Ó 2003 WILEY-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim (Germany) Supporting Information for *ChemBioChem* F 516

General Experimental Methods. Proton NMR spectra were run at 300 MHz on a Varian Gemini-300 or at 500 MHz on a Bruker AMX-500, chemical shifts are reported in parts per million (δ) downfield from internal standard. Electrospray tetramethylsilane as mass recorded PEBiosystems Mariner Micromass-LCT were on а or а Column spectrometer. chromatography was performed usina Merck Kieselgel 60 (230-400 mesh) and analytical thin-layer chromatography was conducted with Merck Kieselgel 60 F_{254} plates. A Waters 600 or 600-Delta series HPLC was used for analytical and preparative HPLC, employing either a Phenomenex C18 reversed phase analytical column $(5\mu \text{ Luna } 250 \text{ x } 4.6 \text{ mm}; \text{ Catalog No. } 00G-4252-E0)$ or a Phenomenex C18 reversed phase semi-prep column (5 μ Luna 250 x 21.2 mm; Catalog No. 00G-4273-P0). Analytical elutions were performed at a flow rate of 1 mL/min, and used either a gradient of 50%/50% to 0%/100% A/B over 20 min (method A), 70%/30% to 0%/100% A/B over 20 min (method B), or isocratic conditions of 10%/90% A/B (method C), 20%/80% A/B (method D), 30%/70% A/B (method E), 40%/60% A/B (method F), 50%/50% A/B (method G), 55%/45% A/B (method H), or 60%/40% A/B (method I), where A = H_2O - 0.1% TFA and B = CH_3CN - 0.1% TFA. For reactions performed under anhydrous conditions, glassware was either oven- or flame-dried under a positive pressure of and the reaction was run Tetrahydrofuran was freshly distilled from sodium/benzophenone. The reported yields are the actual isolated yields or purified material

and are not optimised. Except where noted, reagents were purchased commercially and used without further purification. Petroleum ether had a boiling range of 40-60°. IUPAC nomenclature was used to name compounds via Autonom v2.1 (Under licence from Beilstein Information Systems in CS ChemDraw Ultra).

Enzyme Assay. Compounds 2a-q (I) were evaluated in a mixed micelle colorimetric assay utilizing a commercially available assay kit used (Cayman Chemical Company MI USA (Catalog No. 765001)) that included buffer (25 mM Tris-HCl at pH 7.5, 1mg/mL BSA, 0.3 mM Triton X-100, 100 mM KCl, 10 mM CaCl₂), substrate (1,2-bis(heptanoylthio)-1,2dideoxy-sn-glycero-3-phosphorylcholine) and DTNB. Each well had a total volume of 225 μ L, containing enzyme (110 ng hnps-PLA₂-IIa), 1,2bis(heptanoylthio)-1,2-dideoxy-sn-glycero-3-phosphorylcholine (PC; final concentration 1.48 mM), Triton X-100 (T; final concentration 0.013 mM) and 5,5'-dithionitrobenzoic acid (DTNB; final concentration 0.44 mM), ± inhibitor. Concentration/response curves were generated for 60 min at 37 °C in a microtiter plate format at 414 nM. Recombinant hnps PLA2-IIa obtained was found to be homogeneous by LCMS giving a molecular weight of 13,905 Da. Mole fractions ([I]/[I] + [PC] + [T])) for 50% inhibition, $X_i(50)$, were determined in triplicate.

Crystallography. Crystals were obtained by the sitting drop method at 20° C using conditions similar to those described by Cha et al. 2 8 μL

of protein solution containing 20 mg/ml protein, was mixed with 8 μL of reservoir solution (4 - 4.5 M NaCl and 0.1 M CaCl₂). Inhibitor **2b** was added to the drop as a solid. Crystals appeared within one week and grew over 2-4 weeks to dimensions of 0.7 mm x 0.4 mm x 0.3 mm. Data were collected at 100K by flash freezing the crystal in a N₂ gas stream. A cryoprotectant solution of 4 M NaCl and 35% glucose was used. Data were measured on a Rigaku R-AXIS IIC imaging plate system using CuK α X-radiation (λ 1.54 Å) generated from a Rigaku RU-200 rotating anode generator (46 kV, 60mA). The data were integrated and reduced using DENZO and SCALEPACK, respectively.

The enzyme-inhibitor complex crystallised in space group. The unit cell dimensions were a=b=75.11 Å, and c=50.03 Å, $\boldsymbol{a}=\boldsymbol{b}=90^{\circ}$ and $\boldsymbol{g}=120^{\circ}$ with two molecules in the asymmetric unit. The structure was solved with molecular replacement using pdblpoe as the reference molecule. Statistics from data processing are given in Table 1.

 $\textbf{Supporting Information:} \ \textit{ChemBioChem}, \ \textit{D-Tyrosine as a chiral precursor.} \ \textit{Hansford et al.}$

Table 1. Crystallographic Data Processing

Resolution	2.2 Å
R _{sym} @	0.052
(in top shell)*	(0.274)
Completeness	91.5%
(in top shell)*	(60.0%)
I/ G I	18.0
(in top shell)*	(3.2)
mosaicity	0.46
No. obs $(I/\sigma I > 1)$	36,103
No. unique refls	14,678
Highest Resolution	2.28-2.20 Å
Resolution range	100-2.2 Å
No. protein atoms*	1884
No. inhibitor	86
No. waters	149
No. calcium atoms	4
R-factor^	0.227
(top shell)	(0.351)
R-free**	0.259
R-free** (top shell)	0.259
(top shell)	(0.386)
(top shell) r.m.s. ideal bond	(0.386) 1.35°
<pre>(top shell) r.m.s. ideal bond r.m.s. ideal</pre>	(0.386) 1.35° 22.75°

$$\mathbf{\hat{r}} = \mathbf{\Sigma} \mid \mathbf{F}_{\mathbf{0}} - \mathbf{F}_{\mathbf{C}} \mid / \mathbf{\Sigma} \mathbf{F}_{\mathbf{0}},$$

^{*}including alternative conformations,

^{**}Cross validation R-factor using 10% of data.

Synthesis of (R)-[2-(4-Benzyloxy-phenyl)-1-(methoxy-methyl-carbamoyl)-ethyl]-carbamic acid tert-butyl ester (4).

DIPEA (28.2 ml, 20.9 g, 162 mmol) was added to a stirred solution of **3** (20.0 g, 53.9 mmol), BOP (25.00 g, 56.5 mmol) and MeONHMe.HCl (5.52 g, 56.6 mmol) in DMF

(300 mL). After stirring for 2 h the DMF was evaporated and the residue dissolved in EtOAc and washed with water, HCl (5 % aqueous), saturated NaHCO₃ solution, brine, then dried with Na₂SO₄ and evaporated to give 4 as a cream solid. This was ground to a powder (22.39 g, 100 %), mp 107.1-108.7 °C. 1 H NMR (300 MHz, CDCl₃) δ 1.40 (s, 9H), 2.83 (dd, J = 6.2, 14.2 Hz, 1H), 3.00 (dd, J = 6.1, 13.6 Hz, 1H), 3.17 (s, 3H), 3.65 (s, 3H), 4.91 (br s, 1H), 5.04 (s, 2H), 5.15 (br d, J = 7.1 Hz, 1H), 6.90 (d, J = 8.6 Hz, 2H), 7.09 (d, J = 8.5 Hz, 2H), 7.32-7.44 (m, 5H). 13 C NMR (75 MHz, CDCl₃) δ 172.3, 157.7, 155.2, 137.1, 130.4, 128.9, 128.5, 127.9, 127.4, 114.7, 79.6, 70.0, 61.5, 51.6, 38.0, 32.1, 28.3.

Synthesis of (R)-[1-(4-Benzyloxy-benzyl)-2-oxo-ethyl]-carbamic acid tert-butyl ester (5).

LiAlH $_4$ (916 mg, 24.1 mmol) was added cautiously and portionwise during 15 min to a stirred solution of $\bf 4$ (10.00

g, 24.1 mmol) in THF (150 mL) at 0° C under argon. The ice-bath was

removed and the mixture was stirred for 1 h, then poured onto a mixture of ice and KHSO₄ (1 M, aqueous). When the ice had melted the product was extracted into EtOAc. The combined extracts were washed with brine then dried (Na₂SO₄) and evaporated to give the aldehyde **5** as pale yellow crystals (8.51 g, 99 %), mp 100.3-101.7 °C. (An alternative workup procedure avoids evaporation of the EtOAc extract, where instead a solution of the crude aldehyde in EtOAc is used directly in the next step without prior evaporation). ¹H NMR (300 MHz, CDCl₃) δ 1.44 (s, 9H), 3.07 (m, 2H), 4.40 (m, 1H), 5.05 (s, 2H), 6.92 (d, J = 8.6 Hz, 2H), 7.09 (d, J = 8.7 Hz, 2H), 7.33-7.45 (m, 5H), 9.63 (s, 1H), with one resonance obscured. ¹³C NMR (75 MHz, CDCl₃) δ 199.6, 157.9, 155.4, 136.9, 130.3, 128.6, 128.0, 127.9, 127.4, 115.1, 80.2, 70.0, 60.8, 34.6, 28.3.

