

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2006

Combined Mass Spectrometry and Dynamic Chemistry Approach to Identify Metallo-Enzyme Inhibitors

Benoît M. R. Liénard, Nathalie Selevsek, Neil J. Oldham and Christopher J. Schofield*

1.	Synthesis of dithiol support ligands 10a-e	2
2.	ESI-MS analyses of BcII(Zn ^{II}) ₂ incubated with 10a-e	3
3.	Combined MS-DCL approach using the set of thiol 1-20 and support ligands 10a and 10d	4
4.	Knock-out experiments	6
5.	Synthesis of carba-analogues 21a-e	7
6.	Affinity comparison between compounds 3 and 21a-e for $BcII(Zn^{II})_2$ using ESI-MS	9
7.	View from the active site of BcII(Zn ^{II}) ₂ from <i>Bacillus Cereus</i>	10
8.	Chemical characterization	11
9.	Enzyme kinetics	26
10.	Native ESI-MS	27
11.	References	28

1. Synthesis of dithiol support ligands **10a-e**

Dimercaptocarboxylates **10a-e** were synthesized from readily prepared diols **30a-e**, in three steps and in overall yields varying from 23 to 87 % (Scheme S1).

Scheme S1. *Conditions and reagents*: a) DABCO, (CH₃)₂NC(S)Cl, DMF, 82-87 %; b) Ph₂O, Δ, 36-99 %; c) NaOH (1N), 70°C, 79-99 %.

Thus, diols **30a-d** and **22** were dialkylated using dimethylthiocarbamoyl chloride to give *O*-aryl thiocarbamates **31a-eB**,^[1, 2] then subjected to a Newman-Kwart rearrangement^[3] to yield *S*-aryl thiocarbamates **32a-e**. Complete hydrolysis of compounds **32a-e** in aqueous sodium hydroxide afforded support ligand dithiols **10a-e** in high yields.

2. ESI-MS analyses of $BcII(Zn^{II})_2$ incubated with **10a-e**

Figure S1. Deconvoluted ESI-MS spectra for BcII(Zn^{II})₂ in the presence of **10a-e** (a-e). An equimolar amount of the BcII(Zn^{II})₂ was used and reactions monitored over 8 h at 4°C and sample cone voltage 50 V. Selected time points t = 1 min, 30 min and 120 min after aerial exposure are shown.

3. Combined MS-DCL approach using the set of thiols **1-20** in the presence support ligands **10a** and **10d**

Figure S2. Deconvoluted ESI-MS spectra resulting from an equimolar mixture of 19 thiols ($19 \times 10 \mu$ M) and (a) BcII(Zn^{II})₂ (15μ M) + **10a** (30μ M) after 1 min and (b) 6.5 h of aerial exposure and sample cone voltage 50 V.

Figure S3. Deconvoluted ESI-MS spectra resulting from an equimolar mixture of 19 thiols $(19 \times 10 \,\mu\text{M})$ and (a) BcII(Zn^{II})₂ (15 μ M) + **10d** (30 μ M) after 1 min, (b) 4 h and (c) 24 h of aerial exposure and sample cone voltage 50 V.

4. Knock-out experiments to identify preferentially binding disulfides

Figure S4. Deconvoluted ESI-MS spectra resulting from an equimolar mixture of a) compounds **10c**, **4** and **7** (15 μ M each), b) compounds **10c**, **3** and **6** (15 μ M each) and c) compounds **10c**, **2** and **5** (15 μ M each) incubated with BcII(Zn^{II})₂ (15 μ M) after 1min, 2 h and 8 h of aerial exposure under the anaerobic conditions and sample cone voltage of 50 V. The evolution of the system was monitored every minute and only selected time points are given.

5. Synthesis of carba-analogues **21a-e** – further details for Scheme 1

Thiols **21a-e** were synthesized from dithiol **10e**, in five to eight synthetic steps and in overall yields of 7 to 45 % (Figure S5).

Figure S5. Carba-analogues and their synthetic intermediates.

Benzoic acid **10e** was first esterified using an acidic methanolic solution to give ester **25** in near quantitative yield. **25** was then dibenzoylated using benzoyl chloride and triethylamine in THF to afford **26** in excellent yield. The crude material of the reaction between compound **26** and sodium methoxide was used directly into the next step. The crude material was obtained by quenching the ice-cold reaction mixture with a 1 M solution of hydrochloric acid under a nitrogen atmosphere to pH 1. The addition of bromides **27a-e** onto a freshly prepared neat sample of crude **26**, followed by potassium carbonate under inert atmosphere afforded compounds **28a-e** in reasonable to good yields. Bromides **27a** and **27d** were commercially available whereas **27b**, **27c** and **27e** were generated from commercially available starting materials in three steps and in good overall yields (Scheme S2).

Scheme S2. Reagents and conditions: a) Cul, Pd[P(Ph₃)]₄, Et₃N, THF, 50[°]C, 72 % and 86 %; b) Pd-C, H₂, MeOH, 82 % and 84 %; c) NBS, PPh₃, DMF, 50[°]C, 89-95 %; d) Me₃OBF₄, Et₃N, CH₂Cl₂, 70 %; e) BH₃/THF then NaOH, H₂O₂, 58 %.

Alcohols **33c** and **33e** were obtained by Sonogashira coupling using aryl iodide **34** and alkynes **35c** and **35e**, respectively.^[4] Subsequent palladium hydrogenation in methanol yielded alcohols **36c** and **36e**, followed by bromination using triphenylphosphine and *N*-bromosuccinimide afforded bromides **27c** and **27e** respectively.^[5] Carboxylic acid **37** was converted into methyl ester **38** using trimethoxytetrafluoroborate then subjected to a hydroboration-oxidation sequence affording alcohol **39b** in good overall yield.^[6] Final bromination using a reported method yielded bromide **27b**.^[5] Full deprotection of the triesters **28a-e** using a 1 N solution of sodium hydroxide did not give satisfying results as difficulties during the purification step were encountered. Instead, compounds **28a-e** were first debenzoylated using a solution of sodium methoxide to yield intermediate thiols **29a-e** then subjected to saponification to afford the desired mercaptocarboxylates **21a-e**.

Figure S6. Deconvoluted ESI-MS spectra showing the equimolar mixture (15 μ M) of a) **3**, b) **21a**, c) **21b**, d) **21c**, e) **21d** and f) **21e** with BcII(Zn^{II})₂ at 23°C and sample cone voltage 50 V. The incubation time of the derivatives with the enzyme prior to analysis was about 2 min.

7. View from the active site of $BcII(Zn^{II})_2$ from *Bacillus Cereus*

Figure S7. View from the active site of the dizinc BcII MBL. The flexible flap is shown in red. Figure generated from the coordinates from BcII-wild type crystal structure (PDB code 1BVT).^[7] The derivative **21a** may be too short to allow the optimal loop closure, whereas longer linkers (*cf.* 2-4 methylenes) may enable productive interactions; **21b**, with 2 methylene groups, appears to be preferred from the tested compounds.

8. Chemical characterization

All solvents used were either anhydrous solvents purchased from Aldrich (Sigma-Aldrich Chemical Co., Dorset, UK) or dried by passing over an aluminate column under nitrogen pressure. Reagents were used as obtained from commercial sources unless otherwise stated. Measurement of pH was carried out using Prolabo Rota[™] pH 1-10 paper. Flash chromatography was performed using silica gel (0.125-0.25 mm, 60-120 mesh) as the stationery phase. Thin layer chromatography (TLC) was performed on aluminium plates pre-coated with silica gel (Merck silica gel 60 F₂₅₄), which were visualised by the quenching of UV fluorescence (using an irradiation wavelength ? = 254 nm), and/or by staining with iodine or 10% ammonium molybdate in 2 M sulphuric acid, followed by heating. Retention factors ($R_{\rm f}$) are given to the nearest 0.05 decimal. Melting points (m.p.) were obtained using a Büchi 510 Cambridge Instruments Gallen III hot stage melting point apparatus. Infrared (IR) spectra were recorded as thin films between NaCl plates or as KBr discs on a Tensor 27 FT-IR Brüker spectrometer. Only selected absorbances are reported. Proton magnetic resonance spectra (¹H NMR) were recorded on a Brüker DPX 250 (250 MHz), Brüker DQX 400 (400 MHz), or Brüker AMX500 (500 MHz) spectrometers at ambient and variable temperature. ¹H NMR spectral assignments are supported by ¹H-¹H COSY experiments where necessary. Coupling constant values (*J*) are reported to the nearest 0.5 Hz. Carbon magnetic resonance spectra (¹³C NMR) were recorded on a Brüker DPX 250 (62.9 MHz), Brüker DQX 400 (100.6 MHz) or Brüker AMX500 (125.8 MHz) spectrometers at ambient temperature. ¹³C NMR assignments were made using DEPT-135 along with HMQC, and HMBC correlation experiments. High-resolution mass spectra were recorded on a VG Autospec spectrometer by chemical ionisation or on a Micromass LCT electrospray ionisation mass spectrometer operating at a resolution of 5000 full width half height. High performance liquid chromatography (HPLC) was operating on a Waters 996 photodiode array detector, a Waters 600E system controller and a Waters 717 plus autosampler, using a Phenomenex Synergy 4µ MAX RP80A (250 \times 4.60 mm) as a column for analytical HPLC and a Phenomenex Luna 5 μ C₁₈ (250 \times 4.60 mm) as a column for preparative HPLC. Analytical data is given for published compounds where comprehensive analytical data has not been previously reported.

