Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2006.

Supporting Information for Macromol. Rapid Commun. 2007, 28, 449.

Synthesis of Polyarylamines via Microwave Assisted Palladium-catalysed

Amination

I-Wen Shen, Mark C. McCairn, John J. Morrison, Michael L. Turner*

Organic Materials Innovation Centre, School of Chemistry, The University of Manchester,

Oxford Road, Manchester, M13 9PL, U.K.

Fax: +44 (0)161 275 4273

Tel: +44 (0)161 275 4625

E-mail: Michael.turner@manchester.ac.uk

Polytriarylamines comprising 5 to 20 repeat units are thought to have suitable charge transport characteristics for electrooptical applications. [s1] Therefore, the ratio of 2,4-dimethylaniline to 4,4'-dibromobiphenyl was varied in several experiments to determine the optimal monomer ratio to produce a polymer of optimal molecular weight. Table 1 shows both the GPC determined number-averaged molecular weight (M_n) and the weight-averaged molecular weight (M_w) of the polymer obtained from polymerising various ratios of 2,4-dimethylaniline and 4,4'-dibromobiphenyl.

The polymerisation of an increasing ratio of 2,4-dimethylaniline relative to 4,4'-dibromobiphenyl gave a concomitant reduction in both M_n and M_w of the resultant polymer. The polymerisation reaction that employed a 1:1 ratio of amine to bromide provided a polymer in 70 % yield that had the largest M_n (2169) and M_w (6357) of the three polymers **S1-S3** synthesised, which corresponds to polymer **1** comprising 8 repeat units (Table S-1, polymer **S1**).

Table S-1. GPC data of polytriarylamines **S1-S3**.

Polymer	Amine:bromide	$M_{\rm n}$	$M_{\rm n}/271^{\rm a)}$	$M_{ m w}$	$M_{ m w}/M_{ m n}$
S1	1:1	2169	8.00	6357	2.93
S2	1.1:1	1777	6.56	4863	2.74
S3	1.5:1	930	3.43	1590	1.71

^{a)} Corresponds to the number of monomer repeat units.

The polymerisation reaction mixture for preparation of S1 was analysed by GC-MS, and this

identified the incomplete reaction of 4,4'-dibromobiphenyl. In addition, the GPC trace of polymer **S1** revealed a polydispersity value of 2.93, suggesting that there may be a significant amount of low molecular weight material present. Therefore, 2,4-dimethylaniline was purified by distillation to improve the stoichiometry of the monomers.

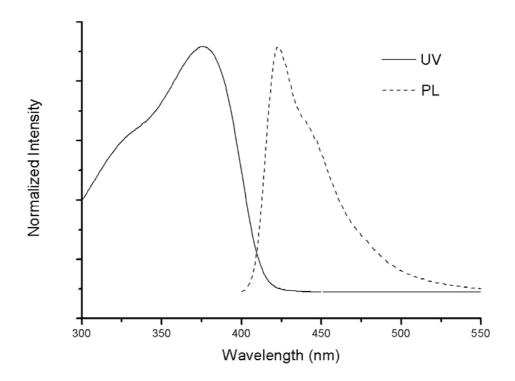


Figure S-1. UV-Vis and photoluminescence spectra of polymer 2. UV (dichloromethane): λ_{max} = 378 nm (261 991 L'mol⁻¹·cm⁻¹). PL (dichloromethane): λ_{max} = 423 nm (excitation wavelength = 378 nm).

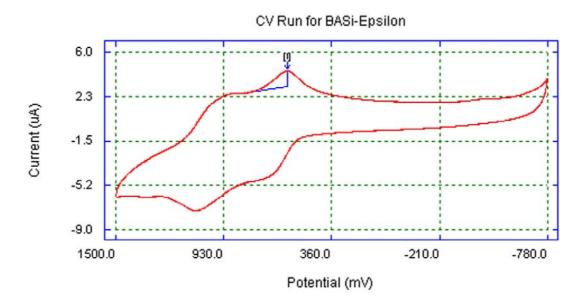


Figure S-2. Cyclic voltammetry spectrum of polymer 2.

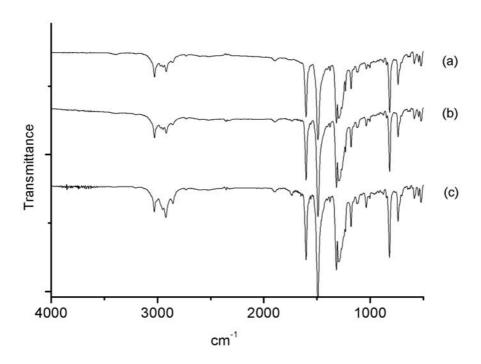


Figure S-3. IR spectra of (a) Uncapped polymer **2**. (b) Polymer **15** following the first end-capping with 4-bromoanisole. (c) Polymer **15** following the second end-capping with 4-bromoanisole.

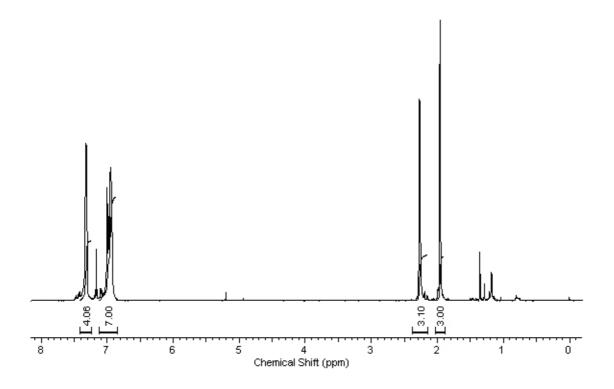


Figure S-4. ¹H NMR spectrum of uncapped polymer **2**.

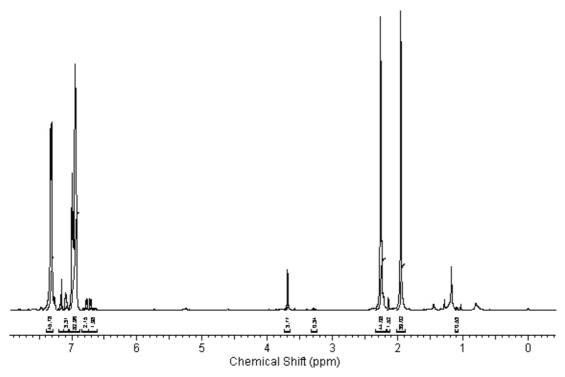


Figure S-5. ¹H NMR spectrum of end-capped polymer **15**.

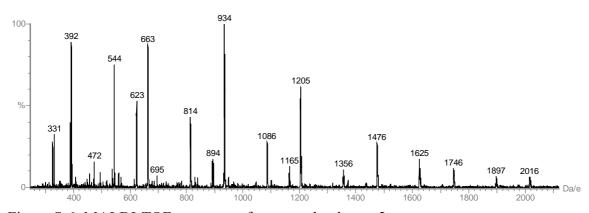


Figure S-6. MALDI-TOF spectrum of uncapped polymer **2**.

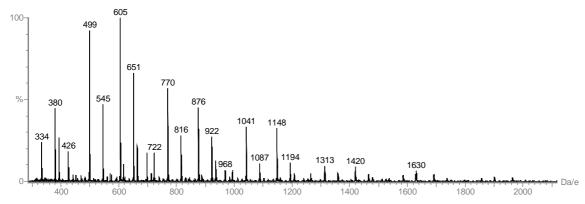


Figure S-7. MALDI-TOF spectrum of end-capped polymer **15**.