Supporting Informations

Journal name: Small
Title: Gram-Scale Synthesis of Soluble, Near-Monodisperse Gold Nanorods and Other Anisotropic Nanoparticles

Author name: Nikhil R Jana

Suppl. Figure 1. Silver ion concentration effect on the nanorod formation.
a) Effect of adding AgNO₃ into Au seed. Change in absorption spectra indicates the Ag⁺ adsorption on the Au nanoparticle surface. (note that Ag⁺ do not reduce at this condition)
b) Silver ion dependence on nanorod formation via borohydride-ascorbic acid method. All other condition are similar to Figure 1.

Suppl. Figure 2.
Successive UV-visible spectra (30 seconds interval) of Au nanorod formation with borohydride-ascorbic acid method showing the influence of Ag⁺ on reaction kinetics.
[No Ag⁺] = 0.0 mM, [Optimum Ag⁺] = 0.2 mM, [Higher Ag⁺] = 2.0 mM
General condition: [AuCl₃]= 1mM, [ascorbic acid]=2mM, [borohydride] = 0.02mM and [CTAB] = 0.2M.

Suppl. Figure 3.
Color of gold and silver nanoparticle solutions of various shapes.
Suppl. Figure 1

(a) Absorbance spectra for 3.5nm and 8nm Au nanoparticles with varying Ag⁺ concentrations.

(b) Absorbance spectra for different Ag⁺ concentrations with 3.5nm Au nanoparticles.
Suppl. Figure 2

No Ag
Optimum Ag
Higher Ag

Absorbance

Wavelength/ nm

Absorbance

Wavelength/ nm

Absorbance

Wavelength/ nm
Suppl. Figure 3

Spherical gold nanoparticles

- 1.5nm
- 3.5nm
- 12nm

gold nanorods

- 5x
- 15nm
- 8x
- 24nm
- 12x
- 50nm

gold platelete

- 30nm

gold cubes

Ag particles

- 3nm sphere
- nanorod short plate
- long plate
- nanowire

solid Ag plate

(as synthesized)