Photon Counting Histogram: One-Photon Excitation

Bo Huang, Thomas D. Perroud, and Richard N. Zare*
* Corresponding author, zare@stanford.edu

Calculation of the observation volume profile

In a lens system, the 3D image of a point object is called the point spread function, \(\text{PSF}(r) \). Dimensionless optical units are defined as

\[
\begin{align*}
 u & = z \cdot \frac{2\pi}{\lambda_{\text{ex}}} n \sin^2 \alpha \\
 v & = r \cdot \frac{2\pi}{\lambda_{\text{ex}}} n \sin \alpha
\end{align*}
\]

(S1)

for excitation and

\[
\begin{align*}
 u' & = r \cdot M^2 \frac{2\pi}{\lambda_{\text{ex}}} \sin^2 \alpha \\
 v' & = r \cdot M \frac{2\pi}{\lambda_{\text{em}}} \sin \alpha
\end{align*}
\]

(S2)

for emission, where \(z \) is the coordinate along the optical axis, \(r = \sqrt{x^2 + y^2} \), \(\lambda_{\text{ex}} \) and \(\lambda_{\text{em}} \) are the excitation and emission wavelengths, \(n \) is the index of refraction of the sample medium, \(\alpha = \sin^{-1}(\text{NA} / n) \) is the half cone angle of the objective with \(\text{NA} \) being the numerical aperture, and \(M \) is the magnification of the objective. For the excitation point spread function, we use the complex integration
representation for the diffraction proposed by Richards and Wolf:

\[I_0(u,v) = \int_0^\alpha A(\theta) \cdot \sin \theta (1 + \cos \theta) \cdot J_0 \left(\frac{v \sin \theta}{\sin \alpha} \right) \cdot \exp \left(\frac{iu \cos \theta}{\sin^2 \alpha} \right) \, d\theta \]

\[I_1(u,v) = \int_0^\alpha A(\theta) \cdot \sin^2 \theta \cdot J_1 \left(\frac{v \sin \theta}{\sin \alpha} \right) \cdot \exp \left(\frac{iu \cos \theta}{\sin^2 \alpha} \right) \, d\theta \]

\[I_2(u,v) = \int_0^\alpha A(\theta) \cdot \sin \theta (1 - \cos \theta) \cdot J_2 \left(\frac{v \sin \theta}{\sin \alpha} \right) \cdot \exp \left(\frac{iu \cos \theta}{\sin^2 \alpha} \right) \, d\theta \] \hspace{1cm} (S3)

where \(J_n(x) \) is the \(n \)th order Bessel function, and

\[\text{PSF}_{\text{ex}}(u,v) = |I_0|^2 + 2|I_1|^2 + |I_2|^2 \] \hspace{1cm} (S4)

for unpolarized or circularly polarized light. The formula for linearly polarized excitation is more complex and involves much more computation time; thus, we only calculate the unpolarized or circularly polarized case. The apodization function \(A(\theta) \) describes the amplitude distribution for the electric field on the plane after the objective:

\[A(\theta) = \cos^2 \theta \cdot \exp \left(-\beta^2 \frac{\sin^2 \theta}{\sin^2 \alpha} \right) \] \hspace{1cm} (S5)

where the under filling factor \(\beta \) is the ratio of the radius of the objective back aperture to the \(e^2 \) radius of the excitation laser.\(^{[2]}\)

For the emission point spread function, we do the same integration as in Eq. (S3) over the tube lens of the microscope, with the integration upper limit \(\alpha' = \sin^{-1}(\sin \alpha/M) \). This apodization function in this case is given by the isotropic fluorescence emission:\(^{[3]}\)

\[A(\theta) = \cos^2 \theta \left(1 - M^2 \sin^2 \theta \right)^{\frac{1}{2}} \] \hspace{1cm} (S6)
We then calculate the observation volume profile by multiplying the excitation PSF and the integration of the emission PSF over the circular pinhole:

\[W_c(u,v) = \text{PSF}_{\text{exc}}(u,v) \cdot \int_{\text{Pinhole}} \text{PSF}_{\text{em}}(\gamma \cdot u, |\mathbf{r}_D - \gamma \cdot v|) d\mathbf{r}_D \] (S7)

where \(\gamma = \frac{\lambda_{\text{ex}}}{n \lambda_{\text{em}}} \) reflects the fact that the magnification is independent of wavelength.\(^3\)

In numerical computation, the Bessel functions are evaluated using rational approximations,\(^4\) all the integrations are calculated using the Romberg method\(^4\) with an accuracy of \(10^{-5}\). Both the point spread functions and the observation volume profiles are calculated and stored in grids of 0.1 optical units with \(u \) up to 200 optical units and \(v \) up to 100 optical units. Bilinear interpolation is employed in extracting a value from the saved functions.

References: