

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2008

Supporting Information for

An Efficient Method for the Selective Iridium-Catalyzed Monoalkylation of (Hetero)aromatic Amines with Primary Alcohols

Benoît Blank^a, Martyna Madalska^a, Rhett Kempe^{a*}

a) Lehrstuhl für Anorganische Chemie II, Universität Bayreuth, 95440 Bayreuth, Germany, e-mail: kempe@uni-bayreuth.de

P,N-ligand synthesis

Py₂NPPh₂ was prepared according to the literature procedure.

Synthesis of Py₂NPCy₂ (1b)

Di(2-pyridyl)amine (2.47 g, 14.4 mmol) was suspended in 50 mL hexane and the solution was cooled to -20 °C. Then *n*-BuLi (9.0 mL, 14.4 mmol) was added dropwise with a syringe. The reaction mixture was stirred at -20 °C for 30 min, allowed to warm to room temperature and stirred for 2 h. The reaction mixture was cooled to -20 °C and chlorodicyclohexylphosphine (3.18 mL, 14.4 mmol) added dropwise with a syringe. The yellow solution was then left to warm to room temperature and stirred overnight. The yellow suspension was filtered on a glass filter frit with a celite pad (3 cm) and washed with 100 mL pentane. The solvents were concentrated in vacuo to 10 mL and the product was left to crystallize at -20 °C. The supernatant solution was decanted, the solid washed with 3 mL cold pentane and subsequently dried in vacuo yielding Py₂NPCy₂ as a beige solid (3.291 g, 64 %).

¹**H-NMR** (300 MHz, CD₂Cl₂): d = 8.29 (ddd, J = 5.0, 2.1, 0.9 Hz, 2H), 7.53 (ddd, J = 8.5, 7.3, 2.1 Hz, 2H), 6.97 (d, J = 7.3 Hz, 2H), 6.91 (ddd, J = 7.2, 4.8, 0.9 Hz, 2H), 2.58-2.44 (m, 2H), 1.91-1.56 (m, 12H), 1.31-1.13 (m, 8H) ppm.

¹³C NMR (75 MHz, CD₂Cl₂): d = 161.0 (d, J = 7.9 Hz), 148.5, 137.6, 118.9 (d, J = 7.8 Hz), 118.4, 38.0 (d, J = 16.6 Hz), 30.7 (d, J = 26.0 Hz), 28.9 (d, J = 9.4 Hz), 27.3 (d, J = 6.1 Hz), 27.3 (d, J = 28.7 Hz), 27.0 (d, J = 1.1 Hz) ppm.

³¹**P-NMR** (121 MHz, CD_2Cl_2): d = 77.8 ppm.

Elemental analysis found for $C_{22}H_{30}N_3P$ (calc.): C 72.06 (71.91), H 8.68 (8.23), N 11.44 (11.40).

Synthesis of Py₂NPiPr₂ (1c)

Di(2-pyridyl)amine (2.57 g, 15.0 mmol) was suspended in 60 mL pentane/diethyl ether (2:1) and the solution was cooled to -20 °C. Then *n*-BuLi (9.4 mL, 15.0 mmol) was added dropwise with a syringe. The reaction mixture was stirred at -20 °C for 30 min, allowed to warm to room temperature and stirred for 2 h. The reaction mixture was cooled to -20 °C and chlorodiisopropylphosphine (3.40 mL, 15.0 mmol) added dropwise with a syringe. The yellow solution was then left to warm to room temperature and stirred overnight. The yellow suspension was filtered on a glass filter frit with a celite pad (3 cm) and washed with 30 mL diethyl ether. The solvents were concentrated in vacuo, affording a red oil. 5 mL of a 1:1 hexane:diethyl ether mixture were added and the residue left to crystallize at -20 °C. The supernatant solution was decanted and the solid subsequently dried in vacuo yielding Py₂NP*i*Pr₂ as an orange / red solid (3.017 g, 87 %).

¹**H-NMR** (300 MHz, CD_2Cl_2): d = 8.28 (ddd, J = 5.0, 2.1, 0.9 Hz, 2H), 7.54 (ddd, J = 8.9, 6.8, 1.9 Hz, 2H), 6.99 (d, J = 8.2 Hz, 2H), 6.92 (ddd, J = 7.2, 4.8, 0.9 Hz, 2H), 2.78-2.62 (m, 2H), 1.13-1.00 (m, 12H) ppm.

¹³**C-NMR** (75 MHz, CD₂Cl₂): d = 161.0 (d, J = 5.0 Hz), 148.5, 137.6, 119.0 (d, J = 6.9 Hz), 118.6, 27.8 (d, J = 15.8 Hz), 20.6 (d, J = 11.4 Hz), 20.1 (d, J = 29.7 Hz) ppm.

³¹**P-NMR** (121 MHz, CD_2Cl_2): d = 87.2 ppm.

Elemental analysis found for $C_{16}H_{22}N_3P$ (calc.): C 67.05 (66.88), H 7.53 (7.72), N 14.54 (14.62).

Synthesis of Py₂NPtBu₂ (1d)

Potassium hydride (0.48 g, 12.0 mmol) was suspended in 30 mL toluene and the solution was cooled to -40 °C. Then di(2-pyridyl)amine (2.05 g, 12.0 mmol), dissolved in 30 mL toluene was added dropwise with a dropping funnel. The reaction mixture was stirred at -20 °C for 30 min, allowed to warm to room temperature and stirred overnight. Then the reaction mixture was cooled to -20 °C and chloro-di-tertbutylphosphine (2.3 mL, 12.0 mmol) was added dropwise with a syringe. The yellow solution was then stirred overnight at rt and subsequently heated to 100 °C for 4 days. The clear yellow solution was filtered on a glass filter frit with a celite pad (3 cm) and washed with 30 mL toluene. The solvent was removed in vacuo and the resulting brown oil left to crystallize at -20 °C. The solid was dried in vacuo yielding Py₂NPtBu₂ as a pale brown solid (3.301 g, 87 %).

¹**H-NMR** (400 MHz, CDCl₃): d = 8.35-8.25 (m, 2H), 7.58-7.33 (m, 3H), 6.99-6.79 (m, 2H), 6.75-6.58 (m, 1H), 1.22 (d, J = 13.2 Hz, 18H) ppm.

¹³**C-NMR** (100 MHz, CDCl₃): d = 163.8, 159.6, 148.3, 148.0, 137.5, 137.0, 120.3, 119.0, 118.9, 117.9, 36.7 (d, *J*= 30.6 Hz), 30.0 (d, *J*= 17.7 Hz) ppm.

 31 **P-NMR** (161 MHz, CDCl₃): d = 101.1 ppm.

Elemental analysis found for $C_{18}H_{26}N_3P$ (calc.): C 68.39 (68.55), H 8.68 (8.31), N 13.37 (13.32).

Synthesis of PyMeNPPh₂ (1e)

2-(Methylamino)pyridine (1.622 g, 15.0 mmol) was dissolved in 50 mL hexane / 30 mL diethyl ether and the solution was cooled to -30 °C. Then *n*-BuLi (9.4 mL, 15.0 mmol) was added dropwise with a syringe. The reaction mixture was stirred at -20 °C for 30 min, allowed to warm to room temperature and stirred for 2 h. The reaction mixture was cooled to -20 °C and chlorodiphenylphosphine (3.3 mL, 15.0 mmol) added dropwise with a syringe. The yellow solution was then left to warm to room temperature and stirred overnight. The yellow suspension was filtered on a glass filter frit with a celite pad (3 cm) and washed with 40 mL diethyl ether. The solvents were concentrated in vacuo until precipitation occurred and the solution was left to crystallize at -20 °C. The supernatant colored solution was decanted and the solid was then dried in vacuo yielding PyMeNPPh₂ as a beige solid (3.96 g, 90 %).

¹**H-NMR** (400 MHz, CD₂Cl₂): d = 8.22 (ddd, J = 4.9, 2.0, 1.1 Hz, 1H), 7.54 (ddd, J = 8.8, 7.0, 1.9 Hz, 1H), 7.46-7.39 (m, 11H), 6.76 (ddd, J = 7.0, 4.9, 0.9 Hz, 1H), 2.92 (d, J = 1.5 Hz, 3H) ppm.

¹³C-NMR (100 MHz, CD₂Cl₂): d = 161.8 (d, J = 26.4 Hz), 148.1 (d, J = 1.6 Hz), 137.5 (d, J = 3.2 Hz), 137.4 (d, J = 15.3 Hz), 132.5 (d, J = 20.6 Hz), 129.5, 129.0 (d, J = 5.8 Hz), 115.1, 110.9 (d, J = 20.6 Hz), 34.7 (d, J = 8.4 Hz) ppm.

³¹**P-NMR** (161 MHz, CD_2Cl_2): d = 51.9 ppm.

Elemental analysis found for $C_{18}H_{17}N_2P$ (calc.): C 73.95 (73.96); H 5.78 (5.86); N 9.51 (9.58).

Synthesis of PyMeNPCy₂ (1f)

Potassium hydride (0.601 g, 15.0 mmol) was suspended in 100 mL toluene, the solution cooled to -40 °C and 2-(methylamino)pyridine (1.622 g, 15.0 mmol) added dropwise with a syringe. The reaction mixture was stirred at -40 °C for 30 min, allowed to warm to room temperature and stirred for further 3 h until it became pale green. Then the reaction mixture was again cooled to -30 °C and chloro-dicyclohexylphosphine (3.49 g, 15.0 mmol) added dropwise with a syringe. The solution was stirred for further 30 min at -30 °C, the left to warm to rt and stirred overnight. The colorless but viscous solution was filtered on a glass filter frit with a celite pad (3 cm) and washed with 40 mL toluene. The solvent was removed in vacuo and the resulting colorless oil distilled under reduced pressure (0.06 mbar) at 180 °C to yield PyMeNPCy₂ as a colorless very viscous liquid (3.722 g, 82 %).

¹**H-NMR** (300 MHz, CD_2Cl_2): d = 8.10 (d, J = 4.1 Hz, 1H), 7.55-7.44 (m, 1H), 7.38 (ddd, J = 8.9, 7.0, 2.1 Hz, 1H), 6.62-6.54 (m, 1H), 3.04 (d, J = 1.2 Hz, 3H), 1.96 (d, J = 10.8 Hz, 2H), 1.80-1.60 (m, 10H), 1.36-1.13 (m, 10H) ppm.

¹³C-NMR (75 MHz, CD₂Cl₂): d = 163.2 (d, J = 24.1 Hz), 147.7, 136.5, 113.7, 111.5 (d, J = 27.4 Hz), 37.0 (d, J = 15.6 Hz), 30.3 (d, J = 23.1 Hz), 29.6 (d, J = 8.5 Hz), 27.3 (d, J = 20.8 Hz), 27.2 (d, J = 26.4 Hz) ppm.

³¹**P-NMR** (121 MHz, CD_2Cl_2): d = 63.0 ppm.

Elemental analysis found for $C_{18}H_{29}N_2P$ (calc.): C 70.58 (71.02); H 9.52 (9.60); N 9.32 (9.20).

Synthesis of PyMeNPiPr₂ (1g)

Potassium hydride (0.601 g, 15.0 mmol) was suspended in 100 mL toluene, the solution cooled to -40 °C and 2-(methylamino)pyridine (1.622 g, 15.0 mmol) added dropwise with a syringe. The reaction mixture was stirred at -40 °C for 30 min, allowed to warm to room temperature and stirred for further 3 h until it became pale green. Then the reaction mixture was again cooled to -30 °C and chloro-diisopropylphosphine (2.4 mL, 2.289 g, 15.0 mmol) added dropwise with a syringe. The solution was stirred for further 30 min at -30 °C, the left to warm to rt and stirred overnight. The solution was filtered on a glass filter frit with a celite pad (3 cm) and washed with 30 mL toluene. The solvents were removed in vacuo and the resulting colorless liquid distilled under reduced pressure (0.06 mbar) at 72 °C to yield PyMeNP*i*Pr₂ as a pale yellow liquid (2.388 g, 71 %).

¹**H-NMR** (300 MHz, CD_2Cl_2): d = 8.11 (d, J= 4.4 Hz, 1H), 7.52-7.44 (m, 1H), 7.40 (ddd, J= 8.7, 6.8, 2.1 Hz, 1H), 6.60 (ddd, J= 6.7, 5.2, 1.0 Hz, 1H), 3.04 (d, J= 1.8 Hz, 3H), 2.22-2.08 (m, 2H), 1.11 (dd, J= 16.8, 6.9 Hz, 6H), 0.99 (dd, J= 12.0, 7.0 Hz, 6H) ppm.