Synthesis of (R)-5-(4-Benzyloxy-phenyl)-4-tertbutoxycarbonylaminopent-2-enoic acid methyl ester (6) $(R^1 = Me)$

A mixture of $\bf 5$ (6.5 g, 0.018 mol) and Ph₃P=CHCO₂Me (1 eq.) in dry THF (80 mL) was stirred at rt overnight. (Alternately, 1 eq. of Ph₃P=CHCO₂Me can be added directly to an EtOAc

solution of $\bf 5$ as described above). Removal of the solvent *in vacuo* afforded a gummy residue (13.2 g) which was chromatographed (silica gel, 4:1 petroleum ether-EtOAc increasing to 1:1 petroleum ether-EtOAc toward completion) to yield $\bf 6$ ($\bf R^1$ = Me) (6.7 g, 89 %). $\bf ^1$ H NMR

(300 MHz, CDCl₃) δ 1.40 (s, 9H), 2.80 (m, 2H), 3.70 (s, 3H), 4.52 (br

s, 2H), 5.05 (s, 2H), 5.83 (d, J = 15 Hz, 1H), 6.88 (d, J = 8.7 Hz, 2H), 6.88 (d, J = 15 Hz, 1H), 7.07 (d, J = 8.7 Hz, 2H), 7.28-7.48 (m, 5H). 13 C NMR (75 MHz, CDCl₃) δ 166.8, 157.9, 155.1, 148.2, 137.1, 130.6, 128.7, 128.1, 127.6, 120.8, 115.1, 80.0, 70.2, 52.6, 51.8, 40.1, 28.5, with one resonance obscured. ESMS m/z 412 (M+H)⁺. Similarly, preparation of $\mathbf{6}$ (R¹ = Et) was achieved by reaction of Ph₃P=CHCO₂Et and $\mathbf{5}$ using the above procedure; (83% yield): 1 H NMR (300 MHz, CDCl₃) δ 1.28 (t, J = 7.1 Hz, 3H), 1.40 (s, 9H), 2.84 (br d, J = 6.2 Hz, 2H), 4.19 (q, J = 7.1 Hz, 2H), 4.52 (br s, 2H), 5.05 (s, 2H), 5.86 (dd, J = 1.5, 15.7 Hz, 1H), 6.91 (dd, J = 4.8, 15.6 Hz, 1H), 6.92 (d, J = 8.6 Hz, 2H), 7.09 (d, J = 8.7 Hz, 2H), 7.32-7.45 (m, 5H). 13 C NMR (75 MHz, CDCl₃) δ 166.1, 157.7, 154.9, 147.7, 137.0, 130.4, 128.6, 127.9, 127.4, 121.0, 115.1, 114.9, 79.8, 70.0, 60.4, 52.4,

Synthesis of (S)-5-(4-Benzyloxy-phenyl)-4-tert-butoxycarbonylamino-pentanoic acid ethyl ester (7).

Compound 6 (R^1 = Et) (125 mg, 0.30 mmol) was hydrogenated over 10% Pd-C in EtOAc (30 mL). Removal of the catalyst (celite) and evaporation of the solvent afforded 7 in quantitative

40.0, 28.3, 14.2. ESMS m/z 426 (M+H)⁺.

yield: 1 H NMR (300 MHz, CDCl₃) δ 1.24 (t, J = 7.0 Hz, 3H), 1.40 (s,

9H), 1.47-1.67 (m, 1H), 1.76-1.92 (m, 1H), 2.26-2.44 (m, 2H), 2.61-2.82 (m, 2H), 3.69-3.85 (br m, 1H), 4.11 (q, J = 7.0 Hz, 2H), 4.30-4.43 (br d, J = 6.8 Hz, 1H), 5.03 (s, 2H), 6.90 (d, J = 8.5 Hz, 2H), 7.09 (d, J = 8.5 Hz, 2H), 7.28-7.47 (m, 5H). ¹³C NMR (75 MHz, CDCl₃) δ 14.4, 28.5, 29.3, 31.4, 41.1, 51.8, 60.6, 70.2, 79.4, 114.9, 127.6, 128.1, 128.7, 130.3, 130.6, 137.3, 155.7, 157.7, 173.8. ESMS m/z 428 (M+H)⁺.

(2R,4S)-5-(4-Benzyloxy-phenyl)-4-(3,3,3-trifluoro-2-methoxy-2-phenyl-propionylamino)-pentanoic acid methyl ester

Compound $\mathbf{6}$ (\mathbb{R}^1 = Me) was similarly hydrogenated over 10% Pd-C in EtOAc, and subsequently converted to the corresponding Mosher amide by sequential deprotection (TFA in

CH₂Cl₂) and coupling (BOP/DIPEA/DMF) of (R)-(+)- α -methoxy- α -(trifluoromethyl)phenylacetic acid. After standard workup according to general procedure A, ¹H NMR analysis of the crude product provided a single set of signals: (500 MHz, CDCl₃) δ 1.71-1.82 (m, 1H), 1.94-2.05 (m, 1H), 2.33-2.47 (m, 2H), 2.71 (dd, J = 13.8, 7.4 Hz, 1H), 2.83 (dd, J = 13.8, 6.5 Hz, 1H), 3.26 (s, 3H), 3.68 (s, 3H), 4.21-4.31 (m, 1H), 5.04 (s, 2H), 6.78 (d, J = 9.2 Hz, 1H), 6.88 (d, J = 8.3 Hz, 2H), 7.04 (d, J = 9.2 Hz, 2H), 7.14-7.48 (m, 10H).

General Procedure A: Preparation of compounds (2a)-(2g).

Example: synthesis of (S)-5-(4-Benzyloxy-phenyl)-4-(7-phenyl-heptanoylamino)-pentanoic acid (2b).

Compound $\mathbf{6}$ (R¹ = Me) (3.0 g, 0.0073 mol) was added to TFA (10 mL) at 0 °C with stirring. After 10 min, ice was added,

and the mixture extracted into EtOAc. The extracts were washed with K2CO3 solution (20 % w/v) and brine, dried with MgSO4, and evaporated to afford 2.23 g (98 %) of crude product. The crude material was dissolved in dry DMF (10 mL) and added dropwise to a solution of DIPEA (2.03 g, 2.74 mL, 0.0158 mol), 7-phenylhept-6-ene-oic acid (~1:1 mixture of E- and Z-isomers, 1.6 g, 0.0079 mol) and BOP (3.48 g, 0.0079 mol) in dry DMF (5 mL). After stirring overnight, the mixture was diluted with water (50 mL) and extracted with EtOAc. The organic phase was then washed with water, HCl (1 M aqueous), saturated NaHCO3, and dried with MgSO4. The solution was filtered, and the crude mixture hydrogenated over 10% Pd/C. The catalyst was removed by filtration through celite, and the solvent evaporated. The crude material was chromatographed (silica gel, 3:2 Et₂O-petroleum ether) to afford the methyl ester of 2b as a colorless solid (1.98 g, 55 %). 1 H NMR (300 MHz, CDCl₃) δ 1.31 (4H, m), 1.59 (5H, m), 1.84 (1H, m), 2.07 (2H, t, J = 7 Hz), 2.33 (2H, m), 2.58 (2H, t, J = 8 Hz), 2.68 (1H, dd, J = 8, 15 Hz), 2.76 (1H, dd, J = 8, 15 Hz), 3.63 (3H, dd, J = 8, 15 Hz)s), 4.14 (1H, m), 5.01 (2H, s), 5.38 (1H, d, J = 9 Hz), 6.88 (2H, d,

J = 8 Hz), 7.07 (2H, d, J = 10 Hz), 7.11-7.48 (10H, m). ¹³C NMR (75 MHz, CDCl₃) δ 174.4, 172.9, 157.7, 142.8, 137.2, 130.5, 130.0, 128.7, 128.5, 128.4, 128.0, 127.6, 125.8, 114.9, 70.1, 51.9, 50.2, 40.6, 37.0, 36.0, 31.4, 31.1, 29.2, 29.1, 29.0, 25.8. ESMS m/z 502 (M+H)⁺. A mixture of the methyl ester of 2b (0.86 g, 1.7 mmol) and NaOH solution (4 M, 0.85 mL, 3.4 mmol) in MeOH-THF (1:1, 6 mL) was stirred at room temperature overnight. The solvent was removed, and the residue diluted with water. The solution was washed with Et₂O, acidified with 5 % aqueous HCl, and extracted with EtOAc. The organic phase was washed with brine, dried (Na₂SO₄) and the solvent removed under reduced pressure to afford 2b as a white solid (0.81 g, 98 %), m.p. 127.7-129.5 °C (EtOAc-petroleum). 1 H NMR (500 MHz, CDCl $_3$) δ 1.21-1.34 (m, 4H), 1.47-1.70 (m, 5H), 1.85-1.96 (m, 1H), 2.03-2.15 (m, 2H), 2.37 (t, J = 7.0 Hz, 2H), 2.58 (t, J = 7.7 Hz, 2H), 2.68-2.79 (m, 2H), 4.14-4.24 (m, 1H), 5.02 (s, 2H), 5.33 (br d, <math>J = 8.8 Hz, 1H), 6.89 (d, J = 8.6 Hz, 2H), 7.06 (d, J = 8.6 Hz, 2H), 7.12-7.44 (m, 10H). 13 C NMR (75 MHz, CDCl₃) δ 177.0, 173.7, 157.7, 142.6, 137.0, 130.3, 129.5, 128.6, 128.4, 128.2, 127.9, 127.5, 125.6, 114.9, 70.0, 49.9, 40.4, 36.8, 35.8, 31.2, 29.5, 29.0, 28.9, 25.6, with one resonance obscured. $\left[\alpha\right]_{\text{D}}^{26}$ = -3° (c 1.0, MeOH). ESHRMS $\left[\text{M+H}\right]^{+}$ for C₃₁H₃₇NO₄: Calcd. 488.2795 Found 488.2793. Retention time (rp-HPLC): 8.6 min (method D), 21.2 min (method A).

Also obtained in this fashion were the following:

(S)-5-(4-Benzyloxy-phenyl)-4-(6-phenyl-hexanoylamino)-pentanoic acid (2a).

From 6-phenylhexanoic acid and 6 $(R^1 = Et)$ to give the ethyl ester of **2a** (55% yield): chromatographed on silica gel using 50:40:10 petroleum ether-

 $CH_2Cl_2-EtOAc.$ ¹H NMR (300 MHz, $CDCl_3$) δ 1.26 (t, J = 7.2 Hz, 3H), 1.28-1.90 (m, 9H), 2.11 (t, J = 7.4 Hz, 2H), 2.29-2.38 (m, 2H), 2.60 (t, J= 7.6 Hz, 2H), 2.71-2.77 (m, 2H), 4.12 (q, J = 7.1 Hz, 2H), 5.03 (s, 1.00 m)2H), 5.55 (br d, J = 8.7 Hz, 1H), 6.91 (d, J = 8.6 Hz, 2H), 7.10 (d, J = 8.6 Hz, 2H), 7.16-7.44 (m, 10H). ¹³C NMR (75 MHz, CDCl₃) δ 173.8, 172.8, 157.5, 142.4, 136.9, 130.3, 129.9, 128.5, 128.3, 128.2, 127.8, 127.4, 125.6, 114.7, 69.9, 60.5, 50.1, 40.3, 36.7, 35.6, 31.1, 31.0, 28.7, 28.6, 25.5, 14.1. ESMS m/z 502 (M+H)⁺, 1003 (2M+H)⁺. Hydrolysis of the ethyl ester of 2a (18.2 mg, 0.036 mmol) with NaOH solution (4 M, 18 μ L, 0.072 mmol) in MeOH-THF (1:1, 150 μ L), followed by work up and purification by rp-hplc (method D) gave 2a as a white powder (5.7 mg, 33%): 1 H NMR (500 MHz, d_{6} -DMSO) δ 1.04-1.75 (m, 8H), 1.89-2.05 (m, 2H), 2.05-2.27 (m, 2H), 2.40-2.68 (m, 4H), 3.80-3.94 (m, 1H), 5.02 (s, 2H), 6.88 (d, J = 7.6 Hz, 2H), 7.02-7.46 (m, 12H), 7.55 (br d, J)= 8.3 Hz, 1H), 11.98 (br s, 1H). 13 C NMR (75 MHz, d_6 -DMSO) δ 174.3, 171.6, 156.7, 142.3, 137.2, 131.0, 130.1, 128.4, 128.2, 127.7, 127.6, 125.6, 114.3, 69.1, 49.3, 35.4, 35.1, 30.8, 30.5, 29.2, 28.1, 25.1.