Methyl 2,3-bis{[(dimethylamino)carbonothioyl]oxy}benzoate (31a)

31a was prepared following a previously described method,^[1] using **30a** (969 mg, 5.76 mmol) in DMF (10 mL), 1,4-diazabicyclo[2.2.2]octane (DABCO) (2.59 g, 23.1 mmol) and *N*,*N*-dimethylthiocarbamoyl chloride (2.85 g, 23.1 mmol). Purification by flash chromatography using a gradient of CH₂Cl₂/EtOAc [100:0] to [99:1] as eluent afforded 1.61 g (82 %) of the desired compound as a light orange sticky oil. $R_{\rm f}$ = 0.35 (silica gel, CH₂Cl₂/EtOAc 98:2); IR v_{max} (film): 3020, 1725 (C=O), 1541 (C=S), 1216, 758 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.94 (dd, 1H, *J* = 7.5

Hz, J = 2 Hz, ArCH), 7.39 (dd, 1H, J = 8 Hz, J = 2 Hz, ArCH), 7.36-7.34 (m, 1H, ArCH), 3.85 (s, 3H, OCH₃), 3.45, 3.44, 3.33, 3.31 ppm (4 × br s, 4 × 3H, 4 × NCH₃); ¹³C NMR (100.6 MHz, CDCl₃): $\delta = 186.7$ (C=S), 186.3 (C=S), 164.1 (C=O), 146.9 (ArC), 145.9 (ArC), 128.9 (ArCH), 128.7 (ArCH), 125.9 (ArCH), 125.3 (ArC), 52.2 (OCH₃), 43.4 (2 × NCH₃), 39.0 (NCH₃), 38.9 ppm (NCH₃); HRMS (ES⁺): [M+H]⁺ calcd. for C₁₄H₁₉N₂O₄S₂, 343.0786; found, 343.0788.

Methyl 2,3-bis{[(dimethylamino)carbonyl]sulfanyl}benzoate (32a)

32a was prepared following a previously described method,^[1] using 31a (1.60 g, 4.68 mmol) in diphenyl ether (20 mL). Purification by flash chromatography using petroleum ether 40-60/CH₂Cl₂ [50:50] followed by CH₂Cl₂/EtOAc [95:5] to [70:30] afforded 572 mg (36 %) of the desired compound as a viscous orange oil. $R_{\rm f} = 0.45$ (silica gel, CH₂Cl₂/EtOAc 1:1); IR v_{max} (film): 3055, 2987, 1730 (C=O), 1667 (C=O), 1266, 739 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.83 (dd, 1H, J = 8 Hz, J = 1.5 Hz, ArCH), 7.81 (dd, 1H, J = 8 Hz, J = 1.5 Hz, ArCH), 7.45 (t, 1H, J = 8 Hz, ArCH), 3.86 (s, 3H, OCH₃), 3.15-3.02 ppm (m, 12H, 4 × NCH₃); ¹³C NMR (100.6 MHz, CDCl₃):

 $\delta = 167.3$ (C=O), 166.0 (C=O), 165.9 (C=O), 139.9 (ArCH), 137.9 (ArC), 137.4 (ArC), 134.4 (ArC), 131.0 (ArCH), 129.1 (ArCH), 52.4 (OCH₃), 37.1 ($4 \times NCH_3$) ppm; HRMS (ES⁺); [M+H]⁺ calcd. for C₁₄H₁₉N₂O₄S₂, 343.0786; found, 343.0784.

2,3-Disulfanylbenzoic acid (10a)

An aqueous solution of NaOH (1 N) (2.63 mL, 2.63 mmol, 9 eq) was added to 10a (100 mg, 0.29 mmol). The resulting mixture was then heated at 70°C under a nitrogen atmosphere for 3.5 h. The reaction mixture was acidified with HCI (10 N). The white precipitate was collected by filtration, washed several times with H₂O and dried under high vaccum overnight to afford 43 mg (79 %) of the desired compound as a white solid. m.p. 177-178°C; IR v_{max} (film): 1676 (C=O), 1419, 1308, 1259, 749 cm⁻¹; ¹H NMR (250 MHz, CD₃OD):

 δ = 7.88 (dd, 1H, J = 8 Hz, J = 1.5 Hz, ArCH), 7.56 (dd, 1H, J = 8 Hz, J = 1.5 Hz, ArCH), 7.04 (t, 1H, J = 8 Hz, ArCH); ¹³C NMR (62.9 MHz, CD₃OD): δ = 169.6 (C=O), 137.3 (ArC), 134.5 (ArCH), 132.5 (ArC), 129.7 (ArCH), 127.7 (ArC), 124.1 ppm (ArCH); HRMS (ES⁻); [M-H]⁻ calcd. for C₇H₅O₂S₂, 184.9731; found, 184.9734.

Methyl 2,4-bis{[(dimethylamino)carbonothioyl]oxy}benzoate (31b)

31b was prepared following a previously described method,^[1] using **30b** (738 mg, 4.39 mmol) in DMF (10 mL), DABCO (1.97 g, 17.6 mmol) and N,Ndimethylthiocarbamoyl chloride (2.17 g, 17.6 mmol). Purification by flash chromatography using petroleum ether 40-60/CH₂Cl₂ [20:80] then CH₂Cl₂/EtOAc [95:5] as eluent afforded 1.28 g (85 %) of the desired compound as a white sticky foam. $R_{\rm f} = 0.3$ (silica gel, CH₂Cl₂/EtOAc 98:2); IR v_{max} (film): 3020, 1723 (C=O), 1541 (C=S), 1216, 758 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 8.05 (d, 1H, J = 8.5 Hz, ArCH), 7.05 (dd, 1H, J = 8.5 Hz, J =

2.5 Hz, ArCH), 6.91 (d, 1H, J = 2.5 Hz, ArCH), 3.83 (s, 3H, OCH₃), 3.46, 3.45, 3.39, 3.34 ppm (4 × br s, $4 \times 3H$, $4 \times NCH_3$); ¹³C NMR (100.6 MHz, CDCI₃): $\delta = 187.0$ (C=S), 186.5 (C=S), 164.1 (C=O), 157.2 (ArC), 154.3 (ArC), 132.1 (ArCH), 121.5 (ArC), 120.6 (ArCH), 120.0 (ArCH), 52.1 (OCH₃), 43.3 $(2 \times \text{NCH}_3)$, 39.0 ppm $(2 \times \text{NCH}_3)$; HRMS (ES^+) : $[\text{M}+\text{H}]^+$ calcd. for $C_{14}H_{19}N_2O_4S_2$, 343.0786; found, 343.0789.

Methyl 2,4-bis{[(dimethylamino)carbonyl]sulfanyl}benzoate (32b)

32b was prepared following a previously described method,^[1] using **31b** (700 mg, 2.05 mmol) in diphenyl ether (15 mL). Purification by flash chromatography using petroleum ether 40-60/CH₂Cl₂ [50:50] followed by CH₂Cl₂/EtOAc [80:20] to [50:50] afforded the compound as an oil. Co-evaporation using EtOH led to a solid which, recrystallised from EtOH, afforded 695 mg (99 %) of the desired compound as a white solid. $R_{\rm f} = 0.30$ (silica gel, CH₂Cl₂/EtOAc 80:20); m.p. 84-85°C; IR v_{max} (film): 3020, 1726 (C=O), 1666 (C=O), 1216, 758 cm⁻¹; ¹H NMR

(400 MHz, CDCl₃): δ = 7.90 (d, 1H, *J* = 8 Hz, ArCH), 7.75 (d, 1H, *J* = 2 Hz, ArCH), 7.57 (dd, 1H, *J* = 8 Hz, *J* = 2 Hz, ArCH), 3.88 (s, 3H, OCH₃), 3.11-3.03 ppm (m, 12H, 4 × NCH₃); ¹³C NMR (100.6 MHz, CDCl₃): δ = 166.6 (C=O), 165.9 (C=O), 165.4 (C=O), 143.1 (ArCH), 135.4 (ArCH), 134.9 (ArC), 133.2 (ArC), 130.7 (ArCH), 130.3 (ArC), 52.4 (OCH₃), 37.1 (2 × NCH₃), 37.0 (2 × NCH₃) ppm; HRMS (ES⁺): [M+H]⁺ calcd. for C₁₄H₁₉N₂O₄S₂, 343.0786; found, 343.0778.

2,4-Disulfanylbenzoic acid (10b)

An aqueous solution of NaOH (1 N) (2.63 mL, 2.63 mmol) was added to **32b** (100 mg, 0.29 mmol). The resulting mixture was then heated at 70°C under a nitrogen atmosphere for 3 h. The reaction mixture was acidified with HCl (10 N). The white precipitate was collected by filtration, washed several times with H₂O and dried overnight to afford 45 mg (82 %) of the desired compound as a white solid. m.p. > 300°C (dec.); IR v_{max} (disc): 3000, 2559, 1674 (br, 2 × C=O), 1580, 1272, 829, 771 cm⁻¹; ¹H NMR (400 MHz, CD₃OD): δ = 7.87 (d, 1H, *J* = 8.5 Hz, ArCH), 7.31 (d, 1H, *J* = 2 Hz, ArCH), 7.05 (dd, 1H, *J* = 8.5 Hz,

J = 2 Hz, ArCH); ¹³C NMR (100.6 MHz, CD₃OD): $\delta = 168.5$ (C=O), 140.2 (ArC), 139.7 (ArC), 132.4 (ArCH), 129.0 (ArCH), 124.1 (ArCH), 122.8 ppm (ArC); HRMS (ES⁻): [M–H]⁻ calcd. for C₇H₅O₂S₂, 184.9731; found, 184.9733.

Methyl 2,5-bis{[(dimethylamino)carbonothioyl]oxy}benzoate (31c)

31c was prepared following a previously described method,^[1] using **30c** (5.34 g, 31.8 mmol) in DMF (70 mL), DABCO (15.7 g, 0.13 mol) and *N*,*N*-dimethylthiocarbamoyl chloride (14.3 g, 0.13 mol). The crude yellow oil was crystallized from EtOH (400 mL) to afford 8.95 g (82 %) of the desired compound as a white solid. $R_{\rm f}$ = 0.35 (silica gel, CH₂Cl₂/EtOAc 98:2); m.p. 140-141°C; IR v_{max} (film): 3054, 2987, 1731 (C=O), 1552 (C=S), 1266,

740 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.71 (d, 1H, *J* = 2.5 Hz, ArCH), 7.28 (dd, 1H, *J* = 8.5 Hz, *J* = 2.5 Hz, ArCH), 7.14 (d, 1H, *J* = 8.5 Hz, ArCH), 3.82 (s, 3H, OCH₃), 3.47, 3.45, 3.39, 3.34 ppm (4 × brs, 4 × 3H, 4 × NCH₃); ¹³C NMR (100.6 MHz, CDCl₃): δ = 187.3 (2 × C=S), 163.8 (C=O), 151.2 (ArC), 151.0 (ArC), 128.0 (ArCH), 125.7 (2 × ArCH), 124.4 (ArC), 52.2 (OCH₃), 43.4, 43.3, 38.9, 38.8 ppm (4 × NCH₃); HRMS (ES⁺): [M+H]⁺ calcd. for C₁₄H₁₉N₂O₄S₂, 343.0786; found, 343.0777.

Methyl 2,5-bis{[(dimethylamino)carbonyl]sulfanyl}benzoate (32c)

32c was prepared following a previously described method,^[1] using **31c** (8.95 g, 26.2 mmol) in diphenyl ether (100 mL). Purification by flash chromatography using petroleum ether 40-60/CH₂Cl₂ [50:50] followed by CH₂Cl₂/EtOAc [80:20] to [50:50] afforded the compound as an oil. Co-evaporation using EtOH led to a solid which, upon recrystallization from EtOH, afforded 6.60 g (74 %) of the desired compound as a white solid. *R*_f

= 0.3 (silica gel, CH₂Cl₂/EtOAc 4:1); m.p. 118-119^oC; IR v_{max} (film): 3055, 1730 (C=O), 1668 (C=O), 1266, 740 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 8.04 (d, 1H, *J* = 2 Hz, ArCH), 7.63 (d, 1H, *J* = 8 Hz, ArCH), 7.60 (dd, 1H, *J* = 8 Hz, *J* = 2 Hz, ArCH), 3.87 (s, 3H, CH₃), 3.13-3.03 ppm (m, 12H, 4 × NCH₃); ¹³C NMR (100.6 MHz, CDCl₃): δ = 166.2 (C=O), 165.7 (C=O), 165.7 (C=O), 138.1 (ArCH), 137.3 (ArCH), 137.2 (ArCH), 134.7 (ArC), 131.6 (ArC), 130.1 (ArC), 52.4 (OCH₃), 37.1 ppm (4 × NCH₃); HRMS (ES⁺): [M+H]⁺ calcd. for C₁₄H₁₉N₂O₄S₂, 343.0786; found, 343.0781.

2,5-Disulfanylbenzoic acid (10c)

An aqueous solution of NaOH (1 N) (174 mL, 0.17 mol) was added to **32c** (6.60 g, 19.3 mmol). The resulting mixture was then heated at 70°C under a nitrogen atmosphere for 7 h. The reaction mixture was acidified with HCl (10 N). The white precipitate was collected by filtration, washed several times with H₂O and dried overnight to afford 3.55 g (99 %) of the desired compound as a white solid. m.p. 178-179°C; IR ν_{max} (film): 1686 (br, 2 × C=O), 1315, 1261 cm⁻¹; ¹H NMR (250 MHz,

acetone-d6): δ = 8.02-8.00 (m, 1H, ArCH), 7.40-7.39 (m, 2H, 2 × ArCH); ¹³C NMR (62.9 MHz, acetone-d6): δ = 167.2 (C=O), 135.9 (ArC), 133.5 (ArCH), 132.3 (ArCH), 131.9 (ArCH), 128.1 (ArC), 127.2 ppm (ArC); HRMS (ES⁻): [M–H]⁻ calcd. for C₇H₅O₂S₂, 184.9731; found, 184.9734.

Methyl 3,4-bis{[(dimethylamino)carbonothioyl]oxy}benzoate (31d)

31d was prepared following a previously described method,^[1] using **30d** (964 mg, 5.73 mmol) in DMF (10 mL), DABCO (2.57 g, 22.9 mmol) and *N*,*N*-dimethylthiocarbamoyl chloride (2.84 g, 22.9 mmol). Purification by flash chromatography using CH₂Cl₂/EtOAc [99:1] as eluent afforded 1.70 g (87 %) of the desired compound as a white solid. $R_f = 0.3$ (silica gel, CH₂Cl₂/petroleum 40-60 9:1); m.p. 57-59°C; IR v_{max} (film): 3020, 1723 (C=O), 1541 (C=S), 1216, 909, 760 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 8.00$ (dd, 1H, J = 8.5 Hz, J = 2 Hz, ArCH), 7.86 (d, 1H, J = 2 Hz, ArCH), 7.25 (d, 1H, J = 8.5 Hz, ArCH), 3.90 (s, 3H, OCH₃), 20 pmm (4 where a 4 w 214 4 w NCH b): ¹³C NMPE (400 G MHz, CDCl₃): $\delta = 4.00$

3.43, 3.42, 3.30, 3.29 ppm (4 × br s, 4 × 3H, 4 × NCH₃); ¹³C NMR (100.6 MHz, CDCl₃): δ = 186.4 (C=S), 186.0 (C=S), 165.6 (C=O), 149.3 (ArC), 145.5 (ArC), 128.7 (ArC), 128.2 (ArCH), 125.9 (ArCH), 124.4 (ArCH), 52.3 (OCH₃), 43.4, 43.3, 38.9, 38.9 ppm (4 × NCH₃); HRMS (ES⁺): [M+H]⁺ calcd. for C₁₄H₁₉N₂O₄S₂, 343.0786; found, 343.0780.

Methyl 2-oxo-1,3-benzodithiole-5-carboxylate (32d)

32d was prepared following a previously described method,^[1] using **31d** (1.70 g, 4.97 mmol) in diphenyl ether (25 mL). Purification by flash chromatography using petroleum ether 40-60/CH₂Cl₂ [100:0] followed by petroleum ether 40-60/CH₂Cl₂ [95:5] to [50:50] afforded 710 mg (42 %) of the desired compound as a white solid. $R_f = 0.3$ (silica gel, CH₂Cl₂/petroleum 40-60 1:1); m.p. 139-140°C; IR v_{max} (film): 3060, 2985, 1725 (C=O), 1665 (C=O), 1266, 739 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 8.18$ (d, 1H, J = 1.5 Hz, ArCH), 7.98 (dd, 1H, J = 8.5 Hz, J = 1.5 Hz, ArCH), 7.57 (d, 1H, J = 8.5 Hz, ArCH),

3.95 ppm (s, 3H, CH₃); ¹³C NMR (100.6 MHz, CDCl₃): δ = 189.0 (SC=OS), 165.7 (ArC=O), 137.9 (ArC), 133.0 (ArC), 129.1 (ArC), 127.8 (ArCH), 124.1 (ArCH), 122.9 (ArCH), 52.6 ppm (OCH₃); HRMS (Cl⁺): [M]⁺ calcd. for C₉H₆O₃S₂, 225.9758; found, 225.9752.

3,4-Disulfanylbenzoic acid (10d)

An aqueous solution of NaOH (1 N) (12.0 mL, 12.0 mmol) was added to **32d** (300 mg, 1.33 mmol). The resulting mixture was then heated at 70°C under a nitrogen atmosphere for 4 h. The reaction mixture was acidified with HCl (10 N). The white precipitate was collected by filtration, washed several times with H₂O and dried overnight to afford 245 mg (99 %) of the desired compound as a white solid. m.p. 218-220°C; IR v_{max} (film): 1685 (C=O), 1584, 1426, 1313, 1250, 760 cm⁻¹; ¹H NMR (250 MHz, CD₃OD): δ = 8.03 (d, 1H, *J* = 2 Hz, ArCH), 7.70 (dd, 1H, *J* = 8 Hz, *J* = 2 Hz, ArCH), 7.47 (d, 1H, *J* = 8 Hz, ArCH); ¹³C

NMR (62.9 MHz, CD₃OD): δ = 167.9 (C=O), 139.4 (ArC), 131.9 (ArCH), 130.4 (ArC), 129.5 (ArCH), 128.5 (ArC), 127.4 ppm (ArCH); HRMS (ES⁻): [M–H]⁻ calcd. for C₇H₅O₂S₂, 184.9731; found, 184.9733.

Methyl 3,5-bis{[(dimethylamino)carbonothioyl]oxy}benzoate (23)

23 was prepared following a previously described method,^[1, 2] using **22** (10.0 g, 59.5 mmol) in DMF (200 mL), DABCO (26.7 g, 0.24 mol) and *N*,*N*-dimethylthiocarbamoyl chloride (29.4 g, 0.24 mol). Recrystallization from EtOH afforded 18.9 g (93 %) of the desired compound as a white solid. $R_{\rm f}$ = 0.2 (silica gel, CH₂Cl₂); m.p. 100-102°C (lit.^[8] 129-132°C); IR $v_{\rm max}$ (film): 3052, 2953, 1725, 1540, 1266, 737 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ =

7.66 (s, 2H, 2 × ArCH), 7.07 (s, 1H, ArCH), 3.90 (s, 3H, CH₃), 3.45, 3.36 ppm (2 × brs, 2 × 6H, 4 × NCH₃); ¹³C NMR (100.6 MHz, CDCl₃): δ = 186.9 (C=O), 165.4 (2 × C=S), 153.9 (2 × ArC), 131.6 (ArC), 122.9 (ArCH), 121.7 (2 × ArCH), 52.4 (OCH₃), 43.4 (2 × NCH₃), 38.9 ppm (2 × NCH₃); MS (ES⁺): m/z (%): 343 (100) [M+H]⁺, 365 (50) [M+Na]⁺.