¹³C-NMR (75 MHz, CD_2Cl_2): d = 153.1 (d, J= 22.6 Hz), 147.7, 136.5, 113.9, 111.5 (d, J= 26.0 Hz), 26.8 (d, J= 15.5 Hz), 19.9, 19.6 (d, J= 17.7 Hz) ppm.

³¹**P-NMR** (121 MHz, CD_2Cl_2): d = 72.3 ppm.

Elemental analysis found for $C_{12}H_{21}N_2P$ (calc.): C 63.98 (64.26); H 9.56 (9.44); N 12.24 (12.49).

Synthesis of PyMeNPtBu₂ (1h)

2-(Methylamino)pyridine (1.406 g, 13.0 mmol) was dissolved in 80 mL diethyl ether and the solution was cooled to -30 °C. Then *n*-BuLi (8.1 mL, 13.0 mmol) was added dropwise with a syringe. The reaction mixture was stirred at -30 °C for 30 min, allowed to warm to room temperature and stirred for 3 h. The reaction mixture was cooled to -20 °C and chlorodi-tert-butylphosphine (2.348 g, 13.0 mmol) added dropwise with a syringe. The yellow solution was then left to warm to room temperature and stirred overnight. The yellow suspension was filtered on a glass filter frit with a celite pad (3 cm) and washed with 40 mL diethyl ether. The solvents were concentrated in vacuo and the obtained yellow liquid was then distilled under reduced pressure (0.06 mbar) to yield PyMeNP*t*Bu₂ as a yellow liquid (2.42 g, 73 %).

¹**H-NMR** (400 MHz, CD_2Cl_2): d = 8.12 (dd, J = 4.9, 0.9 Hz, 1H), 7.72 (ddd, J = 8.7, 4.6, 0.7 Hz, 1H), 7.39 (ddd, J = 8.7, 6.8, 2.1 Hz, 1H), 6.64-6.56 (m, 1H), 3.27 (s, 3H), 1.24 (d, J = 12.6 Hz, 18H) ppm.

¹³C-NMR (100 MHz, CD_2Cl_2): d = 163.0 (d, J= 27.4 Hz), 147.0, 135.9 (d, J= 3.9 Hz), 113.4, 111.8 (d, J= 30.3 Hz), 36.9 (d, J= 8.4 Hz), 36,0 (d, J= 27.7 Hz), 29.8 (d, J= 17.1 Hz) ppm. ³¹P-NMR (161 MHz, CD_2Cl_2): d = 86.1 ppm.

Elemental analysis found for $C_{14}H_{25}N_2P$ (calc.): C 66.15 (66.64); H 9.519 (9.99); N 11.21 (11.10).

Complex Synthesis

Preparation of [(Py₂NPCy₂)IrCl(cod)] (2)

[IrCl(cod)]₂ (0.134 g, 0.2 mmol) was dissolved in 15 mL CH₂Cl₂ and subsequently a solution of Py₂NPCy₂ (**1b**) (0.147 g, 0.4 mmol) in 5 mL CH₂Cl₂ was added added dropwise. A red solution was obtained and after 15 min the solvent was removed in vacuo, affording **2** as an orange solid in quantitative yields.

¹H-NMR (400 MHz, CD₂Cl₂): d = 8.66 (d, J= 4.4 Hz, 1H, H¹), 8.05 (d, J= 5.5 Hz, 1H, H¹), 7.91 (t, J= 7.7 Hz, 1H, H³), 7.47 (t, J= 7.7 Hz, 1H, H³), 7.42 (dd, J= 6.6, 4.0 Hz, 1H, H²), 7.28 (d, J= 7.7 Hz, 1H, H⁴), 6.76 (t, J= 6.2 Hz, 1H, H²), 6.24 (d, J= 8.8 Hz, 1H, H⁴), 3.90 (s_br, 4H, H_{CHcod}), 2.71 (s_br, 1H, H_{CHcyclohexyl}), 2.39 (m, 4H, H_{CH₂cod}), 2.27 (s_br, 1H, H_{CHcyclohexyl}), 1.97-1.58 (m, 10H, H_{CH₂cyclohexyl} + 4H, H_{CH₂cod}), 1.45-0.9 (m, 10H, H_{CH₂cyclohexyl}) ppm.

¹³C-NMR (100 MHz, CD₂Cl₂): d = 164.9 (d, J= 15.1 Hz, C⁵), 154.3 (d, J= 6.0 Hz, C⁵), 151.0 (s, C¹), 148.5 (s, C¹), 139.9 (s, C³), 139.4 (s, C³), 124.5 (s, C²), 124.2 (s, C⁴), 117.4 (s, C²), 111.7 (d, J= 5.2 Hz, C⁴), 67.3 (br, C_{CHcod}), 66.0 (br, C_{CHcod}), 42.1 (br, C_{CHcyclohexyl}), 39.4 (br, C_{CHcyclohexyl}), 33.4 (br, C_{CH₂cod}), 31.9 (br, C_{CH₂cod}), 28.0 (d, J= 5.0 Hz, C_{CH₂cyclohexyl}), 27.7 (d, J= 12.9 Hz, C_{CH₂cyclohexyl}), 27.5 (d, J= 11.3 Hz, C_{CH₂cyclohexyl}) 26.7 (s, C_{CH₂cyclohexyl}) ppm.

³¹**P-NMR** (161 MHz, CD_2Cl_2): d= 103.6 ppm.

Elemental analysis found for $C_{30}H_{42}CIIrN_3P$ (calc.): C 51.72 (51.23); H 6.23 (6.02); N 5.68 (5.97).

Preparation of [(Py₂NPiPr₂)IrCl(cod)] (3)

[IrCl(cod)]₂ (0.269 g, 0.4 mmol) was dissolved in 15 mL CH₂Cl₂ and subsequently a solution of Py₂NP*i*Pr₂ (**1c**) (0.230 g, 0.8 mmol) in 5 mL CH₂Cl₂ was added added dropwise. A red solution was obtained and after 15 min the solvent was removed in vacuo, affording **3** as an orange solid in quantitative yields.

¹**H-NMR** (400 MHz, CD₂Cl₂): d = 8.63 (d, J= 4.8 Hz, 1H, H¹), 8.09 (d, J= 5.9 Hz, 1H, H¹), 7.89 (td, J= 7.8, 1.7 Hz, 1H, H³), 7.45 (t, J= 8.1 Hz, 1H, H³), 7.39 (dd, J= 7.0, 5.1 Hz, 1H, H²), 7.29 (d, J= 7.7 Hz, 1H, H⁴), 6.74 (t, J= 6.6 Hz, 1H, H²), 6.23 (d, J= 8.8 Hz, 1H, H⁴), 3.85 (s_br, 4H, H_{CHcod}), 3.01 (s_br, 1H, H_{CHiPr}), 2.55 (s_br, 1H, H_{CHiPr}), 2.44-2.33 (m, 4H, H_{CH2cod}), 1.91-1.81 (m, 4H, H_{CH2cod}), 1.34-1.10 (m, 12H, H_{CH3iPr}) ppm.

¹³C-NMR (100 MHz, CD₂Cl₂): d = 164.5 (d, J= 15.8 Hz, C⁵), 154.3 (d, J= 5.8 Hz, C⁵), 150.9 (s, C¹), 148.7 (d, J= 1.3 Hz, C¹), 139.9 (s, C³), 139.1 (s, C³), 124.4 (s, C²), 124.0 (s, C⁴), 117.3 (s, C²), 111.4 (d, J= 5.2 Hz, C⁴), 67.2 (br, C_{CHcod}), 66.3 (br, C_{CHcod}), 32.7 (br, C_{CH₂cod}), 28.9 (br, C_{CHiPr}), 18.2 (s, C_{CH₃iPr}), 18.1 (s, C_{CH₃iPr}), 17.6 (s, C_{CH₃iPr}), 17.5 (s, C_{CH₃iPr}) ppm.

³¹**P-NMR** (161 MHz, CD_2Cl_2): d= 110.4 ppm.

Elemental analysis found for $C_{24}H_{34}ClIrN_3P \times 0.5 CH_2Cl_2$ (calc.): C 44.41 (44.21); H 5.36 (5.30); N 6.05 (6.31).

General procedure for screening reactions

In a pressure tube, stock solutions of [IrCl(cod)]₂ (80 μ L, 0.005 mmol, 0.0625 M in THF) and Py₂NP*i*Pr₂ (**1c**) (80 μ L, 0.01 mmol, 0.125 M in THF) were mixed. Then aniline (45.9 μ L, 0.50 mmol), benzyl alcohol (56.8 μ L, 0.55 mmol) and 1 mL diethylene glycol dimethyl ether (diglyme) as solvent were added. Last, KO^tBu (0.56 g, 0.55 mmol) was dissolved in the reaction mixture and the pressure tube was fitted with a Teflon[®] cap and stirred at 110 °C for 24 h. The reaction mixture was cooled to room temperature. Then water (15 mL), diethyl ether (15 mL) and dodecane (56.8 μ L, 0.25 mmol) were added. After stirring, an aliquot of the organic phase was analyzed by gas chromatography.

General procedure for the *N*-alkylation reactions

In a pressure tube, stock solutions of [IrCl(cod)]₂ (160 μ L, 0.01 mmol, 0.0625 M in THF) and Py₂NP*i*Pr₂ (**1c**) (160 μ L, 0.02 mmol, 0.125 M in THF) were mixed. Then the amine (1.00 equiv), the alcohol (1.10 equiv) and 1 mL diethylene glycol dimethyl ether (diglyme) as solvent were added. Last, KO^{*t*}Bu (1.10 equiv) was dissolved in the reaction mixture and the pressure tube was fitted with a Teflon[®] cap and stirred at 110 °C for 17 h. The reaction mixture was cooled to room temperature and all volatiles were removed in vacuo. Then water (40 mL) was added to the residue and extracted with diethyl ether (3 x 20 mL). The combined organic layers were washed with brine (15 mL), dried over Na₂SO₄, filtered and the solvent removed in vacuo. Finally, the residue was purified by column chromatography.

Benzyl-phenyl-amine (Table 8, entry 1): [IrCl(cod)]₂ (160 μ L, 0.01 mmol, 0.0625 M in THF), Py₂NP*i*Pr₂ (1c) (160 μ L, 0.02 mmol, 0.125 M in THF), aniline (90.9 μ L, 1.00 mmol), benzyl alcohol (113.6 μ L, 1.10 mmol), KO^tBu (0.123 g, 1.10 mmol) and 1 mL diglyme. Purification by column chromatography (pentane: diethyl ether, 5:1) and gave 0.169 g (92%) benzyl-phenyl-amine as a yellow solid.

¹**H-NMR** (400 MHz CDCl₃): d = 7.37-7.24 (m, 5H), 7.16 (t, J = 8.4 Hz, 2H), 6.70 (t, J = 7.2 Hz, 1H), 6.63 (d, J = 5.9 Hz, 2H), 4.32 (s, 2H), 4.01 (s_br, 1H) ppm.

¹³**C-NMR** (100 MHz, CDCl₃): d = 148.3, 139.6, 129.5, 128.9, 127.7, 127.5, 117.8, 113.1, 48.6 ppm.

Benzyl-m-tolyl-amine (Table 8, entry 2): $[IrCl(cod)]_2$ (160 μ L, 0.01 mmol, 0.0625 M in THF), Py_2NPiPr_2 (1c) (160 μ L, 0.02 mmol, 0.125 M in THF), m-tolylamine (109 μ L,

1.00 mmol), benzyl alcohol ($113.6 \,\mu\text{L}$, $1.10 \,\text{mmol}$), KO ^tBu ($0.123 \,\text{g}$, $1.10 \,\text{mmol}$) and $1 \,\text{mL}$ diglyme. Purification by column chromatography (pentane: diethyl ether, 5:1) afforded $0.182 \,\text{g}$ (92%) benzyl-m-tolyl-amine as a brown liquid.

¹**H-NMR** (400 MHz, CDCl₃): d = 7.43-7.32 (m, 5H), 7.11 (t, J = 7.6 Hz, 1H), 6.59 (d, J = 7.9 Hz, 1H), 6.51 (s, 1H), 6.49 (d, J = 8.4 Hz, 1H), 4.35 8(s, 2H), 3.98 (s_br, 1H), 2.32 (s, 3H) ppm.