 $[\alpha]_D^{22} = -11^\circ \text{ (c 0.17, MeOH)}.$ FABHRMS $[M+H]^+$ for $C_{30}H_{35}NO_4$: Calcd. 474.2637 Found 474.2645. Retention time (rp-HPLC): 7.1 min (method D), 19.6 min (method A).

(S)-5-(4-Benzyloxy-phenyl)-4-(8-phenyl-octanoylamino)-pentanoic acid (2c).

From 8-phenyloctanoic acid and $\mathbf{6}$ (\mathbb{R}^1 = Et) to give the ethyl ester of $\mathbf{2c}$ (51% yield): chromatographed on silica gel using 50:40:10 petroleum ether-CH₂Cl₂-EtOAc.

¹H NMR (300 MHz, CDCl₃) δ1.20 (t, J = 7.1 Hz, 3H), 1.27-1.55 (m, 10H), 2.06 (t, J = 7.4 Hz, 2H), 2.52 (t, J = 7.4 Hz, 2H), 2.74-2.79 (m, 2H), 4.10 (q, J = 7.0 Hz, 2H), 4.84-4.88 (m, 1H), (4.94, s, 2H), 5.80 (br d, J = 15.8 Hz, 1H), 6.00 (d, J = 8.2 Hz, 1H), 6.82-7.36 (m, 15H). ¹³C NMR (75 MHz, CDCl₃) δ 172.5, 165.9, 157.5, 147.2, 142.5, 136.7, 130.1, 128.6, 128.3, 128.1, 128.0, 127.7, 127.2, 121.0, 114.7, 69.7, 60.2, 50.6, 39.3, 36.3, 35.7, 31.2, 29.0, 28.9, 28.1, 25.4, 14.0, with one resonance obscured. ESMS m/z 530 (M+H)⁺, 1059 (2M+H)⁺. Hydrolysis of the ethyl ester of **2c** (56.3 mg, 0.11 mmol) with NaOH solution (4 M, 53 μL, 0.22 mmol) in MeOH-THF (1:1, 0.3 mL) followed by workup and purification by rp-hplc (method C) gave **2c** a white powder (21.3 mg, 40%): ¹H NMR (300 MHz, CDCl₃) δ 1.14-1.37 (m, 6H), 1.45-1.70 (m, 5H), 1.82-1.95 (m, 1H), 2.01-2.16 (m, 2H), 2.30-2.43 (m, 2H),

2.57 (t, J = 8.1 Hz, 2H), 2.66-2.78 (m, 2H), 4.14-4.23 (m, 1H), 5.01 (s, 2H), 5.45 (d, J = 9.0 Hz, 1H), 6.9 (d, J = 8.4 Hz, 2H), 7.0 (d, J = 8.4 Hz, 2H), 7.12-7.44 (m, 10H), with one resonance obscured. ¹³C NMR (300 MHz, CDCl₃) δ 177.5, 174.0, 157.8, 142.9, 137.1, 130.5, 129.7, 128.7, 128.5, 128.4, 128.1, 127.6, 125.7, 115.1, 70.2, 50.0, 40.5, 37.0, 36.1, 31.6, 31.4, 29.6, 29.3, 29.2, 25.8, with one resonance obscured. $[\alpha]_D^{22} = -5^\circ$ (c 1.0, MeOH). ESHRMS [M+H]⁺ for $C_{32}H_{39}NO_4$: Calcd. 502.2950 Found 502.2960. Retention time (rp-HPLC): 10.3 min (method D), 22.9 min (method A).

Supporting Information: ChemBioChem, D-Tyrosine as a chiral precursor. Hansford et al.

(S)-5-(4-Benzyloxy-phenyl)-4-[7-(2-methoxy-phenyl)-heptanoylamino]-pentanoic acid (2d).

7-(2-methoxy-phenyl)-

Η

heptanoic acid and $\mathbf{6}$ (R¹ = Me) to give the methyl ester of $2\mathbf{d}$ (53% yield): chromatographed on silica gel using 50:40:10 CH₂Cl₂-petroleum-EtOAc. ¹H NMR (300 MHz, CDCl₃) δ 1.30 (m, 4H), 1.60 (m, 5H), 1.84 (m, 1H), 2.07 (t, J = 8 Hz, 2H), 2.28, (dd, J = 12, 7 Hz, 1H), 2.38 (dd, J = 12, 7 Hz, 1H), 2.57 (dd, J = 8 Hz, 2H), 2.67 (dd, J = 15, 7 Hz, 1H), 2.75 (dd, J = 15, 7 Hz, 1H), 3.62 (s, 3H), 3.78 (s, 3H), 4.11 (m, 1H), 4.99 (s, 2H), 5.28 (d, J = 9 Hz, 1H), 6.82 (t, J = 7 Hz, 1H); 6.87 (d, J = 7 Hz, 2H), 7.06 (d, J = 9 Hz, 2H), 7.07-7.42 (m, 8H). ¹³C NMR (75 MHz, CDCl₃) δ 25.8, 29.0, 29.3, 29.4, 29.8, 29.9, 30.3, 31.1, 37.1, 40.6, 50.2, 51.9, 55.4, 70.2, 110.4, 115.0, 120.5, 127.0, 127.7, 128.1, 128.7,

129.9, 130.0, 130.6, 131.2, 137.2, 157.7, 173.1, 174.4. ESMS m/z 546 $(M+H)^{\dagger}$, 1091 $(2M+H)^{\dagger}$. Hydrolysis of the methyl ester of **2d** (148 mg, 0.27 mmol) with LiOH solution (4 M, 0.14 mL, 0.54 mmol) in MeOH-THF (1:1, 0.6 mL) gave, after workup, 2d as a colourless solid (106 mg, 76%): 1 H NMR (500 MHz, d_{4} -MeOH) δ 1.13-1.68 (m, 9H), 1.82-1.91 (m, 1H), 2.04-2.13 (m, 2H), 2.25-2.39 (m, 2H), 2.2-2.64 (m, 3H), 2.76 (dd, J =13.8, 5.7 Hz, 1H), 3.77 (s, 3H), 4.02-4.12 (broad, m, 1H), 4.98 (s, 2H), 6.78-6.91 (m, 4H), 7.03-7.15 (m, 4H), 7.26-7.41 (m, 5H), with two resonances obscured. 13 C NMR (75 MHz, d_4 -MeOH) δ 177.2, 176.1, 159.0, 139.0, 132.24, 132.20, 131.4, 130.9, 129.6, 128.9, 128.7, 128.1, 121.5, 115.9, 111.5, 71.1, 55.8, 51.7, 41.4, 37.4, 32.0, 31.3, 31.1, 30.4, 30.2, 27.2, with two resonances obscured. $[\alpha]_D^{22} = -5.3^{\circ}$ (c 0.97, MeOH). ESHRMS $[M+H]^+$ for $C_{32}H_{39}NO_5$: Calcd. 518.2899 Found 518.2885. Retention time (rp-HPLC): 9.0 min (method D), 24.4 min (method B).

Supporting Information: ChemBioChem, D-Tyrosine as a chiral precursor. Hansford et al.

(S)-4-[7-(3-Acetylamino-phenyl)-heptanoylamino]-5-(4-benzyloxy-phenyl)-pentanoic acid (2e).

From 7-(3-acetylamino-phenyl)-heptanoic acid and $\mathbf{6}$ (\mathbb{R}^1 = Et) to give the ethyl ester of $\mathbf{2e}$ OOH NHAc (36% yield): chromatographed on silica gel using 30:70 acetone-petroleum. 1 H NMR (300 MHz, CDCl₃) δ 1.23 (t, J = 7.3 Hz, 3H) superimposed upon 1.19-1.37 (m, 3H), 1.48-1.95 (m, 7H), 2.03-2.20

(m, 2H) superimposed upon 2.15 (s, 3H), 2.23-2.44 (m, 2H), 2.57 (t, J = 7.3 Hz, 2H), 2.63-2.82 (m, 2H), 4.1 (q, J = 7.3 Hz, 2H)superimposed upon 4.04-4.23 (m, 1H), 5.02 (s, 2H), 5.55 (d, J = 8.9Hz, 1H), 6.89 (d, J = 7.7 Hz, 2H), 7.08 (d, J = 8.7 Hz, 2H), 7.15-7.47 (m, 9H), 7.53 (br s, 1H). ^{13}C NMR (75 MHz, CDCl $_3)$ δ 14.4, 24.8, 28.5, 28.9, 29.0, 30.9, 31.4, 35.7, 36.8, 40.6, 50.3, 60.8, 70.2, 115.0, 117.5, 120.1, 124.7, 127.7, 128.1, 128.8, 129.0, 130.2, 130.5, 137.2, 138.0, 143.7, 157.7, 168.6, 173.1, 174.0, with one resonance obscured. ESMS m/z 573 (M+H)⁺. Hydrolysis of the ethyl ester of 2e (107 mg, 0.19 mmol) with LiOH solution (4 M, 0.10 mL, 0.38 mmol) in MeOH-THF (1:1, 0.4 mL) gave, after workup, 2e as an opaque gum (81 mg, 78%): 1 H NMR (500 MHz, d_{4} -MeOH) δ 1.12-1.33 (m, 5H), 1.40-1.50 (m, 1H), 1.52-1.70 (m, 3H), 1.82-1.91 (m, 1H), 2.04-2.11 (m, superimposed upon 2.09 (s, 3H), 2.23-2.36 (m, 2H), 2.54 (t, J = 7.6Hz, 2H), 2.62 (dd, J = 8.5, 13.8 Hz, 1H), 2.75 (dd, J = 5.7, 13.8 Hz, 1H), 4.01-4.11 (m, 1H), 4.98 (s, 2H), 6.87 (d, J=8.5 Hz, 2H), 6.89(d, J = 7.8 Hz, 1H), 7.10 (d, J = 8.5 Hz, 2H), 7.16 (t, J = 7.8 Hz,1H), 7.24-7.42 (m, 7H), with three resonances obscured. 13 C NMR (75 MHz, d_4 -MeOH) δ 177.2, 175.9, 171.6, 158.9, 144.7, 139.9, 138.8, 132.2, 131.3, 129.8, 129.6, 128.9, 128.6, 125.5, 121.3, 118.6, 115.9, 71.0, 51.6, 41.4, 37.3, 36.8, 32.3, 31.9, 31.0, 29.9, 27.1, 24.0, with one resonance obscured. $\left[\alpha\right]_{D}^{22} = -2.6^{\circ} (c 1.1, MeOH)$. ESHRMS $\left[M+H\right]^{+}$ for $C_{33}H_{40}N_2O_5$: Calcd. 545.3008 Found 545.2956. Retention time (rp-HPLC): 10.7 min (method F), 14.7 min (method A).

Н

(S)-5-(4-Benzyloxy-phenyl)-4-(7-pyridin-3-yl-heptanoylamino)-pentanoic acid (2f).

From 7-pyridin-3-yl-heptanoic

acid and $6 (R^1 = Me)$ to give the methyl ester of **2f** (26% yield): chromatographed on silica using 70:30 EtOAc-petroleum. H NMR (300 MHz, CDCl₃) δ 1.14-1.42 (m, 4H), 1.46-1.94 (m, 5H), 1.82-1.95 (m, 1H), 2.08 (t, J = 8 Hz, 2H), 2.34 (m, 2H), 2.59 (t, J = 8 Hz, 2H), 2.69 (dd, J = 7, 14 Hz, 1H), 2.77 (dd, J = 7, 14 Hz, 1H), 3.65 (s,3H), 4.07-4.22 (m, 1H), 5.03 (s, 2H), 5.36 (br d, J = 9 Hz, 1H), 6.90(d, J = 9 Hz, 2H), 7.9 (d, J = 9 Hz, 2H), 7.17-7.52 (m, 7H), 8.42 (br)s, 2H). 13 C NMR δ (75 MHz, CDCl₃) δ 25.7, 29.0, 29.1, 29.9, 31.0, 31.2, 33.1, 37.0, 40.6, 50.3, 51.9, 70.2, 115.0, 123.7, 127.7, 128.1, 128.8, 130.1, 130.6, 136.6, 137.2, 146.8, 149.4, 157.7, 172.9, 174.4, with one resonance obscured. ESMS m/z 503 (M+H)⁺. Hydrolysis of the methyl ester of 2f (66 mg, 0.13 mmol) with NaOH solution (1 M, 0.26 mL, 0.26 mmol) in MeOH-THF (1:1, 1.0 mL) gave, after workup, 2f as white solid (61 mg, 95%): 1 H NMR (500 MHz, d_{6} -DMSO) δ 1.03-1.27 (m, 4H), 1.30-1.54 (m, 5H), 1.58-1.70 (m, 1H), 1.84-2.01 (m, 2H), 2.03-2.25 (m, 2H), 2.42-2.59 (m, 4H), 3.78-3.89 (br m, 1H), 4.98 (s, 2H), 6.84 (d, J = 8.5 Hz, 2H), 7.04 (d, J = 8.1 Hz, 2H), 7.18-7.40 (m, 3.18 (m,5H), 7.46-7.57 (m, 2H), 8.28-8.41 (m, 2H), with two resonances obscured. 13 C NMR (75 MHz, d_6 -DMSO) δ 25.2, 28.2, 28.3, 29.3, 30.5, 32.1, 35.5, 49.4, 69.1, 114.3, 123.4, 127.6, 127.7, 128.4, 130.1,

131.1, 135.7, 137.2, 137.6, 147.0, 149.5, 156.7, 171.7, 174.3, with

Supporting Information: ChemBioChem, D-Tyrosine as a chiral precursor. Hansford et al. two resonances obscured. $\left[\alpha\right]_{D}^{22} = -0.94^{\circ}$ (c 1.0, DMSO). ESHRMS $\left[M+H\right]^{+}$ for $C_{30}H_{36}N_{2}O_{4}$: Calcd. 489.2746 Found 489.2745. Retention time (rp-HPLC): 13.7 min (method B), 11.7 min (method I).

(S)-5-(4-Benzyloxy-phenyl)-4-[7-(3-nitro-phenyl)-heptanoylamino]-pentanoic acid (2g).

From 7-(3-nitro-phenyl)- heptanoic acid and $\mathbf{6}$ ($\mathbb{R}^1 = \mathbb{M}e$) to give the methyl ester of $\mathbf{2g}$

(55% yield): chromatographed on silica gel using 0.5% MeOH in CH2Cl2. 1 H NMR (300 MHz, CDCl₃) δ 1.30 (m, 4H), 1.63 (m, 5H), 1.85 (m, 1H), 2.07 (t, J = 8 Hz, 2H), 2.32 (m, 2H), 2.67 (t, J = 8 Hz, 2H) superimposed upon 2.71 (m, 2H), 3.62 (s, 3H), 4.13 (m, 1H), 5.00 (s, 2H), 5.31 (br d, J = 9 Hz, 1H), 6.87 (d, J = 9 Hz, 2H), 7.05 (d, J = 99 Hz, 2H), 7.35 (m, 6H), 7.46 (m, 1H), 8.0 (m, 2H). ¹³C NMR (75 MHz, $CDCl_3$) δ 25.5, 28.8, 28.9, 29.7, 30.8, 31.0, 35.5, 36.8, 40.4, 50.1, 51.7, 70.0, 114.8, 120.9, 123.2, 127.4, 127.9, 128.6, 129.1, 129.9, 130.4, 134.7, 137.0, 144.6, 157.6, 172.6, 174.2, with one resonance obscured. ESMS m/z 547 (M+H)⁺. Hydrolysis of the methyl ester of 2g (90 mg, 0.16 mmol) with NaOH solution (4 M, 80 μ L, 0.33 mmol) in MeOH-THF (1:1, 1.0 mL) gave, after work up, 2g as a hygroscopic white solid (83 mg, 94%): 1 H NMR (500 MHz, d_{4} -MeOH) δ 1.11-1.23 (m, 2H), 1.23-1.33 (m, 2H), 1.40-1.50 (m, 2H), 1.53-1.70 (m, 3H), 1.82-1.91 (m, 1H), 2.02-2.12 (m, 2H), 2.24-2.36 (m, 2H), 2.61 (dd, J = 8.6,13.8 Hz, 1H), 2.67 (t, J = 7.7 Hz, 2H), 2.75 (dd, J = 5.7, 13.8 Hz,

1H), 4.01-4.12 (m, 1H), 4.98 (s, 2H), 6.86 (d, J=8.6 Hz, 2H), 7.10 (d, J=8.6 Hz, 2H), 7.26 (t, J=7.2 Hz, 1H), 7.32 (t, J=7.2 Hz, 2H), 7.36 (m, 2H), 7.44 (t, J=7.8 Hz, 1H), 7.54 (d, J=7.8 Hz, 1H), 7.96-8.03 (m, 2H), with two resonances obscured. ¹³C NMR (125 MHz, d_4 -MeOH) δ 177.1, 175.9, 158.8, 149.7, 146.3, 138.8, 136.0, 132.2, 131.3, 130.4, 129.5, 128.8, 128.5, 124.0, 121.8, 115.7, 71.0, 51.5, 41.2, 37.1, 36.3, 32.1, 31.8, 31.0, 29.9, 29.8, 26.9. $[\alpha]_D^{22} = -4.9^\circ$ (c 0.64, MeOH). ESHRMS $[M+H]^+$ for $C_{31}H_{36}N_2O_6$: Calcd. 533.2644 Found 533.2619. Retention time (rp-HPLC): 12.8 min $(method\ E)$, 20.1 min $(method\ A)$.

Synthesis of (S)-5-(4-Hydroxy-phenyl)-4-(7-phenyl-heptanoylamino)pentanoic acid methyl ester (8) (R^1 = Me)

Compound 2b (R^1 = Me) (872 mg, 1.74 mmol) was hydrogenated over 10% Pd-C in THF (20 mL) containing HCl solution (1 M, 2.5 mL). The solution was filtered (Celite) and the bulk of

$$HO$$
 O
 O
 R^1

the solvent removed under reduced pressure. The solution was diluted with water and extracted (EtOAc). The combined extracts were washed with water, brine and dried with MgSO₄. Evaporation of the solvent *in vacuo* afforded **8** (R¹ = Me) (702 mg, 98 %). 1 H NMR (300 MHz, CDCl₃) δ 1.17-1.39 (m, 4H), 1.45-1.74 (m, 5H), 1.81-1.96 (m, 1H), 2.07 (t, J = 6.0 Hz, 2H), 2.25-2.46 (m, 2H), 2.54-2.59 (m, 2H), 2.63-2.73 (m, 2H), 3.64 (s, 3H), 4.10-4.25 (m, 1H), 5.51 (d, J = 9.0 Hz, 1H), 6.73 (d, J

= 9.0 Hz, 2H), 6.98 (d, J = 9.0 Hz, 2H), 7.09-7.31 (m, 5H). ¹³C NMR (75 MHz, CDCl₃) δ 174.6, 173.7, 155.4, 142.9, 130.4, 128.8, 128.6, 128.4, 125.8, 115.6, 52.0, 50.6, 40.8, 37.0, 36.0, 31.4, 31.1, 29.3, 29.1, 29.0, 25.8. ESMS m/z 412 (M+H)⁺.

Similarly, using the above procedure, compound **8** (\mathbb{R}^1 = Et) was prepared from **2b** (\mathbb{R}^1 = Et): ¹H NMR (300 MHz, CDCl₃) δ 1.18 (t, J = 7.2 Hz, 3H), 1.20-1.35 (m, 4H), 1.45-1.73 (m, 5H), 1.80-1.95 (m, 1H), 2.07 (t, J = 7.50 Hz, 2H), 2.22-2.42 (m, 2H), 2.55 (t, J = 7.7 Hz, 2H), 2.62-2.75 (m, 2H), 4.08 (m, 2H), 4.08-4.22 (m, 1H), 5.65-5.73 (d, J = 9.1 Hz, 1H), 6.74 (d, J = 8.4 Hz, 2H), 6.97 (d, J = 8.4, 2H), 7.10-7.30 (m, 5H), 7.95-8.20 (br s, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 174.0, 173.6, 155.4, 142.6, 130.1, 128.5, 128.3, 128.1, 126.8, 126.5, 115.4, 60.6, 50.3, 40.4, 36.7, 35.7, 31.1, 31.0, 28.9, 28.8, 25.5, 14.0. ESMS 426 (M+H)⁺.