Methyl 3,5-bis{[(dimethylamino)carbonyl]sulfanyl}benzoate (24)

24 was prepared following a previously described method,^[1, 2] using **23** (18.9 g, 55.3 mmol) in diphenyl ether (200 mL). Purification by flash chromatography using petroleum ether 40-60/CH₂Cl₂ [50:50] following by CH₂Cl₂/EtOAc [80:20] afforded the compound as an oil. Co-evaporation using EtOH led to a solid which, when recrystallised from EtOH, afforded 18.3 g (97 %) of the desired compound as a white solid. $R_{\rm f}$ = 0.35 (silica

gel, CH₂Cl₂/EtOAc 4:1); m.p. 120-122°C (lit.^[8] 134-137°C); IR v_{max} (film): 3055, 2988, 1724 (C=O), 1671 (C=O), 1422, 1367, 1266, 740, 705 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 8.17 (d, 2H, *J* = 1.5 Hz, 2 × ArCH), 7.83 (t, 1H, *J* = 1.5 Hz, ArCH), 3.90 (s, 3H, CH₃), 3.07, 3.04 (2 × brs, 2 × 6H, 4 × NCH₃); ¹³C NMR (100.6 MHz, CDCl₃): δ = 165.8 (2 × NC=OS), 165.6 (ArC=O), 146.3 (ArCH), 137.2 (2 × ArCH), 131.3 (ArC), 130.2 (2 × ArC), 52.4 (OCH₃), 37.0 ppm (4 × NCH₃); MS (ES⁺): m/z (%): 342.83 (5) [M+H]⁺, 364.85 (30) [M+Na]⁺, 401.00 (100) [M+CH₃CN+NH₄]⁺.

3,5-Disulfanylbenzoic acid (10e)

An aqueous solution of NaOH (1 N) (481 mL, 0.48 mol) was added to **24** (18.3 g, 53.5 mmol). The resulting mixture was then heated at 70°C under a nitrogen atmosphere for 8 h. The reaction mixture was acidified with HCI (10 N). The white precipitate was collected by filtration, washed several times with H₂O and dried overnight to afford 9.52 g (96 %) of the desired compound as a white solid. $R_{\rm f}$ = 0.75 (silica gel, EtOAc/AcOH 100:2); m.p. 156-158°C; IR v_{max} (disc): 1694 (C=O), 1567,

1443, 1299, 769, 716 cm⁻¹; ¹H NMR (200 MHz, CD₃OD): δ = 7.68 (d, 2H, *J* = 1.5 Hz, 2 × ArCH), 7.43 (t, 1H, *J* = 1.5 Hz, ArCH); ¹³C NMR (50.3 MHz, CD₃OD): δ = 167.5 (C=O), 134.2 (2 × ArC), 132.4 (ArC), 132.1 (ArCH), 126.4 ppm (2 × ArCH); HRMS (ES⁻): [M–H]⁻ calcd for C₇H₅O₂S₂, 184.9736; found, 184.9725.

Methyl 3,5-disulfanylbenzoate (25)

To a solution of **10e** (5.00 g, 26.9 mmol) in MeOH (500 mL) under a nitrogen atmosphere was added concentrated H_2SO_4 (1.44 mL, 26.9 mL). The mixture was heated at reflux for 12 h then cooled to 22°C and concentrated to dryness. The solid residue was taken up in CHCl₃ (100 mL) and washed with H_2O (2 × 100 mL), brine (100 mL), dried over MgSO₄ and concentrated *in vacuo* to afford 5.28 g (98 %) of the

desired compound as a white solid. m.p. 60-62°C (lit.^[9] 61-62°C); IR v_{max} (film): 3055, 2987, 1726 (2 × C=O), 1570, 1266, 736 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.71 (d, 2H, *J* = 1.5 Hz, 2 × ArCH), 7.34 (t, 1H, *J* = 1.5 Hz, ArCH), 3.91 (s, 3H, CH₃), 3.54 ppm (s, 2H, 2 × SH); ¹³C NMR (100.6 MHz, CDCl₃):

 δ = 165.8 (C=O), 132.9 (ArCH), 131.6 (2 × ArC), 131.2 (ArC), 127.2 (2 × ArCH), 52.5 ppm (OCH₃); HRMS (ES⁻): [M–H]⁻ calcd. for C₈H₇O₂S₂, 198.9887; found, 198.9893.

Methyl 3,5-bis(benzoylsulfanyl)benzoate (26)

26 was prepared following a previously described method,^[10] using **25** (6.70 g, 33.5 mmol), benzoyl chloride (11.3 mL, 0.10 mol) and triethylamine (13.6 mL, 0.10 mol) in THF (200 mL). The crude oil was crystallized under high vaccum and the resulting solid was triturated in cold hexane and frittered off (repeated 3 times) to afford 12.4 g (91 %) of the desired compound as a white solid. $R_{\rm f} = 0.45$

(silica gel, CH₂Cl₂/petroleum 40-60 1:3); m.p. 79-80°C; IR v_{max} (film): 3055, 2987, 1728 (C=O), 1683 (C=O), 1266, 897, 737 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 8.28 (d, 2H, *J* = 1.5 Hz, 2 × Ar β CH), 8.04-8.02 (m, 4H, 4 × Ar α CH), 7.89 (t, 1H, *J* = 1.5 Hz, Ar β CH), 7.65 (t, 2H, *J* = 7.5 Hz, 2 × Ar α CH), 7.52 (t, 4H, *J* = 8 Hz, 4 × Ar α CH), 3.96 ppm (s, 3H, OCH₃); ¹³C NMR (100.6 MHz, CDCl₃): δ = 188.9 (2 × SC=O), 165.4 (Ar β C=O), 145.3 (Ar β CH), 137.0 (2 × Ar β CH), 136.2 (2 × ArC), 134.0 (2 × Ar α CH), 132.1 (ArC), 129.3 (2 × ArC), 128.9 (4 × Ar α CH), 127.6 (4 × Ar α CH), 52.6 ppm (OCH₃); HRMS (ES⁺): [M+Na]⁺ calcd. for C₂₂H₁₆NaO₄S₂, 431.0388; found, 431.0382.

Methyl 3-(benzoylthio)-5-(4-(methoxycarbonyl)benzylthio)benzoate (28a)

To an ice-cold solution of **26** (2.00 g, 4.90 mmol) under a nitrogen atmosphere in anhydrous THF (100 mL) was added a 30 % solution of MeONa in MeOH (965 μ L, 5.15 mmol). The resulting mixture was stirred for 1 h at 0°C then quenched with a dilute aqueous solution of HCl (1 N) (100 mL) at 0°C and extracted with CH₂Cl₂ (3 × 300 mL). The combined organic extracts were washed with H₂O (3 × 300 mL), brine (300 mL), dried over MgSO₄ and the solvent

removed under reduced pressure. The crude residue was kept under a nitrogen atmosphere, diluted with acetone (100 mL) and methyl 4-(bromomethyl)benzoate (2.24 g, 9.80 mmol), 18-crown-6 (259 mg, 0.98 mmol) and potassium carbonate (1.36 g, 9.80 mmol) were added. The resulting mixture was heated at reflux for 14 h. The reaction mixture was then cooled to 22°C and concentrated to dryness under reduced pressure. The solid residue was taken up in CH_2CI_2 (100 mL), washed with H_2O (2 × 100 mL), brine (100 mL), dried over MgSO₄ and the solvent removed under reduced pressure. Purification by flash chromatography using CH₂Cl₂ as eluent afforded 1.36 g (61 %) of the desired compound as a white solid. $R_f = 0.25$ (silica gel, CH_2Cl_2); m.p. 80-81°C; IR v_{max} (film): 2954, 1720 (C=O), 1681 (C=O), 1282, 909, 734 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 8.01-7.98 (m, 4H, 2 × Ar α CH + 2 × Ar β CH), 7.96 (d, 2H, J = 8 Hz, 2 × Ar γ CH), 7.62 (t, 1H, J = 7.5 Hz, Ar α CH), 7.59 (t, 1H, J = 1.5 Hz, Ar β CH), 7.49 (t, 2H, J = 8 Hz, 2 × Ar α CH), 7.52 (d, 2H, J = 8 Hz, 2 × Ar γ CH), 4.20 (s, 2H, CH₂), 3.90 (s, 3H, OCH₃), 3.88 ppm (s, 3H, OCH₃); ¹³C NMR (100.6 MHz, CDCl₃): δ = 189.0 (ArαC=O), 166.7 (ArC=O), 165.6 (ArC=O), 142.0 (ArC), 140.0 (ArβCH), 137.7 (ArC), 136.2 (ArC), 134.0 (2 × ArCH), 131.7 (ArC), 131.5 (ArCH), 129.9 (2 × ArγCH), 129.3 (ArCH), 129.0 (2 × ArC), 128.9 (2 × ArCH), 127.6 (2 × ArCH), 52.5 (OCH₃), 52.1 (OCH₃), 38.6 ppm (CH₂); HRMS (ES⁺): [M+Na]⁺ calcd. for $C_{24}H_{20}NaO_5S_2$, 475.0650; found, 475.0644.

Methyl 3-{[4-(methoxycarbonyl)benzyl]sulfanyl}-5-sulfanylbenzoate (29a)

To an ice-cold solution of **28a** (500 mg, 1.11 mmol) under a nitrogen atmosphere in anhydrous THF (10 mL) was added a 30 % solution of MeONa in MeOH (228 μ L, 1.22 mmol). The resulting mixture was stirred for 1 h at 0°C then quenched with a dilute aqueous solution of HCI (1 N) (10 mL) and extracted with CH₂Cl₂ (3 × 50 mL). The combined organic extracts were washed with H₂O (3 × 50 mL), brine (50 mL), dried over MgSO₄ and the solvent removed under reduced pressure. Purification by flash chromatography using CH₂Cl₂ as eluent

afforded 319 mg (83 %) of the desired compound as a colorless oil. $R_f = 0.5$ (silica gel, CH₂Cl₂/EtOAc 98:2); IR v_{max} (film): 1719 (br, 2 × C=O), 1282, 909, 735 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.97 (d, 2H, J = 8.5 Hz, 2 × Ar β CH), 7.73-7.72 (m, 2H, 2 × Ar α CH), 7.36 (d, 2H, J = 8.5 Hz, 2 × Ar β CH), 7.30 (t, 1H, J = 1.5 Hz, Ar α CH), 4.16 (s, 2H, CH₂), 3.90 (s, 3H, OCH₃), 3.89 (s, 3H, OCH₃), 3.51 ppm (s, 1H, SH); ¹³C NMR (100.6 MHz, CDCl₃): δ = 166.7 (C=O), 165.8 (C=O), 142.0 (ArC), 137.5 (ArC), 133.6 (Ar α CH), 132.7 (ArC), 131.5 (ArC), 129.9 (2 × Ar β CH), 129.3 (ArC), 128.9 (2 × Ar β CH), 128.0 (Ar α CH), 127.4 (Ar α CH), 52.5 (OCH₃), 52.2 (OCH₃), 38.3 ppm (CH₂); HRMS (ES⁺): [M+Na]⁺ calcd. for C₁₇H₁₆NaO₄S₂, 371.0388; found, 371.0382.