¹³**C-NMR** (100 MHz, CDCl₃): d = 148.4, 139.7, 139.2, 129.3, 128.8, 127.7, 127.4, 118.7, 113.8, 110.1, 48.5, 21.8 ppm.

Benzyl-(4-methoxy-phenyl)-amine (Table 8, entry 3): [IrCl(cod)]₂ (160 μ L, 0.01 mmol, 0.0625 M in THF), Py₂NP*i*Pr₂ (1c) (160 μ L, 0.02 mmol, 0.125 M in THF), *p*-anisidine (0.123 g, 1.00 mmol), benzyl alcohol (113.6 μ L, 1.10 mmol), KO^tBu (0.123 g, 1.10 mmol) and 1 mL diglyme. Purification by column chromatography (pentane: diethyl ether, 5:1) afforded 0.208 g (98%) benzyl-(4-methoxy-phenyl)-amine as an yellow solid.

¹**H-NMR** (400 MHz, CDCl₃): d = 7.37-7.24 (m, 5H), 6.77 (dd, J=9.2, 4.0 Hz, 2H), 6.61 (dd, J=8.8, 4.8 Hz, 2H), 4.27 (s, 2H), 3.93 (s_br, 1H), 3.73 (s, 3H) ppm.

¹³**C-NMR** (100 MHz, CDCl₃): d = 152.6, 142.3, 139.7, 128.8, 127.8, 127.4, 115.1, 114.6, 56.0, 49.6 ppm.

Benzyl-(2-methoxy-phenyl)-amine (Table 8, entry 4): [IrCl(cod)]₂ (160 μ L, 0.01 mmol, 0.0625 M in THF), Py₂NP*i*Pr2 (1c) (160 μ L, 0.02 mmol, 0.125 M in THF), *o*-anisidine (112.8 μ L, 1.00 mmol), benzyl alcohol (113.6 μ L, 1.10 mmol), KO^tBu (0.123 g, 1.10 mmol) and 1 mL diglyme. Purification by column chromatography (pentane: diethyl ether, 20:1) afforded 0.169 g (79%) benzyl-(2-methoxy-phenyl)-amine as a brown liquid.

¹**H-NMR** (400 MHz, CDCl₃): d = 7.47-7.34 (m, 5H), 6.91 (t, J = 9.2Hz, 1H), 6.86 (d, J = 3.9 Hz, 1H), 6.77 (t, J = 6.4 Hz, 1H), 6.68 (d, J = 7.2 Hz, 1H), 4.71 (s_br, 1H), 4.42 (s, 2H), 3.90 (s, 3H) ppm.

¹³**C-NMR** (100 MHz, CDCl₃): d = 146.9, 139.7, 138.3, 128.7, 127.6, 127.2, 121.4, 116.8, 110.2, 109.5, 55.5, 48.2 ppm.

Benzyl-(3-chloro-phenyl)-amine (Table 8, entry 5): $[IrCl(cod)]_2$ (160 μ L, 0.01 mmol, 0.0625 M in THF), Py_2NPiPr_2 (1c) (160 μ L, 0.02 mmol, 0.125 M in THF), 3-chloro-phenylamine (108.3 μ L, 1.00 mmol), benzyl alcohol (113.6 μ L, 1.10 mmol), KO^tBu (0.123 g,

1.10 mmol) and 1 mL diglyme. Purification by column chromatography (pentane: diethyl ether, 5:1) afforded 0.209 g (96%) benzyl-(3-chloro-phenyl)-amine as a yellow liquid.

¹**H-NMR** (400 MHz, CDCl₃): d = 7.27-7.17 (m, 4H), 6.97 (t, J = 8.4 Hz, 1H), 6.58 (d, J = 8.8 Hz, 1H), 6.50 (d, J = 1.6 Hz, 1H), 6.37 (dd, J = 10.4, 6.4 Hz, 1H), 4.17 (s, 2H), 3.97 (s_br, 1H) ppm.

¹³**C-NMR** (100 MHz, CDCl₃): d = 149.4, 138.9, 135.1, 130.4, 128.9, 127.6, 127.5, 117.5, 112.7, 111.3, 48.2 ppm.

Benzyl-(4-trifluoromethyl-phenyl)-amine (Table 8, entry 6): [IrCl(cod)]₂ (160 μ L, 0.01 mmol, 0.0625 M in THF), Py₂NPiPr₂ (1c) (160 μ L, 0.02 mmol, 0.125 M in THF), 4-trifluoromethyl-phenylamine (124.3 μ L, 1.00 mmol), benzyl alcohol (113.6 μ L, 1.10 mmol), KO'Bu (0.123 g, 1.10 mmol) and 1 mL diglyme. Reaction time: 3h!! Purification by column chromatography (pentane: ethyl acetate, 5:1) afforded 0.169g (67 %) benzyl-(4-trifluoromethyl-phenyl)-amine as a brown solid.

¹**H-NMR** (400 MHz, CDCl₃): d = 7.40 (d, J = 8.8 Hz, 2H), 7.37 (d, J = 1.8 Hz, 2H), 7.35 (s, 2H), 7.32-7.28 (m, 1H), 6.63 (d, J = 8.8 Hz, 2H), 4.43-4.34 (m, 3H) ppm.

¹³**C-NMR** (100 MHz, CDCl₃): d = 150.4, 138.4, 128.8, 127.5, 127.3, 126.6 (q, J = 3.9 Hz), 124.9 (q, J = 270.4 Hz), 119.0 (q, J = 23.5 Hz), 111.9, 44.8 ppm.

4-Benzylamino-benzonitrile (**Table 8, entry 7**): [IrCl(cod)]₂ (160 μL, 0.01 mmol, 0.0625 M in THF), Py₂NP*i*Pr₂ (**1c**) (160 μL, 0.02 mmol, 0.125 M in THF), 4-amino-benzonitrile (0.118 g, 1.00 mmol), benzyl alcohol (113.6 μL, 1.10 mmol), KO^tBu (0.123 g, 1.10 mmol) and 1 mL diglyme. **Reaction time: 20 min!!** Purification by column chromatography (pentane: diethyl ether, 1:1) afforded 0.144 g (69 %) 4-benzylamino-benzonitrile as a colorless solid.