General Procedure B: Preparation of Compounds (2h)-(2p).

Example: synthesis of (S)-4-(7-phenyl-heptanoylamino)-5-[4-(pyridin-2-ylmethoxy)-phenyl]-pentanoic acid (2h).

A mixture of compound $\mathbf{8}$ ($\mathbb{R}^1 = \mathbb{R}^1$) (889 mg, 2.16 mmol), 2-picolylchloride hydrochloride (570 mg, 3.47 mmol) and finely

powdered anhydrous K_2CO_3 (1.45 g, 10.5 mmol) was stirred in dry DMF (7 mL) for 48 h. The mixture was poured onto water (40 mL) and extracted (EtOAc). The combined organic phases were successively washed with

HCl solution (1 M, 30 mL), saturated NaHCO₃ solution, brine, and then dried with MgSO₄. Concentration of the solvent in vacuo afforded the methyl ester of **2h** (747 mg, 69 %): 1 H NMR (300 MHz, CDCl₃) δ 1.15-1.40 (m, 4H); 1.40-1.70 (m, 5H); 1.73-1.85 (m, 1H); 2.08 (t, J = 7.6 Hz,2H); 2.34 (m, 2H); 2.58 (t, J = 7.6 Hz, 2H); 2.69 (dd, J = 15, 6.9 Hz, 1H); 2.77 (dd, J = 15, 6.2 Hz, 1H); 3.64 (s, 3H); 4.06-4.21 (m, 1H); 5.17 (s, 2H); 5.37 (d, J = 9.3 Hz, 1H); 6.91 (d, J = 8.4 Hz, 2H); 7.10 (d, J = 8.4 Hz, 2H); 7.12-7.31 (m, 6H); 7.51 (d, J = 7.5Hz, 1H); 7.71 (dt, J = 7.5, 1.6 Hz, 1H); 8.60 (m, J = 6.0 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 174.4, 173.0, 157.5, 157.3, 149.4, 142.8, 137.0, 130.3, 125.8, 122.8, 121.5, 130.6, 128.5, 128.4, 115.0, 70.8, 51.9, 50.2, 40.6, 37.0, 36.0, 31.4, 31.1, 29.2, 29.1, 29.0, 25.8. ESMS m/z 503 (M+H)⁺. The methyl ester of **2h** (707 mg, 1.41 mmol) was hydrolysed according to the method outlined in general procedure A to yield 2h (608 mg, 89%) as a white solid: 1 H NMR (500 MHz, d_4 -MeOH) δ 1.12-1.31 (m, 4H), 1.40-1.50 (m, 2H), 1.50-1.69 (m, 3H), 1.81-1.91 (m, 1H), 2.01-2.12 (m, 2H), 2.23-2.36 (m, 2H), 2.54 (t, J = 7.6 Hz, 2H), 2.62(dd, J = 8.5, 13 Hz, 1H), 2.75 (dd, J = 5.8, 13 Hz, 1H), 4.00-4.11(m, 1H), 5.09 (s, 2H), 6.89 (d, J = 8.5 Hz, 2H), 7.06-7.25 (m, 7H),7.29-7.37 (m, 1H), 7.55 (d, J = 7.8 Hz, 1H), 7.77-7.87 (m, 1H), 8.45-8.56 (m, 1H), with two resonances obscured. 13 C NMR (125 MHz, d_4 -MeOH) δ 177.1, 175.9, 158.4, 149.7, 143.9, 139.0, 132.6, 131.4, 129.4, 129.2, 126.6, 124.4, 123.3, 115.7, 71.2, 51.5, 41.2, 37.2, 36.8, 32.5, 31.9, 30.9, 30.01, 29.97, 27.0, with one resonance obscured. $[\alpha]_{D}^{26} = -2^{\circ} (c \ 1.0, MeOH).$ ESHRMS $[M+H]^{+}$ for $C_{30}H_{36}N_{2}O_{4}$: Calcd. 489.2746

Supporting Information: ChemBioChem, D-Tyrosine as a chiral precursor. Hansford et al.

Supporting Information: ChemBioChem, D-Tyrosine as a chiral precursor. Hansford et al.

Found 489.2745. Retention time (rp-HPLC): 9.1 min (method I), 14.6

min (method B).

Also obtained in this fashion was:

(S)-4-(7-Phenyl-heptanoylamino)-5-[4-(pyridin-3-ylmethoxy)-phenyl]-pentanoic acid (2i).

Η Prepared from $8 (R^1 = Me)$ (502) 1.22 mmol) 3 – and picolylchloride hydrochloride (300 mg, 1.83 mmol) to afford the methyl ester of 2i (422 mg, 69%). ¹H NMR (300 MHz, CDCl₃) δ 1.14-1.42 (m, 4H), 1.46-1.94 (m, 6H), 2.09 (t, J= 9.0 Hz, 2H), 2.28-2.44 (m, 2H), 2.60 (t, J = 9.0 Hz, 2H), 2.70 (dd, 2H)J = 14.0, 7.0 Hz, 1H), 2.76 (dd, J = 14.0, 6.0 Hz, 1H), 3.65 (s, 3H),4.07-4.22 (m, 1H), 5.03 (s, 2H), 5.38 (d, J = 12 Hz, 1H), 6.90 (d, J= 9.0 Hz, 2H, 7.09 (d, J = 9.0 Hz, 2H), 7.15-7.21 (m, 1H), 7.29-7.51(m, 6H), 8.42 (br s, 2H). 13 C NMR (75 MHz, CDCl₃) δ 174.4, 173.0, 157.3, 149.5, 149.1, 142.8, 135.5, 132.8, 130.6, 128.5, 128.4, 125.8, 123.7, 114.9, 67.7, 51.9, 50.3, 40.6, 37.0, 36.0, 31.4, 31.1, 29.2, 29.1, 29.0, 25.8, with one resonance obscured. ESMS m/z 503 $(M+H)^{\dagger}$. The methyl ester of 2i (360 mg, 0.72 mmol) was hydrolysed according to the method outlined in general procedure A to yield 2i (299 mg, 85%) as a white solid: 1 H NMR (500 MHz, d_4 -MeOH) δ 1.11-1.34 (m, 4H), 1.39-1.51 (m, 2H), 1.51-1.70 (m, 3H), 1.80-1.92 (m, 1H), 2.02-2.12 (m, 2H), 2.23-2.37 (m, 2H), 2.54 (t, J = 7.7 Hz, 2H), 2.63 (dd, J = 8.5,

14.0 Hz, 1H), 2.75 (dd, J = 5.8, 14.0 Hz, 1H), 3.99-4.13 (m, 1H), 4.86 (s, 2H), 6.90 (d, J = 8.6 Hz, 2H), 7.05-7.29 (m, 7H), 7.43 (dd, J = 5.0, 7.8 Hz, 1H), 7.88 (d, J = 7.8 Hz, 1H), 8.43-8.51 (m, 1H), 8.58 (br s, 1H), with two resonances obscured. ¹³C NMR (125 MHz, d₄-MeOH) δ 177.1, 175.9, 158.4, 149.4, 149.2, 143.9, 137.5, 135.4, 132.6, 131.4, 129.4, 129.3, 126.6, 125.2, 115.7, 68.3, 51.5, 41.2, 37.2, 36.8, 32.5, 31.8, 30.9, 30.0, 29.9, 27.0. [α]_D²² = -3.2° (c 1.0, MeOH). ESHRMS [M+H]⁺ for C₃₀H₃₆N₂O₄: Calcd. 489.2746 Found 489.2745. Retention time (rp-HPLC): 7.9 min (method I), 14.2 min (method B).

(S)-5-(4-Cyclohexylmethoxy-phenyl)-4-(7-phenyl-heptanoylamino)pentanoic acid (2j)

Η

Prepared from $8 (R^1 = Et)$ (200

mg, 0.47 mmol) and cyclohexylmethylbromide⁵ (416 mg, 2.35 mmol) to afford the ethyl ester of **2j** (182 mg, 74%): chromatographed on silica gel using 1:3 EtOAc-petroleum ether. The ethyl ester of **2j** (180 mg, 0.35 mmol) was hydrolysed according to the method outlined in general procedure A to yield, after purification by rp-hplc (method D) **2j** (66 mg, 39 %) as a white powder: ¹H NMR (500 MHz, CDCl₃) δ 0.96-1.09 (m, 2H), 1.12-1.35 (m, 7H), 1.46-1.93 (m, 12H), 2.03-2.15 (m, 2H), 2.36 (d, *J* = 7.1 Hz, 2H), 2.58 (d, *J* = 7.7 Hz, 2H), 2.67-2.78 (m, 2H), 3.70 (d, *J* = 6.4 Hz, 2H), 4.12-4.23 (br m, 1H), 5.39 (d, *J* = 8.9 Hz, 1H), 6.80 (d, *J* = 8.6 Hz, 2H), 7.04 (d, *J* = 8.6 Hz, 2H), 7.13-7.19 (m, 3H), 7.23-

7.29 (m, 2H), with one resonance obscured. 13 C NMR (125 MHz, CDCl₃) δ 176.9, 173.7, 158.2, 142.6, 130.2, 128.8, 128.4, 128.2, 125.6, 114.6, 73.5, 49.9, 40.3, 37.7, 36.8, 35.8, 31.2, 29.9, 29.5, 29.0, 28.9, 26.5, 25.8, 25.6, with one resonance obscured. $[\alpha]_D^{26} = -5.5^{\circ}$ (c 0.51, MeOH). ESHRMS [M+H]⁺ for $C_{31}H_{43}NO_4$: Calcd. 494.3263 Found 494.3249. Retention time (rp-HPLC): 11.9 min (method C), 27.7 min (method A).

