS (EI) Calcd for C₂₀H₂₅NO₂S: 343.1601. Found: 343.1599.

(*E*)-4-Methyl-*N*-methyl-*N*-[4?-(4??-*tert*-butylphenyl)pent-3?-enyl]benzenesulfonamide (2ca)

90% yield. Colorless liquid.

¹H NMR (700 MHz, CDCl₃): d 7.72 (d, J = 8.3 Hz, 2H, Ar-*H*), 7.38-7.32 (m, 6H, Ar-*H*), 5.72 (td, J = 7.5 Hz, 1H, CH), 3.14 (t, J = 7.3 Hz, 2H, CH₂-N), 2.81 (s, 3H, CH₃-N), 2.47 (dd, J = 7.8 Hz, 2H, CH₂), 2.45 (s, 3H, CH₃-Ar), 2.06 (s, 3H, CH₃), 1.36 (s, 9H, CH₃). ¹³C NMR (75.5 MHz, CDCl₃): d 149.8, 143.2, 140.4, 136.9, 134.9, 129.7, 127.4, 125.3, 125.1, 122.9, 49.8, 34.9, 34.4, 31.3, 27.6, 21.5, 15.9. HRMS (EI) Calcd for C₂₃H₃₁NO₂S: 385.2070. Found: 385.2073.

(*E*)-4-Methyl-*N*-methyl-*N*-[4?-(4??-chlorophenyl)pent-3?-enyl]benzenesulfonamide (2da)

96% yield. Colorless liquid.

¹H NMR (250 MHz, CDCl₃): d 7.70 (d, J = 8.0 Hz, 1H, Ar-H), 7.34-7.26 (m, 6H, Ar-H), 5.73 (bt, J = 7.0 Hz, 1H, CH), 3.14 (t, J = 7.3 Hz, 2H, CH₂-N), 2.80 (s, 3H, CH₃-N), 2.48 (dd, J = 7.3 Hz, 2H, CH₂), 2.44 (s, 3H, CH₃-Ar), 2.03 (s, 3H, CH₃). ¹³C NMR (75.5 MHz, CDCl₃): d 143.3, 141.8, 136.1, 134.8, 132.6, 129.7, 128.3, 127.4, 127.0, 124.2, 49.7, 34.9, 27.6, 21.5, 15.9. HRMS (EI) Calcd for C₁₉H₂₂CINO₂S: 363.1054. Found: 363.1053.

(*E*)-4-Methyl-*N*-methyl-*N*-[4?-(4??-fluorophenyl)pent-3?-enyl]benzenesulfonamide (2ea)

96% yield. Colorless liquid.

¹H NMR (700 MHz, CDCl₃): d 7.71 (d, 2H, J = 8.4 Hz, Ar-H), 7.37-7.31 (m, 4H, Ar-H), 7.05-7.0 (m, 2H, Ar-H), 5.68 (td, J = 7.4 Hz, 1H, CH), 3.14 (t, J = 7.0 Hz, 2H, C H_2 -N), 2.81 (s, 3H, C H_3 -N), 2.47 (dd, J = 7.0 Hz, 2H, C H_2), 2.45 (s, 3H, C H_3 -Ar), 2.04 (s, 3H, C H_3). ¹³C NMR (75.5 MHz, CDCl₃): d 143.2, 140.5, 137.0, 136.5, 134.9, 129.7, 128.9, 127.4, 125.5, 122.7,49.8, 34.9, 27.6, 21.5, 21.0, 16.0. HRMS (EI) Calcd for C₁₉H₂₂FNO₂S: 347.1350. Found: 347.1351.

(*E*)-4-Methyl-*N*-methyl-*N*-[4?-(4??-trifluoromethylphenyl)pent-3?-enyl]benzenesulfon amide (2fa)

58% yield. Colorless liquid.

¹H NMR (250 MHz, CDCl₃): d 7.71 (d, J = 8.3 Hz, 2H, Ar-H), 7.58 (d, J = 8.5 Hz, 2H, Ar-H), 7.48 (d, J = 8.5 Hz, 2H, Ar-H), 7.33 (d, J = 8.0 Hz, 2H, Ar-H), 5.83 (td, J = 7.1 Hz, 1H, CH), 3.16 (t, J = 7.3 Hz, 2H, CH₂-N), 2.81 (s, 3H, CH₃-N), 2.50 (dd, J = 7.3 Hz, 2H, CH₂), 2.45 (s, 3H, CH₃-Ar), 2.08 (s, 3H, CH₃). ¹³C NMR (75.5 MHz, CDCl₃): d 146.9, 143.3, 136.2, 134.8, 129.7, 127.4, 125.94, 125.86, 125.21, 125.16, 125.11, 125.06, 49.6, 34.9, 27.6, 21.5, 15.9. MS (EI, m/z): 378.14, 242.11, 198.06, 155.01, 91.06. Anal. Calcd for C₂₀H₂₂F₃NO₂S: C, 60.44; H, 5.58; N, 3.52. Found: C, 60.45; H, 5.64; N, 3.63.