¹**H-NMR** (400 MHz, CDCl₃): d = 7.41-7.29 (m, 7H), 6.57 (d, *J*= 8.8 Hz, 2H), 4.59 (s_br, 1H), 4.36 (d, *J*= 4.8 Hz, 2H) ppm.

¹³**C-NMR** (100 MHz, CDCl₃): d = 151.3, 138.0, 133.9, 129.1, 127.9, 127.5, 120.6, 112.6, 47.7 ppm.

Benzyl-biphenyl-2-yl-amine (Table 8, entry 8): $[IrCl(cod)]_2$ (160 μ L, 0.01 mmol, 0.0625 M in THF), Py_2NPiPr_2 (1c) (160 μ L, 0.02 mmol, 0.125 M in THF), biphenyl-2-ylamine (0.173 g, 1.00 mmol), benzyl alcohol (113.6 μ L, 1.10 mmol), KO^tBu (0.123 g, 1.10 mmol) and 1 mL

diglyme. Purification by column chromatography (pentane: diethyl ether, 30:1) afforded 0.238 g (92%) benzyl-biphenyl-2-yl-amine as a colorless solid.

¹**H-NMR** (400 MHZ, CDCl₃): d = 7.48-7.38 (m, 5H), 7.35-7.23 (m, 5H), 7.18 (t, J = 8.8 Hz, 1H), 7.11 (dd, J = 9.2, 6.0 Hz, 1H), 6.77 (t, J = 8.4 Hz, 1H), 6.65 (d, J = 8.0 Hz, 1H), 4.39 (s_br, 1H), 4.32 (d, J = 4.0 Hz, 2H) ppm.

¹³**C-NMR** (100 MHz, CDCl₃): d= 145.0, 139.6, 139.6, 130.4, 129.6, 129.3, 129.2, 128.9, 128.8, 127.9, 127.5, 127.3, 117.5, 111.0, 48.4 ppm.

Benzyl-pyridin-2-yl-amine (Table 8, entry 9): [IrCl(cod)]₂ (160 μ L, 0.01 mmol, 0.0625 M in THF), Py₂NP*i*Pr₂ (1c) (160 μ L, 0.02 mmol, 0.125 M in THF), pyridin-2-ylamine (0.094 g, 1.00 mmol), benzyl alcohol (113.6 μ L, 1.10 mmol), KO^tBu (0.123 g, 1.10 mmol) and 1 mL diglyme. Purification by column chromatography (pentane: diethyl ether, 5:1) afforded 0.171 g (93%) 2- benzyl-pyridin-2-yl-amine as a colorless solid.

¹**H-NMR** (400 MHz, CDCl₃): d = 8.09 (d, J = 4.4 Hz, 1H), 7.38 (t, J = 8.8 Hz, 1H), 7.34-7.25 (m, 5H), 6.57 (t, J = 6.0 Hz, 1H), 6.36 (d, J = 8.4 Hz, 1H), 4.79 (s_br, 1H) ppm.

¹³**C-NMR** (100 MHz, CDCl₃): d = 158.8, 148.5, 139.4, 137.7, 128.9, 127.6, 127.5, 113.4, 107.0, 46.6 ppm.

Benzyl-(4-methyl-pyridin-2-yl)-amine (Table 8, entry 10): $[IrCl(cod)]_2$ (160 μ L, 0.01 mmol, 0.0625 M in THF), Py_2NPiPr_2 (1c) (160 μ L, 0.02 mmol, 0.125 M in THF), 4-methyl-pyridin-2-yl amine (0.110 g, 1.00 mmol), benzyl alcohol (113.6 μ L, 1.10 mmol), KO^tBu (0.123 g, 1.10 mmol) and 1 mL diglyme. Purification by column chromatography (diethyl ether) afforded 1.187 g (94%) benzyl-(4-methyl-pyridin-2-yl)-amine as a colorless solid.

¹**H-NMR** (400 MHz, CDCl₃): d = 7.96 (d, J= 5.9 Hz, 1H), 7.35-7.24 (m, 5H), 6.42 (d, J= 5.2 Hz, 1H), 6.19 (s, 1H), 4.78 (s_br, 1H), 4.48 (d, J= 5.6 Hz, 2H), 2.19 (s, 3H) ppm. ¹³**C-NMR** (100 MHz, CDCl₃): d = 159.0, 148.8, 147.9, 139.5, 128.8, 127.6, 127.4, 115.0, 107.3, 46.6, 21.4 ppm.

Benzyl-pyridin-3-yl-amine (Table 8, entry 11): $[IrCl(cod)]_2$ (160 μ L, 0.01 mmol, 0.0625 M in THF), Py_2NPiPr_2 (1c) (160 μ L, 0.02 mmol, 0.125 M in THF), pyridin-3-ylamine (0.097 g, 1.00 mmol), benzyl alcohol (113.6 μ L, 1.10 mmol), KO^tBu (0.123 g, 1.10 mmol) and 1 mL diglyme. Purification by column chromatography (ethyl acetate) afforded g 0.178 g (97%) benzyl-pyridin-3-yl-amine as a yellow solid.

¹**H-NMR** (400 MHz, CDCl₃): d = 8.5 (d, *J*= 2.8 Hz, 1H), 7.94 (d, *J*= 4.8 Hz, 1H), 7.34-7.26 (m, 5H), 7.4 (dd, *J*= 4.4, 3.9 Hz, 1H), 6.84 (dd, *J*= 10.4, 5.6 Hz, 1H)4.32 (d, *J*= 4.4 Hz, 2H), 4.19 (s_br, 1H) ppm.

¹³**C-NMR** (100 MHz, CDCl₃): d = 144.2, 139.1, 138.7, 136.4, 128.9, 127.7, 127.6, 123.9, 118.7, 48.0 ppm.

(4-Methyl-benzyl)-pyridin-2-yl-amine (Table 9, entry 1): [IrCl(cod)]₂ (160 μL, 0.01 mmol, 0.0625 M in THF), Py₂NP*i*Pr₂ (1c) (160 μL, 0.02 mmol, 0.125 M in THF), pyridin-2-ylamine (0.095 g, 1.00 mmol), p-tolyl-methanol (0.137 g, 1.10 mmol), KO^tBu (0.123 g, 1.10 mmol) and 1 mL diglyme. Purification by column chromatography (diethyl ether) afforded 0.183 g (92%) (4-methyl-benzyl)-pyridin-2-yl-amine as a colorless solid.