(S)-5-(4-Cyclopentylmethoxy-phenyl)-4-(7-phenyl-heptanoylamino)pentanoic acid (2k)

Prepared from $8 (R^1 = Et)$ (200 Н 0.47 mmol) mg, and cyclopentylmethyl bromide⁵ (123 mg, 0.76 mmol) to afford the ethyl ester of 2k (184 mg, 76 %): chromatographed on silica gel using 1:3 EtOAc-petroleum ether. ¹H NMR (300 MHz, CDCl₃) δ 1.23 (t, J = 7.3 Hz, 3H) superimposed upon 1.19-1.94 (m, 18H), 2.04-2.14 (m, 2.22-2.45 (m, 3H), 2.60 (t, J = 7.7 Hz, 2H), 2.65-2.84 (m, 2H), 3.79(d, J = 7.1 Hz, 2H), 4.05-4.20 (m, 3H), 5.35 (d, J = 8.8 Hz, 1H),6.81 (d, J = 8.3 Hz, 2H), 7.07 (J = 8.3 Hz, 2H), 7.15-7.32 (m, 5H). 13 C NMR (75 MHz, CDCl $_3$) δ 174.0, 173.6, 155.4, 142.6, 130.1, 128.3, 128.1, 125.5, 115.4, 60.6, 50.4, 40.5, 36.7, 35.7, 31.11, 31.08, 28.9, 28.8, 25.5, 14.1, with six resonances obscured. ESMS 508 $(M+H)^{+}$. The ethyl ester of 2k (180 mg, 0.36 mmol) was hydrolysed according to method outlined in general procedure A to yield, the purification by rp-hplc (method D), 2k (74 mg, 43%) as a white

powder: 1 H NMR (500 MHz, CDCl₃) δ 1.18-1.98 (m, 18H), 2.05-2.16 (m, 2H), 2.23-2.43 (m, 3H), 2.59 (t, J = 7.8 Hz, 2H), 2.70 (dd, J = 6.7, 14.0 Hz, 1H), 2.77 (dd, J = 6.4, 14.0 Hz, 1H), 3.79 (d, J = 7.0 Hz, 2H), 4.13-4.23 (m, 1H), 5.33 (d, J = 8.5 Hz, 1H), 6.83 (d, J = 8.6 Hz, 2H), 7.05 (d, J = 8.6 Hz, 2H), 7.14-7.20 (m, 2H), 7.24-7.30 (m, 3H), with one resonance obscured. 13 C NMR (125 MHz, CDCl₃) δ 175.6, 173.9, 158.2, 142.6, 130.2, 128.7, 128.4, 128.2, 125.6, 114.6, 72.3, 49.8, 40.4, 39.1, 36.8, 35.9, 31.3, 31.2, 30.0, 29.5, 29.0, 28.9, 25.5, 25.4. $[\alpha]_{D}^{26}$ = -5.3° (c 0.52, MeOH). ESHRMS [M+H]⁺ for $C_{30}H_{41}NO_{4}$: Calcd. 480.3106 Found 480.3101. Retention time (rp-HPLC): 15.5 min (method D), 25.4 min (method A).

Synthesis of 5-[4-(Naphthalen-1-ylmethoxy)-phenyl]-4(7-phenyl-heptanoylamino)-pentanoic acid (21)

Prepared from $\mathbf{9}$ (\mathbb{R}^1 = Et) (200 mg, 0.47 mmol) and 1-chloromethylnapthalene (90% purity; remainder 2-

chloromethylnapthalene) (134mg, 0.76 mmol) to afford the ethyl ester of 21 (215 mg, 81%) as a 90:10 mixture of 1- and 2-napthylmethyl isomers. ESMS 566 (M+H) $^+$. The crude 90:10 mixture of ethyl esters (200 mg, 0.35 mmol) was hydrolysed according to the method outlined in general procedure A to yield, after purification by rp-hplc (method E), compound 21 (130 mg, 52%) as a white powder: 1 H NMR (125 MHz, CDCl₃) δ 1.23-1.38 (m, 4H), 1.50-1.72 (m, 5H), 1.87-1.98 (m, 1H), 2.05-

2.18 (m, 2H), 2.40 (t, J = 6.9 Hz, 2H), 2.58 (t, J = 7.4 Hz, 2H), 2.71-2.82 (m, 2H), 4.17-4.28 (br m, 1H), 5.40 (d, J = 8.5 Hz, 1H), 5.45 (s, 2H), 6.99 (d, J = 9.4 Hz, 2H), 7.11 (d, J = 8.2 Hz, 2H), 7.13-7.20 (m, 3H), 7.21-7.29 (m, 2H), 7.43-7.62 (m, 4H), 7.83-7.94 (m, 2H), 8.00-8.08 (m, 1H), with one resonance obscured. ¹³C NMR (75 MHz, CDCl₃) δ 176.5, 173.8, 157.7, 142.6, 133.8, 132.2, 131.5, 130.3, 129.5, 129.0, 128.7, 128.4, 128.2, 126.6, 126.4, 125.9, 125.6, 125.3, 123.7, 115.0, 68.7, 49.8, 40.4, 36.8, 35.8, 31.2, 29.6, 29.0, 28.9, 25.5. $[\alpha]_D^{26} = -6.4^{\circ}$ (c 1.0, MeOH). ESHRMS [M+H]⁺ for $G_{35}H_{39}NO_4$: Calcd. 538.2950 Found 538.2956. Retention time (rp-HPLC): 13.2 min (method D), 24.3 min (method A).

(S)-5-[4-(Naphthalen-2-ylmethoxy)-phenyl]-4-(7-phenyl-

heptanoylamino)-pentanoic acid (2m)

Prepared from **8** (R¹ = Et) (200 mg, 0.47 mmol) and 2-chloromethylnapthalene (137 mg, 0.78 mmol) to afford the ethyl ester of **2m** (230 mg, 87%): chromatographed on silica gel using 1:2 EtOAc-petroleum ether. ¹H NMR (300 MHz, CDCl₃) δ 1.18 (t, J = 7.2 Hz, 3H), 1.15-1.40 (m, 4H), 1.47-1.73 (m, 5H), 1.78-1.92 (m, 1H), 2.07 (t, J = 7.6 Hz, 2H), 2.21-2.45 (m, 2H), 2.58 (t, J = 7.7 Hz, 2H), 2.64-2.82 (m, 2H), 4.09 (q, J = 7.2 Hz, 2H) superimposed upon 4.05-4.22 (m, 1H), 5.19 (s, 2H), 5.34 (d, J = 8.8 Hz, 1H), 6.93 (d, J = 8.6 Hz, 2H), 7.09 (d, J = 8.6 Hz, 2H), 7.13-7.32 (m, 5H), 7.45-7.54

(m, 3H), 7.80-7.91 (m, 4H). 13 C NMR (75 MHz, CDCl₃) δ 173.8, 172.7, 157.5, 142.6, 134.5, 133.3, 133.0, 130.4, 130.0, 128.5, 128.4, 128.2, 127.9, 127.7, 126.3, 126.2, 126.0, 125.6, 125.3, 114.8, 70.1, 60.5, 50.1, 40.4, 36.9, 35.9, 31.3, 31.2, 29.0, 28.9, 28.7, 25.6, 14.2. ESMS 566 $(M+H)^+$. The ethyl ester of 2m (200 mg, 0.35 mmol) was hydrolysed according to the method outlined in general procedure A to yield, after purification by rp-hplc (method E), compound 2m (40 mg, 21%) as a white powder: 1 H NMR (500 MHz, CDCl $_{3}$) δ 1.20-1.36 (m, 4H), 1.50-1.72 (m, 5H), 1.85-2.00 (m, 1H), 2.03-2.20 (m, 2H), 2.38 (t, J= 7.0 Hz, 2H), 2.59 (t, J = <math>7.7 Hz, 2H), 2.68-2.81 (m, 2H), 4.15-4.26(m, 1H), 5.19 (s, 2H), 5.40 (d, J = 9.3 Hz, 1H), 6.95 (d, J = 9.5 Hz,2H), 7.09 (d, J = 8.3 Hz, 2H), 7.12 - 7.19 (m, 3H), 7.21 - 7.30 (m, 2H), 7.46-7.56 (m, 3H), 7.81-7.91 (m, 4H), with one resonance obscured. ^{13}C NMR (75 MHz, CDCl₃) δ 176.6, 174.0, 157.9, 142.8, 134.6, 133.5, 133.2, 130.5, 129.6, 128.6, 128.4, 128.1, 128.0, 126.5, 126.4, 126.3, 125.8, 125.5, 115.2, 70.4, 50.0, 40.6, 36.9, 36.0, 31.4, 29.9, 29.2, 29.1, 25.7, with two resonances obscured. $[\alpha]_D^{26} = -5.6^{\circ}$ (c 1.0, MeOH). ESHRMS $[M+H]^+$ for $C_{35}H_{39}NO_4$: Calcd. 538.2950 Found 538.2956. Retention time (rp-HPLC): 13.6 min (method D), 24.6 min (method A).

(S)-4-(7-Phenyl-heptanoylamino)-5-[4-(3-phenyl-propenyloxy)-phenyl]pentanoic acid (2n)

Prepared from $8 (R^1 = Et)$

(200 mg, 0.47 mmol) and

cinnamyl bromide (149 mg, 0.76 mmol) to afford the ethyl ester of 2n (153 mg, 60%): chromatographed on silica gel using 3:5 EtOAcpetroleum ether. ¹H NMR (300 MHz, CDCl₃) δ 1.20 (t, J = 7.4 Hz, 3H) superimposed upon 1.20-1.42 (m, 4H), 1.45- 1.76 (m, 5H) 1.78-1.96 (m, 1H), 2.08 (t, J = 7.59, 2H), 2.24-2.48 (m, 2H), 2.59 (t, J = 7.68, 2H), 2.65-2.84 (m, 2H), 4.10 (q, J = 7.14, 2H), overlapped with 4.05-4.24 (m, 1H), 4.66 (d, J = 5.6 Hz, 2H), 5.35 (d, J = 8.3 Hz, 1H),6.40 (dt, J = 16.0, 5.8 Hz, 1H), 6.72, (d, J = 16.0 Hz, 1H), 6.88 (d, J = 8.6 Hz, 2H), 7.09 (d, J = 8.6 Hz, 2H), 7.14-7.22 (m, 2H), 7.24-7.48 (m, 8H). 13 C NMR (75 MHz, CDCl₃) δ 173.8, 172.7, 157.3, 142.7, 136.4, 133.0, 130.4, 129.9, 128.6, 128.4, 128.2, 128.1, 126.6, 125.6, 124.5, 114.7, 68.6, 60.6, 50.1, 40.4, 36.9, 35.9, 31.3, 31.2, 29.1, 29.0, 28.7, 25.6, 14.2. ESMS 542 $(M+H)^{+}$. The ethyl ester of **2n** (145) mg, 0.27 mmol) was hydrolysed according to the method outlined in general procedure A to yield, after purification by rp-hplc (method C) **2n** (47 mg, 34%) as a white powder: 1 H NMR (500 MHz, CDCl₃) δ 1.20- $1.34 \, (m, 4H), 1.47-1.71 \, (m, 5H), 1.90-1.96 \, (br m, 1H), 2.03-2.15 \, (m, 1H)$ 2H), 2.33-2.46 (br m, 2H), 2.58 (t, J = 7.7 Hz, 2H), 2.68-2.80 (m, 2H), 4.14-4.25 (br m, 1H), 4.65 (d, J = 5.8 Hz , 2H), 5.36 (br d, J =8.4 Hz, 1H), 6.39 (dt, J = 16.0, 5.8 Hz, 1H), 6.71 (d, J = 16.0 Hz, 1H), 6.88 (d, J = 8.6 Hz, 2H), 7.07 (d, J = 8.3 Hz, 2H), 7.13-7.19 (m, 3H), 7.22-7.30 (m, 3H), 7.32 (t, J = 7.7 Hz, 2H), 7.38-7.42 (m, 3H)2H), with one resonance obscured. 13 C NMR (75 MHz, CDCl₃) δ 173.8, 157.5, 142.6, 136.4, 133.0, 130.3, 129.4, 128.6, 128.4, 128.3, 127.9, 126.6, 125.6, 124.4, 114.8, 68.6, 49.8, 40.3, 36.8, 35.9, 31.2, 29.6,

Supporting Information: ChemBioChem, D-Tyrosine as a chiral precursor. Hansford et al.