(*E*)-4-Methyl-*N*-methyl-*N*-[4?-(naphthalene-2??-yl)pent-3?-enyl]benzenesulfonamide (2ha)

99% yield. Colorless liquid.

¹H NMR (300 MHz, CDCl₃): d 7.85-7.30 (m, 11H, Ar-*H*), 5.90 (td, J = 7.2 Hz, 1H, C*H*), 3.19 (t, J = 7.2 Hz, 2H, C*H*₂), 2.84 (s, 3H, C*H*₃-N), 2.55 (dd, J = 7.8 Hz, 2H, C*H*₂), 2.43 (s, 3H, C*H*₃), 2.17 (s, 3H, C*H*₃-Ar). ¹³C NMR (75.5 MHz, CDCl₃): d 143.3, 140.5, 137.1, 134.9, 133.4, 132.5, 129.7, 128.1, 127.7, 127.5, 127.4, 126.1, 125.6, 124.3, 124.2, 124.1, 49.8, 38.0, 35.0, 27.8, 21.5, 16.0. HRMS (EI) Calcd for C₂₃H₂₅NO₂S: 379.1601. Found: 379.1617.

(Z/E)-4-Methyl-N-methyl-N-[4?-methyl-6?-phenylhex-3?-enyl]benzenesulfonamide (2ia)

80% yield. Colorless liquid. d.r. = 80:20.

¹H NMR (250 MHz, CDCl₃): d7.72-7.66 (m, 2H, Ar-*H*), 7.36-7.18 (m, 7H, Ar-*H*), 5.38 (td, J = 7.0 Hz, 0.2H, CH, minor), 5.10 (td, J = 6.8 Hz, 0.8H, CH, major), 3.40-3.35 (t, 0.4H, CH₂, minor), 3.05-2.95 (m, 1.6H, CH₂, major), 2.90-2.83 (t, 0.4H, CH₂, minor), 2.76-2.67 (m, 1.6H, CH₂, major), 2.74 (s, 3H, CH₃-N), 2.46 (s, 3H, CH₃-Ar), 2.34-2.21 (m, 3.2H, CH₂, major), 2.11-2.06 (m, 0.8H, CH₂, minor), 1.68 (s, 2.4 H, CH₃, major), 1.67 (s, 0.6H, CH₃, minor). ¹³C NMR (75.5 MHz, CDCl₃): d 143.2, 142.2, 137.3, 129.6, 128.44, 128.38, 128.31, 128.29, 128.25, 127.4, 125.82, 125.76, 125.71, 123.75, 121.5, 120.5, 49.95, 49.89, 41.48, 36.5, 34.80, 34.77, 34.70, 34.5, 34.24, 34.21, 34.1, 26.8, 26.4, 26.0, 23.4, 21.5, 16.3. HRMS (EI) Calcd for C₂₁H₂₇NO₂S: 357.1757. Found: 357.1755.

(*E*)-4-Methyl-*N*-methyl-*N*-(4'-phenylhex-3'-enyl)benzenesulfonamide (2ja)

76% yield. Colorless liquid.

¹H NMR (300 MHz, CDCl₃): d 7.71 (d, J = 8.3 Hz, 2H, Ar-H), 7.37-7.25 (m, 7H, Ar-H), 5.57 (t, J = 7.3 Hz, 1H, CH), 3.14 (t, J = 7.3 Hz, 2H, CH₂-N), 2.82 (s, 3H, CH₃-N), 2.59-2.46 (m, 4H, CH₂), 2.44 (s, 3H, CH₃), 1.0 (t, J = 7.5 Hz, 3H, CH₃). ¹³C NMR (75.5 MHz, CDCl₃): d 144.2, 143.4, 143.1, 137.3, 129.7, 128.2, 127.4, 126.8, 126.3, 123.2, 50.1, 34.9, 27.3, 23.1, 21.5, 13.6. HRMS (EI) Calcd for C₂₀H₂₅NO₂S: 343.1601. Found:

343.1597.

4-Methyl-*N*-methyl-*N*-(5?-phenylpent-3?-enyl)benzenesulfonamide (2ka)

57% yield. Colorless liquid.

¹H NMR (250 MHz, CDCl₃): d 7.70 (d, J = 8.0 Hz, 2H, Ar-H), 7.35-7.18 (m, 7H, Ar-H), 5.73-5.62 (m, 1H, CH), 5.52-5.41 (m, 1H, CH), 3.35 (d, J = 6.8 Hz, 2H, C H_2 -Ar), 3.08 (t, J = 7.5 Hz, 2H, C H_2), 2.75 (s, 3H, C H_3 -N), 2.45 (s, 3H, C H_3), 2.30 (dd, J = 7.3 Hz, 3H, C H_2). ¹³C NMR (75.5 MHz, CDCl₃): d 143.2, 140.4, 134.9, 129.6, 128.5, 128.4, 127.4, 126.0, 50.0, 39.0, 34.8, 31.1, 21.5. HRMS (EI) Calcd for C₁₉H₂₃NO₂S: 329.1444. Found: 329.1445.