3-[(4-Carboxybenzyl)sulfanyl]-5-sulfanylbenzoic acid (21a)

An aqueous solution of NaOH (1 N) (5.00 mL, 5.00 mmol) was added to **29a** (290 mg, 0.83 mmol). The resulting mixture was then heated at 70°C under a nitrogen atmosphere for 4 h. The reaction mixture was acidified with HCI (10 N). The white precipitate was collected by filtration, washed several times with H₂O and dried overnight to afford 265 mg (99 %) of the desired compound as a white solid. m.p. 177-179°C; IR ν_{max} (disc): 1693 (br, 2 × C=O), 1567, 1427, 1289 cm⁻¹; ¹H NMR (500 MHz, DMSO-d6): δ = 13.08 (brs, 2H, 2 × OH), 7.86-7.46 (m,

7H, 2 × ArCH), 4.37 ppm (s, 2H, CH₂); ¹³C NMR (125.8 MHz, DMSO-d6): δ = 167.0 (C=O), 166.2 (C=O), 142.2 (ArC), 137.5, 134.9, 132.1, 130.9, 129.6 (ArC), 129.5 (2 × ArCH), 129.0 (2 × ArCH), 126.3, 124.9, 35.9 ppm (CH₂); HRMS (ES⁻): [M–H]⁻ calcd. for C₁₅H₁₁O₄S₂, 319.0099; found, 319.0093.

Methyl 4-vinylbenzoate (38)

38 was prepared following a previously described method,^[6] using **37** (2.00 g, 13.5 mmol), trimethyloxonium tetrafluoroborate (2.50 g, 16.9 mmol) and triethylamine (2.07 mL, 14.9 mmol) in CH_2CI_2 (200 mL). Purification by flash chromatography using CH_2CI_2 as eluent afforded 1.44 g (70 %) of the desired

compound as a white solid. $R_{\rm f} = 0.55$ (silica gel, CH₂Cl₂/petroleum ether 40-60 1:1); ¹H NMR (400 MHz, CDCl₃): $\delta = 8.00$ (d, 2H, J = 8.5 Hz, 2 × ArCH), 7.47 (d, 2H, J = 8.5 Hz, 2 × ArCH), 6.76 (dd, 1H, J = 17.5 Hz, J = 11 Hz, CH=CH₂), 5.87 (d, 1H, J = 17.5 Hz, CH=CH₂), 5.39 (d, 1H, J = 11 Hz, CH=CH₂), 3.93 ppm (s, 3H, OCH₃).

Methyl 4-(2-hydroxyethyl)benzoate (39b)

39b was prepared following a previously described method,^[6] using **38** (1.24 g, 7.64 mmol), 1 M borane (BH₃) in THF (15.3 mL, 15.3 mmol) then 1 N NaOH (22.9 mL, 22.9 mmol) and 35 % H_2O_2 (12.6 mL, 0.13 mol). Purification by flash chromatography using a gradient of $CH_2Cl_2/EtOAc$ [100:0] to [95:5] as eluent afforded 803 mg (58 %) of the desired compound as a colorless oil.

 $R_{\rm f} = 0.3$ (silica gel, CH₂Cl₂/EtOAc 9:1); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.99$ (d, 2H, J = 8 Hz, 2 ×

ArCH), 7.31 (d, 2H, *J* = 8 Hz, 2 × ArCH), 3.90 (m, 5H, OCH₂ + OCH₃), 2.93 (t, 2H, *J* = 6.5 Hz, ArCH₂), 1.63 (s, 1H, OH).

Methyl 4-(2-bromoethyl)benzoate (27b)

27b was prepared following a previously described method,^[5] using **39b** (800 mg, 4.44 mmol, 1 eq), N-bromosuccinicimide (NBS) (1.58 g, 8.89 mmol) and triphenylphosphine (Ph₃P) (2.33 g, 8.89 mmol) in DMF (30 mL). Purification by flash chromatography using a gradient of CH_2Cl_2 /petroleum ether 40-60 [10:90] to [50:50] as eluent afforded 962 mg (89 %) of the desired

compound as a colorless oil. $R_f = 0.55$ (silica gel, CH_2Cl_2 /petroleum ether 40-60 1:1); IR v_{max} (film): 3060, 2985, 1740 (C=O), 1266 cm⁻¹; ¹H NMR (400 MHz, CDCl_3): $\delta = 8.01$ (d, 2H, J = 8 Hz, 2 × ArCH), 7.30 (d, 2H, J = 8 Hz, 2 × ArCH), 3.92 (s, 3H, OCH₃), 3.59 (t, 2H, J = 7.5 Hz, CH₂), 3.23 ppm (t, 2H, J = 7.5 Hz, CH₂); ¹³C NMR (100.6 MHz, CDCl₃): $\delta = 166.9$ (C=O), 144.0 (ArC), 129.9 (2 × ArCH), 128.9 (ArC), 128.7 (2 × ArCH), 52.1 (OCH₃), 39.1 (CH₂), 32.2 ppm (CH₂); HRMS (Cl⁺): [M+H]⁺ calcd. for C₁₀H₁₂O₂Br, 243.0021; found, 243.0027.

Methyl 3-(benzoylthio)-5-(4-(methoxycarbonyl)phenethylthio)benzoate (28b)

To an ice-cold solution of **26** (900 mg, 2.21 mmol) under a nitrogen atmosphere in anhydrous THF (50 mL) was added a 30 % solution of MeONa in MeOH (434 μ L, 2.32 mmol). The resulting mixture was stirred for 1 h at 0°C then quenched with a dilute aqueous solution of HCI (1 N) (50 mL) at 0°C and extracted with CH₂Cl₂ (3 × 150 mL).

The combined organic extracts were washed with H₂O (3×150 mL), brine (150 mL), dried over MqSO₄ and the solvent removed under reduced pressure. The crude residue was kept under a nitrogen atmosphere, diluted with acetone (50 mL) and **27b** (1.07 g, 4.41 mmol), 18-crown-6 (117 mg, 0.44 mmol) and K₂CO₃ (610 mg, 4.41 mmol) were added. The resulting mixture was heated at reflux for 14 h. The reaction mixture was then cooled to 22°C and concentrated to dryness under reduced pressure. The solid residue was taken up in CH_2CI_2 (50 mL), washed with H_2O (2 × 50 mL), brine (50 mL), dried over MgSO₄ and the solvent removed under reduced pressure. Purification by flash chromatography using a gradient of CH₂Cl₂/petroleum ether 40-60 [20:80] to [100:0] then EtOAc/CH₂Cl₂ [10:90] as eluent afforded 410 mg (40 %) of the desired compound as a white solid. R_f = 0.4 (silica gel, CH₂Cl₂); m.p. 64-65°C; IR v_{max} (film): 3055, 2987, 1721 (C=O), 1681 (C=O), 1266, 909, 741 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 8.01-7.97 (m, 6H, 6 × ArCH), 7.64-7.63 (m, 2H, 2 × ArCH), 7.51 (t, 2H, J = 7.5 Hz, 2 × ArCH), 7.31-7.29 (m, 2H, 2 × ArCH), 3.94 (s, 3H, OCH₃), 3.90 (s, 3H, OCH₃), 3.26 (t, 2H, J = 7.5 Hz, CH₂), 3.04 ppm (t, 2H, J = 7.5 Hz, CH₂); ¹³C NMR (100.6 MHz, $CDCl_3$): $\delta = 189.1$ (ArC=OS), 166.9 (C=O), 165.7 (C=O), 145.0 (ArC), 139.1 (ArCH), 138.3 (ArC), 136.2 (ArC), 134.0 (ArCH), 133.3 (ArCH), 131.7 (ArC), 130.6 (ArCH), 129.9 (2 × ArCH), 128.9 (3 × ArCH), 128.7 (ArCH), 128.6 (2 × ArC), 127.6 (2 × ArCH), 52.5 (OCH₃), 52.1 (OCH₃), 35.4 (CH₂), 34.5 ppm (CH₂); HRMS (ES⁺): [M+Na]⁺ calcd. for C₂₅H₂₂NaO₅S₂, 489.0806; found, 489.0801.

Methyl 3-({2-[4-(methoxycarbonyl)phenyl]ethyl}sulfanyl)-5-sulfanylbenzoate (29b)

To an ice-cold solution of **28b** (286 mg, 0.61 mmol) under a nitrogen atmosphere in anhydrous THF (10 mL) was added a 30 % solution of MeONa in MeOH (126 μ L, 0.68 mmol). The resulting mixture was stirred for 1 h at 22°C then quenched with a dilute aqueous solution of HCl (1 N) (10 mL) and extracted with CH₂Cl₂ (3

 \times 50 mL). The combined organic extracts were washed with H₂O (3 \times 50 mL), brine (50 mL), dried

over MgSO₄ and the solvent removed under reduced pressure. Purification by flash chromatography using a gradient of CH₂Cl₂/petroleum ether 40-60 [50:50] to [100:0] as eluent afforded 150 mg (68 %) of the desired compound as a colorless oil. $R_f = 0.5$ (silica gel, CH₂Cl₂); IR v_{max} (film): 1719 (br, 2 × C=O), 1283, 910, 735 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.98 (d, 2H, *J* = 8.5 Hz, 2 × ArβCH), 7.74 (t, 1H, *J* = 1.5 Hz, ArαCH), 7.73 (t, 1H, *J* = 1.5 Hz, ArαCH), 7.35 (t, 1H, *J* = 1.5 Hz, ArαCH), 7.28 (d, 2H, *J* = 8.5 Hz, 2 × ArβCH), 3.92 (s, 3H, OCH₃), 3.92 (s, 3H, OCH₃), 3.55 (s, 1H, SH), 3.22 (t, 2H, *J* = 7.5 Hz, CH₂), 3.00 ppm (t, 2H, *J* = 7.5 Hz, CH₂); ¹³C NMR (100.6 MHz, CDCl₃): δ = 166.9 (C=O), 165.9 (C=O), 145.0 (ArC), 138.2 (ArC), 132.8 (ArαCH), 132.7 (ArC), 131.5 (ArC), 129.9 (2 × ArβCH), 128.6 (2 × ArβCH), 128.6 (ArαCH), 126.6 (ArαCH), 52.5 (OCH₃), 52.1 (OCH₃), 35.4 (CH₂), 34.4 ppm (CH₂); HRMS (FI⁺): [M]⁺ calcd. for C₁₈H₁₈O₄S₂, 362.0647; found, 362.0663.