Supporting Information: ChemBioChem, D-Tyrosine as a chiral precursor. Hansford et al. 29.0, 28.9, 25.6, with two resonances obscured. $[\alpha]_D^{26} = -5.3^{\circ}$ (c 1.0, MeOH). ESHRMS $[M+H]^+$ for $C_{33}H_{39}NO_4$: Calcd. 514.2950 Found 514.2960. Retention time (rp-HPLC): 11.5 min (method D), 23.6 min (method A).

(S)-5-(4-Isobutoxy-phenyl)-4-(7-phenyl-heptanoylamino)-pentanoic acid (20)

Prepared from $8 \, (R^1 = Et) \, (200 \, mg, \, 0.47 \, mmol)$ and 1-bromo-2-methylpropane (104 mg, 0.76 mmol) to afford the ethyl ester of $20 \, mmol$

(206 mg, 90%). ¹H NMR (300 MHz, CDCl₃) δ 1.01 (d, J = 6.8 Hz, 6H), 1.18-1.40 (m, 4H), 1.22 (t, J = 7.2 Hz, 3H), 1.46-1.74 (m, 5H), 1.79-1.92 (m, 1H), 2.05-2.11 (m, 3H), 2.22-2.44 (m, 2H), 2.59 (t, J = 7.7 Hz, 2H), 2.63-2.82 (m, 2H), 3.70 (d, J = 5.5 Hz, 2H), 4.09 (q, J = 7.0 Hz, 2H) superimposed upon 4.04-4.20 (m, 1H), 5.35 (d, J = 8.5 Hz, 1H), 6.81 (d, J = 8.5 Hz, 2H), 7.06 (d, J = 8.5 Hz, 2H), 7.13-7.31 (m, 5H). ¹³C NMR (75 MHz, CDCl₃) δ 173.8, 172.7, 158.0, 142.7, 130.3, 129.3, 128.5, 128.4, 128.2, 125.6, 114.4, 74.4, 60.5, 50.1, 40.3, 36.9, 35.9, 31.2, 29.0, 28.9, 28.6, 28.3, 25.6, 19.3, 14.2. ESMS 482 (M+H)⁺. The ethyl ester of **2o** (200 mg, 0.42 mmol) was hydrolysed according to the method outlined in general procedure A to yield, after purification by rp-hplc (method D) **2o** (111 mg, 49%) as a white powder: ¹H NMR (500 MHz, CDCl₃) δ 1.01 (d, J = 6.4 Hz, 6H), 1.19-1.37 (m, 4H), 1.45-1.70 (m, 5H), 1.85-1.97 (m, 1H), 2.00-2.15 (m, 3H), 2.31-2.45 (br m, 2H), 2.58 (t, J = 7.7 Hz, 2H), 2.67-2.80 (m,

2H), 3.68 (d, J = 6.5 Hz, 2H), 4.12- 4.25 (br m, 1H), 5.32 (d, J = 8.9 Hz, 1H), 6.82 (d, J = 8.4 Hz, 2H), 7.05 (d, J = 8.4 Hz, 2H), 7.13-7.20 (m, 2H), 7.23-7.30 (m, 3H), with one resonance obscured. ¹³C NMR (75 MHz, CDCl₃) δ 175.6, 173.9, 158.2, 142.6, 130.2, 128.7, 128.4, 128.3, 125.6, 114.6, 74.42, 49.8, 40.4, 36.8, 35.8, 31.3, 31.2, 30.0, 28.94, 2.87, 28.3, 25.5, 19.3. [α]_D²⁶ = -3.5° (c 0.91, MeOH). ESHRMS [M+H]⁺ for C₂₈H₃₉NO₄: Calcd. 454.2950 Found 454.2954. Retention time (rp-HPLC): 10.9 min (method D), 23.1 min (method A).

(S)-5-(4-Heptyloxy-phenyl)-4-(7-phenyl-heptanoylamino)-pentanoic acid (2p)

Prepared from $8 \, (R^1 = Et)$ (200 mg, 0.47 mmol) and 1bromoheptane (136 mg, 0.76 mmol) to afford the ethyl ester of $2p \, (169 \, mg, 68\%)$:

chromatographed on silica gel using 1:3 EtOAc-petroleum ether. 1 H NMR (300 MHz, CDCl₃) δ 0.89 (t, J = 6.8 Hz, 3H), 1.22 (t, J = 7.1 Hz, 3H) superimposed upon 1.20-1.68 (m, 17H), 1.71-1.79 (m, 3H), 2.08 (t, J = 7.5 Hz, 2H), 2.23-2.44 (m, 2H), 2.59 (t, J = 7.7 Hz, 2H), 2.64-2.82 (m, 2H), 3.90 (t, J = 6.6 Hz, 2H), 4.10 (q, J = 7.0 Hz, 2H) superimposed upon 4.01-4.20 (m, 1H), 5.35 (d, J = 8.8 Hz, 1H), 6.81 (d, J = 8.6 Hz, 2H), 7.07 (d, J = 8.6 Hz, 2H), 7.13-7.32 (m, 5H). 13 C NMR (75 MHz, CDCl₃) δ 173.8, 172.7, 157.8, 142.6, 130.3, 129.3, 128.4, 128.2, 125.6, 114.4, 67.9, 60.5, 50.1, 40.3, 36.9, 35.9, 31.8, 31.2,

29.3, 29.1, 28.9, 28.7, 26.0, 25.6, 22.6, 14.2, 14.1, with two resonances obscured. ESMS 524 $(M+H)^{+}$. The ethyl ester of 2p (165 mg, 0.32 mmol) was hydrolysed according to the method outlined in general procedure A to yield, after purification by rp-hplc (method D), 2p (73 mg, 47%) as a white powder. ¹H NMR (500 MHz, CDCl₃) δ 0.89 (t, J = 6.9 Hz, 3H), 1.20-1.68 (m, 17H), 1.71-1.79 (m, 2H), 1.86-1.95 (m, 1H), 2.04-2.15 (m, 2H), 2.32-2.41 (m, 2H), 2.59 (t, J = 7.7 Hz, 2H), 2.71 (dd, J = 14.2, 6.4 Hz, 1H) superimposed upon 2.76 (dd, J =14.1, 6.8 Hz, 1H), 3.90 (t, J = 6.6 Hz, 2H), 4.14-4.23 (br m, 1H), 5.35 (d, J = 9.0, 1H), 6.81 (d, J = 8.4 Hz, 2H), 7.05 (d, J = 8.3 Hz, 2H), 7.13-7.19 (m, 2H), 7.24-7.30 (m, 3H), with one resonance obscured. 13 C NMR (75 MHz, CDCl₃) δ 176.1, 173.8, 158.1, 142.6, 130.2, 128.8, 128.4, 128.3, 125.6, 114.6, 68.0, 49.8, 40.35, 36.8, 35.9, 31.8, 31.3, 31.2, 29.9, 29.3, 29.1, 29.0, 28.9, 26.0, 25.6, 22.6, 14.0. $[\alpha]_D^{26} = -4.5^{\circ} (c \ 0.71, MeOH)$. ESHRMS $[M+H]^+$ for $C_{31}H_{45}NO_4$: Calcd. 496.3419 Found 496.3399. Retention time (rp-HPLC): 14.5 min (method C), 29.1 min (method A).

(S)-5-(4-Hydroxy-phenyl)-4-(7-phenyl-heptanoylamino)-pentanoic acid (2q)

Compound $8 \, (R^1 = Et) \, (200 \, mg, \, 0.47 \,$ mmol) was hydrolysed according to the method outlined in general procedure $HO^2 \,$ A to yield, after purification by rp-

hplc (method D), 2q as a white powder (97 mg, 52%). ¹H NMR (500 MHz,

95:5 CDCl₃-DMSO- d_6) δ 0.92-1.05 (m, 4H), 1.19-1.34 (m, 5H), 1.43-1.53 (m, 1H), 1.78 (t, J = 7.3 Hz, 2H), 1.88-2.03 (m, 2H), 2.27 (t, J = 8.0 Hz, 2H) superimposed upon 2.29 (dd, J = 13.9, 7.4 Hz 1H), 2.39 (dd, J = 13.9, 6.4. Hz, 1H), 3.65-3.76 (m, 1H), 6.38 (s, 1H) superimposed upon 6.40 (d, J = 8.4 Hz, 2H), 6.66 (d, J = 9.3 Hz, 2H), 6.02-6.86 (m, 3H), 6.91-6.96 (m, 2H), 8.39 (s, 1H), with one resonance obscured. ¹³C NMR (75 MHz, 95:5 CDCl₃-DMSO- d_6) δ 175.8, 173.3, 156.1, 143.0, 130.6, 129.0, 128.7, 128.5, 125.9, 115.6, 50.4, 36.8, 36.1, 31.6, 31.5, 29.4, 29.3, 26.0, with two resonances obscured. [α]_D²⁶ = -2.6° (c 1.0, MeOH). ESHRMS [M+H]⁺ for C₂₄H₃₁NO₄: Calcd. 398.2324 Found 398.2345. Retention time (rp-HPLC): 18.0 min (method B), 15.1 min (method G).

