“Click” on Conducting Polymer Coated Electrodes: A Versatile Platform for the Modification of Electrode Surfaces

Yan Li, Weixia Zhang, Jing Chang, Jinchun Chen, Guangtao Li* and Yong Ju*

Table S1. Oxidation potentials of the monomers and the resulting post-functionalized polymer films.

<table>
<thead>
<tr>
<th>Monomer</th>
<th>$E_{\text{oxd}}^{\text{mon}}$/V</th>
<th>Polymer</th>
<th>$E_{\text{oxd}}^{\text{poly}}$/V</th>
<th>$E_{\text{red}}^{\text{poly}}$/V</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.11</td>
<td>P1</td>
<td>0.49</td>
<td>0.41</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P1b</td>
<td>0.49</td>
<td>0.48</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P1c</td>
<td>0.63</td>
<td>0.48</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P1d</td>
<td>0.52</td>
<td>0.47</td>
</tr>
<tr>
<td>2</td>
<td>1.13</td>
<td>P2</td>
<td>0.61</td>
<td>0.47</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P2a</td>
<td>0.66</td>
<td>0.53</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P2b</td>
<td>0.63</td>
<td>0.54</td>
</tr>
</tbody>
</table>
Figure S1. (a) FT-IR spectrum of compound 1. (b) FT-IR spectrum of P1 produced using the CV method.

Figure S2. (a) FT-IR spectrum of compound 2. (b) FT-IR spectrum of P2 produced using the CV method.
Figure S3. FT-IR spectra of (a) P1 and (b) P1d (after treating with N-propargyl -imminodiacetic).

Figure S4. FT-IR spectra of (a) P2 and (b) P2b (after treating with AZT).
Figure S5. CV spectrum of P2b.
Figure S6. (a) Fluorescence images of the surface of P1d coated electrode pretreated for 5 min with 0.5mg/mL of Fluorescence-His-tagged insulin in phosphate buffer (pH = 7.2) and carefully washed with distilled water. (b) As in a, but incubating the enzyme electrode in a solution of imidazole (0.2 M) for 3h. (c) As in a, but firstly immersing to EDTA solution (0.1 M) for 5h. The scale bar is 50 µm.