4-Methyl-N-methyl-N-(5-phenylhex-3-enyl)benzenesulfonamide (2la)

54% yield. Colorless liquid.

¹H NMR (250 MHz, CDCl₃): d 7.69 (d, J = 8.3 Hz, 1H, Ar-H), 7.35-7.20 (m, 7H, Ar-H), 5.74-5.65 (q, 1H, CH), 5.48-5.36 (m, 1H, CH), 3.45 (pentet, 1H, CH), 3.07 (t, J = 7.0 Hz, 2H, C H_2), 2.74 (s, 3H, C H_3 -N), 2.45 (s, 3H, C H_3), 1.36 (d, J = 7.3 Hz, 3H, C H_3). ¹³C NMR (75.5 MHz, CDCl₃): d 145.9, 143.2, 137.8, 135.0, 129.6, 128.3, 127.4, 127.2, 126.1, 124.7, 50.0, 42.3, 34.8, 31.2,21.5, 21.3. HRMS (EI) Calcd for C₂₀H₂₅NO₂S: 343.1601. Found: 343.1600.

(E)-4-Methyl-N-methyl-N-[4?-cyclohexylpent-3?-enyl]benzenesulfonamide (2ma)

99% yield. Colorless liquid. d.r. = 86:14.

¹H NMR (300 MHz, CDCl₃): d 7.67 (d, J = 8.4 Hz, 2H, Ar-H), 7.31 (d, J = 8.1 Hz, 2H, Ar-H), 5.06 (t, J = 6.8 Hz, 0.86H, CH, major), 4.98 (t, J = 6.8 Hz, 0.14H, CH, minor), 3.0 (t, J = 7.5 Hz, 2H, CH₂), 2.75 (s, 3H, CH₃-N), 2.43 (s, 3H, CH₃-Ar), 2.23 (q, J = 7.5 Hz, 2H, CH₂), 1.78-1.61 (m, 6H), 1.57 (s, 3H, CH₃), 1.36-1.08 (m, 5H). ¹³C NMR (75.5 MHz, CDCl₃, major product): d 143.2, 143.1, 135.0, 129.6, 127.4, 117.8, 50.0, 47.3, 34.8, 31.9, 31.7, 26.7, 26.4, 14.5. HRMS (EI) Calcd for C₁₉H₂₉NO₂S: 335.1914. Found: 335.1914.

6. Crystal and structure data for product 2ab.

Empirical formula	C17 H18 Br N O2 S		
Formula weight	380.29		
Temperature	294(2) K		
Wavelength	0.71073 A		
Crystal system, space group	Monoclinic, P 21/n		
Unit cell dimensions	a = 5.1841(6) A alpha = 90 deg.		
	b = 29.677(3) A beta = 91.127(2) deg.		
	c = 11.2315(12) A gamma = 90 deg		
Volume	1727.6(3) A^3		
Z, Calculated density	4, 1.462 Mg/m^3		
Absorption coefficient	2.506 mm^-1		
F(000)	776		
Crystal size	0.26 x 0.20 x 0.05 mm		
Theta range for data collection	1.37 to 26.37 deg.		
Limiting indices	-6<=h<=6, -37<=k<=36, -14<=l<=14		
Reflections collected / unique	13907 / 3535 [R(int) = 0.0531]		
Completeness to theta $= 26.37$	99.7 %		
Absorption correction	Empirical		
Max. and min. transmission	0.8849 and 0.5619		
Refinement method	Full-matrix least-squares on F^2		
Data / restraints / parameters	3535 / 0 / 199		
Goodness-of-fit on F^2	1.029		
Final R indices [I>2sigma(I)]	R1 = 0.0610, $wR2 = 0.1789$		
R indices (all data)	R1 = 0.1366, WR2 = 0.2233		
Max. and min. transmission	0.8849 and 0.5619		

Reference

- 1. Kaesz, H.D. Inorg. Synth. 1989, 26, 85.
- 2. Ohta, T.; Ikegami, H.; Miyake, T.; Takaya, J. J. Organomet. Chem. 1995, 502, 169.
- 3. Chen, Y.; Shi, M. J. Org. Chem. 2004, 69, 426.
- 4. As for ¹³C-¹H HZQC NMR, please see: Ollerenshaw, J. E.; Tuqarino, V.; Skrynnikov, N.
- R.; Kay, L. E., J. Biomol. NMR. 2005, 33, 25.
- 5. s_p values are as reported: Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. **1991**, 91, 165.