Synthesis of (5-carboxypentyl)triphenylphosphonium bromide

6-bromohexanoic acid (50 g, 0.26 mol) and triphenylphosphine (67.2 g, 0.26 mol) were heated at 140 $^{\circ}$ C under argon. After 16 h, a glassy solid was obtained. Recrystallisation from CHCl₃/ether (a seed crystal was added to

aid crystallization) afforded pure title compound as a white solid, (95.7 g, 82%).

Synthesis of (5-Ethoxycarbonyl-pentyl)-triphenyl-phosphonium bromide

Ethyl 6-bromohexanoate (73 g, 0.32 mol) and triphenylphosphine (82.8 g, 0.32 mol) were heated at 90° C under argon. After 16 h, a translucent amorphous solid was obtained. The material was stored under vacuum over P_2O_5 , and used without further purification.

General procedure C: Preparation of Substituted and Unsubstituted Phenylalkanoic Acids.

Example: synthesis of 7-phenylheptanoic acid.

Benzaldehyde (6.63q, 0.062 mol, 6.35 mL) in dry

THF (20 mL) was added dropwise to a suspension of NaH (60 % dispersion, 5.51 g, 0.138 mol) and (5-carboxypentyl)triphenylphosphonium bromide (30 g, 0.066 mol) in dry THF (260 mL). After stirring overnight, the solvent was removed, and the residue suspended in water (300 mL). The solution was made alkaline (pH 12-14) with NaOH solution (4 M) and extracted with EtOAc. The basic solution was then acidified (conc. HCl), extracted with Et₂O, and the combined extracts washed with brine and dried with MgSO₄. Removal of the solvent afforded 16.5 g of crude product which was purified by chromatography (silica gel, 1:5 EtOAc-petroleum ether, increasing to 1:1 EtOAc-petroleum ether toward completion) to give 7-phenyl-hept-6-enoic acid (ca. 1:1 mixture of E- and Z-isomers; 10.81g, 85 %). Hydrogenation of this mixture using 10% Pd-C in EtOAc afforded the title compound as a pale yellow oil (quantitative): 1H NMR (300 MHz, CDCl₃) δ 1.33 (m, 4H), 1.61 (m, 4H), 2.31 (t, J = 7.5 Hz, 2H), 2.58 (t, J = 7.7 Hz, 2H), 7.20 (m, 5H), 11.57 (br s, 1H). ¹³C NMR

(75 MHz, CDCl₃) δ 24.7, 29.0, 31.4, 34.2, 36.0, 125.7, 128.4, 128.5, 142.7, 180.8.

Also obtained in this fashion was:

7-(2-Methoxy-phenyl)-heptanoic acid.

Prepared from 2-methoxybenzaldehyde (5.0 g, 36.8 mmol) and (5-HO) HO (5-HO) (5-HO) (5-HO) (6.8g, 36.8 mmol) to give the title compound (86% yield): chromatographed on silica gel using 1:3 EtOAc-petroleum ether. 1 H NMR (300 MHz, CDCl₃) δ 1.42 (m, 4H), 1.70 (m, 4H), 2.41 (t, J = 8 Hz, 2H), 2.64 (t, J = 8 Hz, 2H), 3.84 (s, 3H), 6.80 (m, 3H), 7.24 (m, 1H). 13 C NMR (75 MHz, CDCl₃) δ 24.7, 29.0, 31.3, 34.2, 36.0, 55.2, 111.0, 114.3, 121.0, 129.3, 144.4, 159.7, 180.6.

7-(3-Nitro-phenyl)-heptanoic acid.

Prepared from m-nitro benzaldehyde (5.0g, 33.1 mmol) and (5- Carboxypentyl)triphenylphosphonium

bromide (15.9 g, 34.8 mmol) to give, after hydrogenation, 7-(3-aminophenyl)-heptanoic acid (52% yield): 1 H NMR (300 MHz, CDCl₃) δ 1.37 (m, 4H), 1.65 (m, 4H), 2.35 (t, J = 8 Hz, 2H), 2.52 (t, J = 8 Hz), 6.53 (m, 2H), 6.60 (d of mult, 1H), 7.07 (m, 1H). 13 C NMR (75 MHz, CDCl₃) δ 24.8, 29.0, 31.2, 34.2, 36.0, 113.0, 115.7, 119.3, 129.3, 144.1, 146.1, 179.9. ESMS m/z 222 (M+H) $^{+}$. Oxidation of 7-(3-amino-phenyl)-heptanoic acid with oxone in aqueous acetone gave the title compound (31% yield): 1 H NMR (300 MHz, CDCl₃) δ 1.36 (m, 4H), 1.63 (m, 4H), 2.33 (t, J = 7 Hz, 2H), 2.69 (t, J = 8 Hz, 2H), 7.44 (m, 2H), 8.02 (m,

Supporting Information: ChemBioChem, D-Tyrosine as a chiral precursor. Hansford et al. 2H). 13 C NMR (75 MHz, CDCl $_3$) δ 24.7, 28.88, 28.93, 31.0, 34.1, 35.6, 121.1, 123.3, 129.3, 134.9, 144.7, 148.5, 180.2.

7-(3-Acetylamino-phenyl)-heptanoic acid.

bromide (17.45 g, 38.2 mmol) to give the title compound (25% yield): 1 H NMR (300 MHz, Acetone-d6) δ 1.36 (m, 4H), 1.62 (m, 4H), 2.06 (s, 3H), 2.28 (t, J = 7 Hz, 2H), 2.57 (t, J = 7 Hz, 2H), 6.88 (d, J = 8 Hz, 1H), 7.17 (t, J = 8 Hz, 1H), 7.46 (d, 1H) overlapped with 7.48 (s, 1H), 9.08 (br s, 1H). 13 C NMR (75 MHz, Acetone-d6) δ 24.4, 25.6, 32.1, 34.2, 36.6, 117.4, 120.0, 124.2, 129.4, 140.5, 144.1, 168.9, 174.8.

7-Pyridin-3-yl-heptanoic acid.

Prepared from (5-ethoxycarbonyl-pentyl)triphenyl-phosphonium bromide (156 g, 0.32 mol)

and 3-pyridinecarboxaldehyde (30.8 g, 27.1 ml, 0.29 mol) to give 33.2 g (49%) of 7-pyridin-3-yl-hept-6-enoic acid ethyl ester (as mixture of E- and Z-isomers): purified by distillation and isolated as a yellow liquid (b.p._{0.2} 134-138°C). ESMS m/z 234 (M+H)⁺. Hydrogenation of this mixture over 10% Pd-C in MeOH gave 7-pyridin-3-yl-heptanoic acid ethyl ester: ¹H NMR (300 MHz, CDCl₃) δ 1.25 (t, J = 6 Hz, 3H), 1.29-1.44 (m, 4H), 1.51-1.72 (m, 4H), 2.29 (t, J = 7.5 Hz, 2H), 2.60

Supporting Information: ChemBioChem, D-Tyrosine as a chiral precursor. Hansford et al. (t, J = 7.5 Hz, 2H), 4.12 (q, J = 6 Hz, 2H), 7.20 (dd, J = 7.8, 4.6 Hz, 1H), 7.47 (m, 1H), 8.38-8.48 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 14.4, 24.9, 28.9, 29.0, 31.0, 33.0, 34.4, 60.3, 123.3, 135.9, 137.9, 147.3, 150.1, 173.8. ESMS m/z 235 (M+H)⁺. 7-Pyridin-3-yl-heptanoic acid ethyl ester (5.0g, 21 mmol) was hydrolysed according to the method outlined in general procedure A to afford the title compound (3.56 g, 83*): ¹H NMR (300 MHz, CDCl₃) δ 1.30-1.45 (m, 4H), 1.57-1.71 (m, 4H), 2.34 (t, J = 7.5 Hz, 2H), 2.62 (t, J = 7.5 Hz, 2H), 7.25 (dd, J = 7.6, 4.8 Hz, 1H), 7.50-7.61 (m, 1H), 8.39-8.52 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 25.0, 28.9, 29.0, 30.9, 33.0, 34.7, 123.8, 137.2, 138.7, 145.8, 148.4, 177.9. ESMS m/z 207 (M+H)⁺.

References For Experimental:

- Reynolds, L.J.Hughes, L. L.; Dennis, E. A. Analysis of human synovial fluid phospholipase A2 on short chain phosphatidylcholine-mixed micelles: Development of a spectrophotometric assay suitable for a microplate reader. Anal. Biochem. 1992, 204, 190-197.
- 2. Cha, S.-S.Lee, D.; Adams, J.; Kurdyla, J. T.; Jones, C. S.; Marshall, L. A.; Bolognese, B.; Abdel-Meguid, S. S.; Oh, B.-H. High-resolution x-ray crystallography reveals precise binding interactions between human nonpancreatic secreted phospholipase A2 and a highly potent inhibitor (FPL67047XX). J. Med. Chem. 1996, 39, 3878-3881.

- 3. Otwinski, Z.M., Minor, W. Methods in enzymology, **1997**, 276, 307-326.
- 4. Scott, D.L.White, S. P.; Browning, J. L.; Rosa, J. J.; Gelb, M. H.; Sigler, P. B. Structures of free and inhibited human secretory phospholipase A2 from inflammatory exudate. Science, 1991, 254, 1007-1010.
- 5. Wilely, G. A.; Herskowitz, R. L.; Rein, B. M.; Chung, B. C. Studies in organophosphorus chemistry. I. Conversion of alcohols and phenols to halides by tertiary phosphine dihalides. J. Amer. Chem. Soc., 1964, 86, 964.
- 6. Webb, K.S.; Seneviratne, V. A mild oxidation of aromatic amines.

 Tetrahedron Lett. 1995, 36, 2377-2378.
- Meanwell, N.A.; Pearce, B. C.; Roth, H. R.; Smith, C. R.; Wedding, D. L.; Wright, J. J. K.; Buchanan, J. O.; Baryla, U. M.; Gamberdella, M.; Gillespie, E.; Hayes, D. C.; Seiler, S. M.; Stanton, H. C.; Zavoico, G. B.; Fleming, J. S. Inhibitors of blood platelet cAMP phosphodiesterase. 2. Structure-activity relationships associated with 1,3-dihydro-2H-imidazo[4,5-b]quiniolin-2-ones substituted with functionalised side chains. J. Med. Chem, 1992, 35, 2672-2687.