3-{[2-(4-Carboxyphenyl)ethyl]sulfanyl}-5-sulfanylbenzoic acid (21b)

An aqueous solution of NaOH (1 N) (829 μ L, 0.83 mmol) was added to **29b** (50.0 mg, 0.14 mmol). The resulting mixture was then heated at 70°C under a nitrogen atmosphere for 4 h. The reaction mixture was acidified with HCI (10 N). The white precipitate was collected by filtration, washed several times with H₂O and dried overnight to afford 38 mg (83 %) of the desired compound as a white solid. m.p.

199-200°C; IR ν_{max} (disc): 1686 (br, 2 × C=O), 1566, 1435, 1297 cm⁻¹; ¹H NMR (500 MHz, DMSO-d6): δ = 13.02 (s, 2H, 2 × OH), 7.88 (d, 2H, *J* = 8 Hz, 2 × Ar β CH), 7.65 (s, 1H, Ar α CH), 7.55 (s, 1H, Ar α CH), 7.50 (s, 1H, Ar α CH), 7.40 (d, 2H, *J* = 8 Hz, 2 × Ar β CH), 5.88 (brs, 1H, SH), 3.33 (m, 2H, CH₂), 2.72 (t, 2H, *J* = 7.5 Hz, CH₂); ¹³C NMR (125.8 MHz, DMSO-d6): δ = 167.2 (C=O), 166.4 (C=O), 145.0 (ArC), 137.9 (ArC), 134.8 (ArC), 132.1 (ArC), 130.3 (Ar α CH), 129.4 (2 × Ar β CH), 128.9 (ArC), 128.8 (2 × Ar β CH), 125.8 (Ar α CH), 124.4 (Ar α CH), 34.2 (CH₂), 32.6 ppm (CH₂); HRMS (ES⁻): [M–H]⁻ calcd. for C₁₆H₁₃O₄S₂, 333.0255; found, 333.0270.

Methyl 4-(3-hydroxyprop-1-yn-1-yl)benzoate (33c)

33c was prepared following a previously described method,^[4] using **35c** (3.38 mL, 57.2 mmol), copper iodide (73.0 mg, 0.38 mmol), tetrakis(triphenylphosphine)palladium(0) (220 mg, 0.19 mmol), **34** (5.00 g, 19.1 mmol, 1 eq), Et₃N (10.7 mL, 76.3 mmol, 4 eq) in anhydrous THF (100 mL). Purification by flash chromatography using CH_2Cl_2 as eluent afforded

2.62 g (72 %) of the desired compound as a white solid. $R_{\rm f} = 0.15$ (silica gel, CH₂Cl₂); m.p. 73-74°C (lit.^[11] 81-82°C); IR v_{max} (film): 3055, 2987, 1721 (C=O), 1266, 739 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): $\delta = 7.95$ (d, 2H, J = 8.5 Hz, 2 × ArCH), 7.45 (d, 2H, J = 8.5 Hz, 2 × ArCH), 4.51 (s, 2H, CH₂), 3.90 (s, 3H, OCH₃), 2.54 (br s, 1H, OH); ¹³C NMR (CDCl₃, 100.6 MHz): $\delta = 166.6$ (C=O), 131.6 (2 × ArCH), 129.6 (ArC), 129.5 (2 × ArCH), 127.3 (ArC), 90.4 (C=), 84.7 (C=), 52.3 (OCH₃), 51.5 ppm (CH₂); HRMS (FI⁺): [M]⁺ calcd. for C₁₁H₁₀O₃, 190.0630; found, 190.0636.

Methyl 4-(3-hydroxypropyl)benzoate (36c)

36c was prepared following a previously described method,^[11] using **33c** (700 mg, 3.68 mmol), 10 % Pd-C (391 mg, 3.68 mmol) in MeOH (30 mL). Purification by flash chromatography using CH₂Cl₂/EtOAc [90:10] as eluent afforded 583 mg (82 %) of the desired compound as a colorless oil. $R_f = 0.2$

(silica gel, CH₂Cl₂/EtOAc 9:1); IR v_{max} (film): 3417, 2950, 1719 (C=O), 1611, 1437, 1284, 1113, 737 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.94 (d, 2H, *J* = 8 Hz, 2 × ArCH), 7.25 (d, 2H, *J* = 8 Hz, 2 × ArCH), 3.88 (s, 3H, OCH₃), 3.65 (t, 2H, *J* = 6.5 Hz, CH₂OH), 2.75 (t, 2H, *J* = 6.5 Hz, ArCH₂), 2.16 (br s, 1H, OH), 1.92-1.85 ppm (m, 2H, CH₂); ¹³C NMR (100.6 MHz, CDCl₃): δ = 167.2 (C=O), 147.5 (ArC),

129.7 (2 × ArCH), 128.5 (2 × ArCH), 127.8 (ArC), 61.9 (CH₂OH), 52.0 (OCH₃), 33.8 (CH₂), 32.1 ppm (ArCH₂); HRMS (CI⁺): [M+H]⁺ calcd. for $C_{11}H_{15}O_3$, 195.1021; found, 195.1016.

Methyl 4-(3-bromopropyl)benzoate (27c)

27c was prepared following a previously described method,^[5] using **36c** (500 mg, 2.58 mmol), NBS (1.83 g, 10.3 mmol), Ph₃P (2.71 g, 10.3 mmol), in DMF (30 mL). Purification by flash chromatography using CH₂Cl₂/petroleum ether 40-60 [50:50] as eluent afforded 628 mg (95%) of the desired compound as white solid. $R_{\rm f}$ = 0.65 (silica gel, CH₂Cl₂/petroleum ether 40-60

1:9); m.p. 38-39°C; IR v_{max} (film): 3054, 2953, 1719 (C=O), 1266, 739 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.97 (d, 2H, *J* = 8.5 Hz, 2 × ArCH), 7.27 (d, 2H, *J* = 8.5 Hz, 2 × ArCH), 3.91 (s, 3H, OCH₃), 3.39 (t, 2H, *J* = 6.5 Hz, CH₂Br), 2.84 (t, 2H, *J* = 6.5 Hz, ArCH₂), 2.22-2.15 ppm (m, 2H, CH₂); ¹³C NMR (100.6 MHz, CDCl₃): δ = 167.0 (C=O), 146.0 (ArCH), 129.9 (2 × ArCH), 128.6 (2 × ArCH), 128.2 (ArCH), 52.1 (OCH₃), 34.0 (ArCH₂), 33.7 (CH₂), 32.8 ppm (CH₂Br); HRMS (Cl⁺): [M+H]⁺ calcd. for C₁₁H₁₄O₂Br, 257.0177; found, 257.0173.

Methyl 3-(benzoylthio)-5-(3-(4-(methoxycarbonyl)phenyl)propylthio) benzoate (28c)

To an ice-cold solution of **26** (1.20 g, 2.94 mmol) under a nitrogen atmosphere in anhydrous THF (70 mL) was added a 30 % solution of MeONa in MeOH (0.58 mL, 3.09 mmol). The resulting mixture was stirred for 1 h at 0°C then quenched with a dilute aqueous solution of HCI (1 N) (70 mL) at 0°C and extracted with CH_2CI_2 (3 × 200 mL). The combined organic extracts were washed with H_2O (3 × 200 mL), brine (200 mL), dried over MgSO₄

and the solvent removed under reduced pressure. The crude residue was kept under a nitrogen atmosphere, diluted with acetone (70 mL) and 27c (1.51 g, 5.88 mmol), 18-crown-6 (156 mg, 0.59 mmol) and potassium carbonate (813 mg, 5.88 mmol) were added. The resulting mixture was heated at reflux for 12 h. The reaction mixture was then cooled to 22°C and concentrated to dryness under reduced pressure. The solid residue was taken up in CH_2CI_2 (50 mL), washed with H_2O (2 × 50 mL). brine (50 mL), dried over MgSO₄ and the solvent removed under reduced pressure. Purification by flash chromatography using a gradient of CH₂Cl₂/petroleum ether 40-60 [30:70] to [50:50] as eluent afforded 773 mg (55 %) of the desired compound as a white solid. $R_{\rm f} = 0.15$ (silica gel, EtOAc/petroleum ether 40-60 1:9); m.p. 68-69°C; IR v_{max} (film): 3055, 2987, 1720 (C=O), 1681 (C=O), 1266, 897, 740 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 8.03-8.01 (m, 3H, 2 × Ar α CH + Ar β CH), 7.97-7.95 (m, 3H, $2 \times \text{AryCH} + \text{Ar}\beta\text{CH}$), 7.65 (tt, 1H, J = 7.5 Hz, J = 1 Hz, $\text{Ar}\alpha\text{CH}$), 7.60 (t, 1H, J = 1.5 Hz, ArβCH), 7.52 (t, 2H, J = 7.5 Hz, 2 × ArαCH), 7.27-7.25 (m, 2H, 2 × ArγCH), 3.93 (s, 3H, OCH₃), 3.90 (s, 3H, OCH₃), 2.99 (t, 2H, J = 7 Hz, CH₂), 2.84 (t, 2H, J = 7.5 Hz, CH₂), 2.08-2.00 ppm (m, 2H, CH₂); ¹³C NMR (100.6 MHz, CDCl₃): δ = 189.2 (ArαC=O), 167.1 (C=O), 165.8 (C=O), 146.5 (ArC), 138.8 (ArβCH), 138.7 (ArC), 136.2 (ArC), 134.0 (ArαCH), 133.2 (ArβCH), 131.7 (ArC), 130.5 (ArβCH), 129.8 (2 × ArγCH), 128.9 (2 × ArγCH), 128.8 (ArC), 128.6 (2 × ArαCH), 128.1 (ArC), 127.6 (2 × ArαCH), 52.5 (OCH₃), 52.0 (OCH₃), 34.6 (CH₂), 32.6 (CH₂), 30.0 ppm (CH₂); HRMS (ES⁺): [M+Na]⁺ calcd. for C₂₆H₂₄NaO₅S₂, 503.0963; found, 503.0957.