¹**H-NMR** (400 MHz, CDCl₃): d = 8.09 (d, *J*= 4.8 Hz, 1H), 7.39 (t, *J*= 7.6 Hz, 1H), 7.26 (d, *J*= 1.2 Hz, 2H), 7.14 (d, *J*= 8.0 Hz, 2H), 6.58 (t, *J*= 6.4 Hz, 1H), 6.36 (d, *J*= 8.4 Hz, 1H), 4.85 (s_br, 1H), 4.45 (d, *J*= 5.6 Hz, 2H), 2.34 (s, 3H) ppm.

¹³**C-NMR** (100 MHz. CDCl₃): d = 158.9, 148.4, 137.7, 137.1, 136.3, 129.5, 127.6, 113.3, 106.9, 46.3, 21.3 ppm.

(4-Chloro-benzyl)-pyridin-2-yl-amine (Table 9, entry 2): [IrCl(cod)]₂ (160 μL, 0.01 mmol, 0.0625 M in THF), Py₂NP*i*Pr₂ (1c) (160 μL, 0.02 mmol, 0.125 M in THF), pyridin-2-ylamine (0.095 g, 1.00 mmol), (4-chloro-phenyl)-methanol (0.158 g, 1.10 mmol), KO^tBu (0.123 g, 1.10 mmol) and 1 mL diglyme. Purification by column chromatography (diethyl ether) afforded 0.207 g (97%) (4-chloro-benzyl)-pyridin-2-yl-amine as a colorless solid.

¹**H-NMR** (400 MHz, CDCl₃): d = 8.09 (d, J=4.4 Hz, 1H), 7.40-7.27 (m, 5H), 6.58 (d, J=7.2 Hz, 1H), 6.33 (d, J=8.4 Hz, 1H), 4.87 (s_br, 1H), 4.47 (d, J=4.0 Hz, 2H) ppm.

¹³**C-NMR** (100 MHz, CDCl₃): d = 158.6, 148.6, 138.0, 137.7, 133.1, 129.0, 128.9, 113.6, 107.1, 45.7 ppm.

(4-Methoxy-benzyl)-pyridin-2-yl-amine (Table 9, entry 3): $[IrCl(cod)]_2$ (160 μ L, 0.01 mmol, 0.0625 M in THF), Py_2NPiPr_2 (1c) (160 μ L, 0.02 mmol, 0.125 M in THF), pyridin-2-ylamine (0.095 g, 1.00 mmol), (4-methoxy-phenyl)-methanol (0.154 g, 1.10 mmol), KO'Bu (0.123 g, 1.10 mmol) and 1 mL diglyme. Purification by column chromatography (diethyl ether) afforded 0.207 g (97%) (2-methoxy-benzyl)-pyridin-2-yl-amine as a colorless solid.

¹**H-NMR** (400 MHz, CDCl₃): d = 8.06 (d, *J*= 5.2 Hz, 1H), 7.36 (t, *J*= 7.2 Hz, 1H), 7.25 (d, *J*= 8.4 Hz, 2H), 6.84 (d, *J*= 6.8 Hz, 2H), 6.55 (t, *J*= 6.8 Hz, 1H), 6.33 (d, *J*= 8.4 Hz, 1H), 4.84 (s_br, 1H), 4.39 (d, J= 5.6 Hz, 2H), 3.76 (s, 3H) ppm.

¹³**C-NMR** (100 MHz, CDCl₃): d = 159.0, 158.8, 148.4, 137.6, 131.4, 128.9, 114.2, 113.3, 107.0, 55.5, 46.0 ppm.

(2-Methoxy-benzyl)-pyridin-2-yl-amine (Table 9, entry 4): $[IrCl(cod)]_2$ (160 μ L, 0.01 mmol, 0.0625 M in THF), Py_2NPiPr_2 (1c) (160 μ L, 0.02 mmol, 0.125 M in THF), pyridin-2-ylamine (0.095 g, 1.00 mmol), (2-methoxy-phenyl)-methanol (147.70 μ L, 1.10 mmol), KO^tBu (0.123 g, 1.10 mmol) and 1 mL diglyme. Purification by column chromatography (diethyl ether) afforded 0.203 g (95%) (2-methoxy-benzyl)-pyridin-2-yl-amine as a colorless solid.

¹**H-NMR** (400 MHz, CDCl₃): d = 8.08 (d, J = 5.6 Hz, 1H), 7.36 (dt, J = 8.4, 6.8 Hz, 1H), 7.29 (d, J = 7.6 Hz, 1H), 7.23 (dt, J = 8.6, 8.0 Hz, 1H), 6.86 (m, 2H), 6.53 (t, J = 6.0 Hz, 1H), 6.37 (d, J = 8.4 Hz, 1H), 4.95 (s_br, 1H), 4.47 (d, J = 6.39, 2H), 3.84 (s, 3H) ppm.

¹³**C-NMR** (100 MHz, CDCl₃): d = 159.1, 157.7, 148.4, 137.6, 128.9, 129.6, 127.3, 120.7, 113.0, 110.4, 106.9, 55.5, 41.9 ppm.

Furan-2-ylmethyl-pyridin-2-yl-amine (**Table 9, entry 5**): [IrCl(cod)]₂ (160 μ L, 0.01 mmol, 0.0625 M in THF), Py₂NP*i*Pr₂ (**1c**) (160 μ L, 0.02 mmol, 0.125 M in THF), pyridin-2-ylamine (0.095 g, 1.00 mmol), furan-2-yl-methanol (97.4 μ L, 1.10 mmol), KO^tBu (0.123 g, 1.10 mmol) and 1 mL diglyme. Purification by column chromatography (pentane: diethyl ether, 1:1) afforded 0.123 g (71%) furan-2-ylmethyl-pyridin-2-yl-amine as a brown solid.

¹**H-NMR** (400 MHz, CDCl₃): d = 8.09 (d, J = 5.6 Hz, 1H), 7.39 (t, J = 7.2 Hz, 1H), 7.33 (d, J = 1.0 Hz, 1H), 6.58 (t, J = 6.0 Hz, 1H), 6.14 (d, J = 8.4 Hz, 1H), 6.29 (t, J = 2.8 Hz, 1H), 6.21 (d, J = 3.2 Hz, 1H), 4.88 (s_br, 1H), 4.49 (d, J = 5.6 Hz, 2H) ppm.

