Organic Memory Device Based on Carbazole-Substituted Cellulose

Makoto Karakawa,* Masayuki Chikamatsu, Yuji Yoshida, Reiko Azumi, Kiyoshi Yase, Chikanobu Nakamoto

Supporting Figures

Figure S1: Current-Voltage characteristics of Cz-cell:PBD:FIrpic thin film device.
(Cz-cell : carbazole-substituted cellulose (compound 5), PBD : 2-(4-biphenylyl)-5-phenyl-1,3,4-oxadiazole,
FIrpic : bis[(4,6-difluorophenyl)-pyridinato-N,C2’](picolinate) iridium(III))
The device structure and mixing ratios discussed in the main text are shown in Figure S2.

Figure S2: Device structure.

- **Al (80nm)**
- **Ca (30nm)**
- **Cz-Cell:PBD**
- **PEDOT:PSS**
- **ITO**
- **Glass substrate**

Mixing ratio
- Cz-Cell:PBD = 1:1
- Cz-Cell:PBD = 2:1
- Cz-Cell:PBD = 3:1

Al: aluminum
Ca: calcium
Cz-cell: carbazole-substituted cellulose (compound 5)
PBD: 2-(4-biphenylyl)-5-phenyl-1,3,4-oxadiazole
PEDOT:PSS: poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonic acid)
ITO: indium tin oxide
The Current density-Voltage characteristics of Cz-cell:PBD devices are shown in Figure S3. As the Cz-cell content is increased from 1:1 to 2:1 (w/w), the On/Off ratio shows the higher orders.

Figure S3: Current density-Voltage characteristics of Cz-cell:PBD thin film devices.
(Cz-cell: carbazole-substituted cellulose (compound 5), PBD: 2-(4-biphenylyl)-5-phenyl-1,3,4-oxadiazole)
PL spectrum of other cellulose derivative show red-shift and broader peak comparing with Cz-cell (carbazole-substituted cellulose) with carbazole at secondary hydroxyl groups and PVK [Poly(N-vinyl carbazole)]

Figure S4: Photoluminescence spectra for thin film of PVK and Cz-cell with carbazole at secondary hydroxyl groups.