Methyl 3-({3-[4-(methoxycarbonyl)phenyl]propyl}sulfanyl)-5-sulfanylbenzoate (29c)

To an ice-cold solution of **28c** (500 mg, 1.04 mmol) under a nitrogen atmosphere in anhydrous THF (10 mL) was added a 30 % solution of MeONa in MeOH (293 μ L, 1.56 mmol). The resulting mixture was stirred for 1 h at 0°C then quenched with a dilute aqueous solution of HCI (1 N) (10 mL) and extracted with CH₂Cl₂ (3 × 50 mL). The combined organic extracts were washed with H₂O (3 × 50 mL), brine (50 mL), dried over MgSO₄ and the

solvent removed under reduced pressure. Purification by flash chromatography using CH₂Cl₂/petroleum ether 40-60 [50:50] as eluent afforded 332 mg (85 %) of the desired compound as a colorless oil. $R_{\rm f}$ = 0.5 (silica gel, CH₂Cl₂); IR v_{max} (film): 3055, 1719 (br, 2 × C=O), 1266, 740 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.97 (d, 2H, *J* = 8.5 Hz, 2 × ArβCH), 7.72 (d, 2H, *J* = 1.5 Hz, 2 × ArαCH), 7.32 (t, 1H, *J* = 1.5 Hz, ArαCH), 7.25 (d, 2H, *J* = 8.5 Hz, 2 × ArβCH), 3.91 (s, 3H, OCH₃), 3.91 (s, 3H, OCH₃), 3.54 (s, 1H, SH), 2.94 (t, 2H, *J* = 7 Hz, CH₂), 2.82 (t, 2H, *J* = 7.5 Hz, CH₂), 2.01-1.97 ppm (m, 2H, CH₂); ¹³C NMR (100.6 MHz, CDCl₃): δ = 167.0 (C=O), 166.0 (C=O), 146.5 (ArC), 138.5 (ArC), 132.6 (ArαCH), 131.5 (ArC), 129.9 (2 × ArβCH), 128.5 (2 × ArβCH), 128.1 (ArC), 127.4 (ArαCH), 126.5 (ArαCH), 52.4 (OCH₃), 52.1 (OCH₃), 34.5 (CH₂), 32.4 (CH₂), 30.0 ppm (CH₂); HRMS (ES⁻): [M–H]⁻ calcd. for C₁₉H₁₉O₄S₂, 375.0730; found, 375.0719.

3-{[3-(4-Carboxyphenyl)propyl]sulfanyl}-5-sulfanylbenzoic acid (21c)

An aqueous solution of NaOH (1 N) (4.15 mL, 4.15 mmol) was added to **29c** (260 mg, 0.69 mmol). The resulting mixture was then heated at 70°C under a nitrogen atmosphere for 4 h. The reaction mixture was acidified with HCI (10 N). The white precipitate was collected by filtration, washed several times with H₂O and dried overnight to afford 240 mg (99 %) of the desired compound as a white solid. $R_{\rm f} = 0.5$ (silica gel, CH₂Cl₂/EtOAc/MeOH/AcOH 50:45:5:1); m.p. 194-195°C; IR v_{max} (disc): 1693 (br, 2 × C=O), 1567, 1435, 1292 cm⁻¹; ¹H NMR (500

MHz, DMSO-d6): δ = 13.06 (brs, 2H, 2 × OH), 7.84 (d, 2H, *J* = 8 Hz, 2 × ArβCH), 7.84 (s, 1H, ArαCH), 7.67 (t, 1H, *J* = 1.5 Hz, ArαCH), 7.61 (t, 1H, *J* = 1.5 Hz, ArαCH), 7.26 (d, 2H, *J* = 8 Hz, 2 × ArβCH), 2.97 (t, 2H, *J* = 7 Hz, CH₂), 2.72 (t, 2H, *J* = 7.5 Hz, CH₂), 1.83 ppm (m, 2H, CH₂); ¹³C NMR (125.8 MHz, DMSO-d6): δ = 167.2 (C=O), 165.9 (C=O), 146.3 (ArC), 139.1 (ArC), 137.2 (ArC), 132.7 (ArC), 129.5 (2 × ArβCH), 128.6 (ArαCH), 128.6 (ArC), 128.4 (2 × ArβCH), 127.0 (ArαCH), 124.2 (ArαCH), 33.8 (CH₂), 31.0 (CH₂), 29.5 ppm (CH₂); HRMS (ES⁻): [M–H]⁻ calcd. for C₁₇H₁₅O₄S₂, 347.0412; found, 347.0416.

Methyl 3-(benzoylthio)-5-(3-phenylpropylthio)benzoate (28d)

To an ice-cold solution of **26** (580 mg, 1.42 mmol) under a nitrogen atmosphere in anhydrous THF (30 mL) was added a 30 % solution of MeONa in MeOH (293 μ L, 1.49 mmol). The resulting mixture was stirred for 1 h at 0°C then quenched with a dilute aqueous solution of HCI (1 N) (30 mL) at 0°C and extracted with CH₂Cl₂ (3 × 100 mL). The combined organic

extracts were washed with H_2O (3 × 100 mL), brine (100 mL), dried over MgSO₄ and the solvent removed under reduced pressure. The crude residue was kept under a nitrogen atmosphere, diluted with acetone (40 mL) and (3-bromopropyl)benzene (473 μ L, 3.11 mmol), 18-crown-6 (82.0 mg, 0.31

mmol) and potassium carbonate (430 mg, 3.11 mmol) were added. The resulting mixture was heated at reflux for 14 h. The reaction mixture was then cooled to 22°C and concentrated to dryness under reduced pressure. The solid residue was taken up in CH₂Cl₂ (50 mL), washed with H₂O (2 × 50 mL), brine (50 mL), dried over MgSO₄ and the solvent removed under reduced pressure. Purification by flash chromatography using a gradient of petroleum ether 40-60/EtOAc [95:5] to [90:10] as eluent afforded 337 mg (51 %) of the desired compound as a white solid. R_f = 0.15 (silica gel, EtOAc/petroleum 40-60 5:95); m.p. 55-56°C; IR v_{max} (film): 3055, 2987, 1640 (br, 2 × C=O), 1266, 896, 737 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 8.04-8.02 (m, 3H, 2 × ArαCH + ArβCH), 7.97 (t, 1H, *J* = 1.5 Hz, ArβCH), 7.65 (t, 1H, *J* = 7.5 Hz, ArαCH), 7.59 (t, 1H, *J* = 1.5 Hz, ArβCH), 7.52 (t, 2H, *J* = 7.5 Hz, 2 × ArαCH), 7.28-7.27 (m, 2H, 2 × ArqCH), 7.21-7.19 (m, 3H, 3 × ArqCH), 3.94 (s, 3H, OCH₃), 3.00 (t, 2H, *J* = 7.5 Hz, CH₂), 2.79 (t, 2H, *J* = 7.5 Hz, CH₂), 2.07-2.00 ppm (m, 2H, CH₂); ¹³C NMR (100.6 MHz, CDCl₃): δ = 189.2 (ArαC=OS), 165.8 (ArβC=O), 141.0 (ArC), 139.0 (ArC), 138.6 (ArβCH), 136.3 (ArC), 134.0 (ArαCH), 133.1 (ArβCH), 131.6 (ArC), 130.3 (ArβCH), 128.9 (2 × ArαCH), 128.7 (ArC), 128.5 (2 × ArγCH), 127.6 (2 × ArαCH), 126.1 (ArγCH), 52.5 (OCH₃), 34.6 (CH₂), 32.5 (CH₂), 30.3 ppm (CH₂); HRMS (CI⁺): [M+NH₄]⁺ calcd. for C₂₄H₂₆NO₃S₂, 440.1354; found, 440.1360.

Methyl 3-[(3-phenylpropyl)sulfanyl]-5-sulfanylbenzoate (29d)

To an ice-cold solution of **28d** (200 mg, 0.47 mmol) under a nitrogen atmosphere in anhydrous THF (10 mL) was added a 30 % solution of MeONa in MeOH (293 μ L, 1.04 mmol). The resulting mixture was stirred for 2 h at 22°C then quenched with a dilute aqueous solution of HCI (1 N) (10 mL) and extracted with CH₂Cl₂ (3 × 50 mL). The combined organic extracts were washed with H₂O (3 × 50 mL), brine (50 mL), dried

over MgSO₄ and the solvent removed under reduced pressure. Purification by flash chromatography using petroleum ether 40-60/EtOAc [80:20] as eluent afforded 144 mg (95 %) of the desired compound as a colorless oil. $R_f = 0.25$ (silica gel, EtOAc/petroleum 40-60 5:95); IR v_{max} (film): 1721 (C=O), 1279, 909, 734 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.73-7.72$ (m, 2H, 2 × ArCH), 7.33-7.27 (m, 3H, 3 × ArCH), 7.24-7.18 (m, 3H, 3 × ArCH), 3.92 (s, 3H, OCH₃), 3.53 (s, 1H, SH), 2.95 (t, 2H, J = 7.5 Hz, CH₂), 2.78 (t, 2H, J = 7.5 Hz, CH₂), 2.03-1.95 ppm (m, 2H, CH₂); ¹³C NMR (100.6 MHz, CDCl₃): $\delta = 166.0$ (C=O), 141.0 (ArC), 138.8 (ArC), 132.5 (ArC), 132.4 (ArCH), 131.4 (ArC), 128.5 (4 × ArCH), 127.2 (2 × ArCH), 126.4 (2 × ArCH), 126.1 (2 × ArCH), 52.4 (OCH₃), 34.6 (CH₂), 32.3 (CH₂), 30.4 ppm (CH₂); HRMS (ES⁻): [M–H]⁻ calcd. for C₁₇H₁₇O₂S₂, 317.0675; found, 317.0664.