¹³**C-NMR** (100 MHz, CDCl₃): d= 158.4, 152.8, 148.3, 142.1, 137.6, 113.6, 110.5, 107.5, 107.1, 39.5 ppm.

Pyridin-2-yl-tiophen-2-ylmethyl-amine (Table 9, entry 6): $[IrCl(cod)]_2$ (160 μ L, 0.01 mmol, 0.0625 M in THF), Py_2NPiPr_2 (1c) (160 μ L, 0.02 mmol, 0.125 M in THF), pyridin-2-ylamine (0.095 g, 1.00 mmol), thiophen-2-yl-methanol (140.9 μ L, 1.10 mmol), KO'Bu (0.123 g, 1.10 mmol) and 1 mL diglyme. Purification by column chromatography

(pentane: diethyl ether, 1:1) afforded 0.131 g (69%) pyridin-2-yl-tiophen-2-ylmethyl-amine as a colorless solid.

¹**H-NMR** (400 MHz, CDCl₃): d = 8.11 (d, J = 5.2 Hz, 1H), 7.40 (t, J = 8.4, 1H), 7.18 (d, J = 6.4 Hz, 1H), 6.99 (d, J = 2.8 Hz, 1H), 6.94 (t, J = 3.4 Hz, 1H), 6.59 (t, J = 4.6 Hz, 1H), 6.41 (d, J = 8.4, 1H), 4.85 (s_br , 1H), 4.68 (d, J = 5.6 Hz, 2H) ppm.

¹³**C-NMR** (100 MHz, CDCl₃): d = 158.3, 148.4, 142.8, 137.6, 127.0, 125.4, 124.9, 113.7, 107.6, 41.5 ppm.

Pyridin-2-yl-pyridin-2-ylmethyl-amine (Table 9, entry 7): [IrCl(cod)]₂ (160 μL, 0.01 mmol, 0.0625 M in THF), Py₂NPiPr₂ (1c) (160 μL, 0.02 mmol, 0.125 M in THF), pyridin-2-ylamine (0.095 g, 1.00 mmol), pyridin-2-yl-methanol (108.4 μL, 1.10 mmol), KO i Bu (0.123 g, 1.10 mmol) and 1 mL diglyme. Purification by column chromatography (pentane: diethyl ether: THF, 1:1:1) afforded 0.082 g (44%) pyridin-2-yl-pyridin-2-ylmethyl-amine as a colorless solid.

¹**H-NMR** (400 MHz, CDCl₃): d = 8.53 (d, J = 4.8 Hz, 1H), 8.08 (d, J = 4.8 Hz, 1H), 7.59 (dt, J = 7.6, 1.6 Hz, 1H), 7.35 (dt, J = 8.8, 1.6 Hz, 1H), 7.29 (d, J = 7.6 Hz, 1H), 7.13 (t, J = 5.2 Hz, 1H), 6.54 (t, J = 5.2 Hz, 1H), 6.42 (d, J = 8.4 Hz, 1H), 5.66 (s_br, 1H), 4.62 (d, J = 5.2 Hz, 2H) ppm.

¹³**C-NMR** (100 MHz, CDCl₃): d = 158.6, 158.3, 149,.2, 148.3, 137.4, 136.8, 122.2, 121.8, 113.2, 107.9, 47.4 ppm.

Butyl-pyridin-2-yl-amine (Table 9, entry 9): [IrCl(cod)]₂ (160 μ L, 0.01 mmol, 0.0625 M in THF), Py₂NP*i*Pr₂ (1c) (160 μ L, 0.02 mmol, 0.125 M in THF), pyridin-2-ylamine (0.095 g, 1.00 mmol), butan-1-ol (102.54 μ L, 1.10 mmol), KO^tBu (0.123 g, 1.10 mmol) and 1 mL diglyme. Purification by column chromatography (pentane: diethyl ether, 1:1) afforded 0.113 g (75%) butyl-pyridin-2-yl-amine as a colorless solid.

¹**H-NMR** (400 MHz, CDCl₃): d = 8.04 (d, J = 4.0 Hz, 1H), 7.37 (dt, J = 8.4, 6.8 Hz, 1H), 6.51 (t, J = 6.0 Hz, H), 6.33 (d, J = 8.4 Hz, 1H); 4.52 (s_br, 1H), 3.21 (q, J = 6.8 Hz, 2H), 1.61-1.53 (m, 2H), 1.42-1.38 (m, 2H), 0.92 (t, J = 7.2 Hz, 3H) ppm.

¹³**C-NMR** (100 MHz, CDCl₃): d = 159.2, 148.4, 137.5, 112.7, 106.4, 42.2, 31.8, 20.4, 14.0 ppm.

Octyl-pyridin-2-yl-amine (Table 9, entry 10): [IrCl(cod)]₂ (160 μ L, 0.01 mmol, 0.0625 M in THF), Py₂NP*i*Pr₂ (1c) (160 μ L, 0.02 mmol, 0.125 M in THF), pyridin-2-ylamine (0.095 g,

1.00 mmol), octan-1-ol (175.0 μ L, 1.10 mmol), KO t Bu (0.123 g, 1.10 mmol) and 1 mL diglyme. Purification by column chromatography (pentane: diethyl ether, 1:1) afforded 0.149 g (72%) octyl-pyridin-2-yl-amine as a colorless solid.

¹**H-NMR** (400 MHz, CDCl₃): d = 8.04 (dd, *J*= 6.4, 4.0 Hz, 1H), 7.38 (dt, *J*= 7.2, 6.8 Hz, 1H), 6.52 (t, *J*= 4.8 Hz, 1H), 6.33 (d, *J*= 8.4 Hz, 1H), 4.48 (s_br, 1H), 3.21 (q, *J*= 7.2 Hz, 2H), 1.59 (m, 2H), 1.36-1.24 (m, 10H), 0.85 (t, *J*=6.8 Hz, 3H) ppm.

¹³**C-NMR** (100 MHz, CDCl₃): d = 159.2, 148.4, 137.6, 112.8, 106.5, 42.5, 32.0, 29.8, 29.6, 29.5, 27.3, 22.9, 14.3 ppm.