3-[(3-Phenylpropyl)sulfanyl]-5-sulfanylbenzoic acid (21d)

An aqueous solution of NaOH (1 N) (1.89 mL, 1.89 mmol) was added to **29d** (100 mg, 0.31 mmol). The resulting mixture was then heated at 70°C under a nitrogen atmosphere for 3 h. The reaction mixture was acidified with HCI (10 N). The white precipitate was collected by filtration, washed several times with H₂O and dried overnight to afford 94 mg (98 %) of the desired compound as a white solid. $R_{\rm f} = 0.4$ (silica gel, CH₂Cl₂/EtOAc/AcOH 50:50:1); m.p. 75-76°C; IR v_{max} (disc): 1695 (C=O),

1568, 1442, 1297 cm⁻¹; ¹H NMR (500 MHz, DMSO-d6): δ = 13.20 (br s, 1H, OH), 7.65 (s, 1H, ArαCH), 7.52 (s, 1H, ArαCH), 7.46 (s, 1H, ArαCH), 7.29 (m, 2H, 2 × ArβCH), 7.19 (m, 3H, 3 × ArβCH), 5.88 (br s, 1H, SH), 3.00 (t, 2H, *J* = 7.5 Hz, CH₂), 2.72 (t, 2H, *J* = 7.5 Hz, CH₂), 1.90-1.87 ppm (m, 2H, CH₂); ¹³C NMR (125.8 MHz, DMSO-d6): δ = 166.4 (C=O), 141.1 (ArC), 138.1 (ArC), 134.7 (ArC), 132.1 (ArC), 130.3 (ArαCH), 128.4 (2 × ArβCH), 128.3 (2 × ArβCH), 125.9 (ArβCH), 125.8 (ArαCH), 124.4 (ArαCH), 33.9 (CH₂), 31.2 (CH₂), 30.1 ppm (CH₂); HRMS (ES⁻): [M–H]⁻ calcd. for C₁₆H₁₅O₂S₂, 303.0519; found, 303.0508.

Methyl 4-(4-hydroxybut-1-yn-1-yl)benzoate (33e)

33e was prepared following a previously described method,^[4] using **35e** (1.73 mL, 22.9 mmol), copper iodide (29.0 mg, 0.15 mmol), tetrakis(triphenylphosphine)palladium(0) (176 mg, 0.15 mmol), methyl-4-iodobenzoate (2.00 g, 7.63 mmol) and Et₃N (4.27 mL, 30.5 mmol) in anhydrous THF (40 mL). Purification by flash chromatography using a gradient of CH₂Cl₂/EtOAc [100:0] to [90:10] as eluent afforded 1.34 g (86

%) of the desired compound as an off-white solid. $R_f = 0.1$ (silica gel, CH_2Cl_2); m.p. 60-62°C (lit.^[12] 95.3-96.3°C); IR ν_{max} (film): 1719 (C=O), 1279, 909, 735 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.96 (d, 2H, J = 8.5 Hz, 2 × ArCH), 7.47 (d, 2H, J = 8.5 Hz, 2 × ArCH), 3.91 (s, 3H, OCH₃), 3.84 (m, 2H, OCH₂), 2.72 (t, 2H, J = 6.5 Hz, CH₂), 1.97 (t, 1H, J = 5.5 Hz, OH); ¹³C NMR (100.6 MHz, CDCl₃): δ = 166.6 (C=O), 131.6 (2 × ArCH), 129.4 (2 × ArCH), 129.2 (ArC), 128.1 (ArC), 89.9 (C=), 81.8 (C=), 61.0 (CH₂OH), 52.2 (OCH₃), 23.9 ppm (CH₂); HRMS (CI⁺): [M+H]⁺ calcd. for C₁₂H₁₃O₃, 205.0865; found, 205.0857.

Methyl 4-(4-hydroxybutyl)benzoate (36e)

36e was prepared following a previously described method,^[11] using **33e** (1.30 g, 6.37 mmol) and 10 % Pd-C (678 mg, 6.37 mmol) in MeOH (40 mL). Purification by flash chromatography using a gradient of EtOAc/petroleum ether 40-60 [30:70] to [50:50] as eluent afforded 1.12 g (84 %) of the desired compound as a colorless oil. $R_{\rm f} = 0.2$ (silica gel,

EtOAc/petroleum ether 40-60 3:7); IR ν_{max} (film): 1715 (C=O), 1285, 911, 742 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.95 (d, 2H, *J* = 8.5 Hz, 2 × ArCH), 7.25 (d, 2H, *J* = 8.5 Hz, 2 × ArCH), 3.90 (s, 3H, OCH₃), 3.66 (t, 2H, *J* = 6.5 Hz, CH₂OH), 2.70 (t, 2H, *J* = 7.5 Hz, CH₂), 1.76-1.68 (m, 2H, CH₂), 1.64-1.57 ppm (m, 3H, OH + CH₂); ¹³C NMR (100.6 MHz, CDCl₃): δ = 167.2 (C=O), 147.9 (ArC), 129.7 (2 × ArCH), 128.4 (2 × ArCH), 127.8 (ArC), 62.6 (CH₂OH), 52.0 (OCH₃), 35.7 (CH₂), 32.2 (CH₂), 27.3 ppm (CH₂); HRMS (CI⁺): [M+H]⁺ calcd. for C₁₂H₁₇O₃, 209.1178; found, 209.1173.

Methyl 4-(4-bromobutyl)benzoate (27e)

27e was prepared following a previously described method,^[5] using **36e** (1.05 g, 5.05 mmol), NBS (1.80 g, 10.1 mmol) and Ph₃P (2.65 g, 10.1 mmol) in DMF (60 mL). Purification by flash chromatography using EtOAc/petroleum ether 40-60 [5:95] as eluent afforded 1.24 g (91 %) of the desired compound as a colorless oil. $R_{\rm f} = 0.3$ (silica gel,

EtOAc/petroleum ether 40-60 5:95); IR v_{max} (film): 1716 (C=O), 1285, 910, 731 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.97 (d, 2H, *J* = 8 Hz, 2 × ArCH), 7.25 (d, 2H, *J* = 8 Hz, 2 × ArCH), 3.91 (s, 3H, OCH₃), 3.42 (t, 2H, *J* = 6.5 Hz, CH₂), 2.70 (t, 2H, *J* = 7.5 Hz, CH₂), 1.93-1.86 (m, 2H, CH₂), 1.84-1.76 ppm (m, 2H, CH₂); ¹³C NMR (100.6 MHz, CDCl₃): δ = 167.1 (C=O), 147.3 (ArC), 129.8 (2 × ArCH), 128.4 (2 × ArCH), 128.0 (ArC), 52.0 (OCH₃), 35.0 (CH₂), 33.4 (CH₂), 32.1 (CH₂), 29.5 ppm (CH₂); HRMS (Cl⁺): [M+H]⁺ calcd. for C₁₂H₁₆O₂Br, 271.0334; found, 271.0338.

Methyl 3-(benzoylthio)-5-(4-(4-(methoxycarbonyl)phenyl)butylthio)benzoate (28e)

To an ice-cold solution of **26** (1.00 g, 2.45 mmol) under a nitrogen atmosphere in anhydrous THF (50 mL) was added a 30 % solution of MeONa in MeOH (483 μ L, 2.57 mmol). The resulting mixture was stirred for 1 h at 0°C then guenched with a dilute agueous

solution of HCl (1 N) (50 mL) at 0°C and extracted with CH_2Cl_2 (3 × 150 mL). The combined organic extracts were washed with H₂O (3 \times 150 mL), brine (150 mL), dried over MgSO₄ and the solvent removed under reduced pressure. The crude residue was kept under a nitrogen atmosphere, diluted with acetone (50 mL) and 27e (1.32 g, 4.90 mmol), 18-crown-6 (129 mg, 0.49 mmol) and potassium carbonate (677 mg, 4.90 mmol) were added. The resulting mixture was then heated to reflux for 12 h. The reaction mixture was then cooled to 22°C and concentrated to dryness under reduced pressure. The solid residue was taken up in CH₂Cl₂ (50 mL), washed with H₂O (3×50 mL), brine (50 mL), dried over MgSO₄ and the solvent removed under reduced pressure. Purification by flash chromatography using CH₂Cl₂ as eluent afforded 378 mg (31 %) of the desired compound as a white solid. $R_{\rm f} = 0.3$ (silica gel, CH₂Cl₂); m.p. 62-64°C; IR v_{max} (film): 1719 (C=O), 1680 (C=O), 1282, 909, 736 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 8.03-8.01 (m, 3H, 2 × AraCH + ArbCH), 7.97-7.94 (m, 3H, ArbCH + 2 × ArγCH), 7.65 (tt, 1H, J = 7 Hz, J = 1 Hz, ArαCH), 7.60 (t, 1H, J = 1.5 Hz, ArβCH), 7.51 (t, 2H, J = 7.5Hz, $2 \times Ar\alpha CH$), 7.24 (d, 2H, J = 8.5 Hz, $2 \times Ar\gamma CH$), 3.93 (s, 3H, OCH₃), 3.90 (s, 3H, OCH₃), 3.02 (t, 2H, J = 7 Hz, CH₂), 2.70 (t, 2H, J = 7.5 Hz, CH₂), 1.85-1.70 ppm (m, 4H, 2 × CH₂); ¹³C NMR (100.6) MHz, CDCl₃): $\delta = 189.2$ (Ar α C=O), 167.1 (C=O), 165.8 (C=O), 147.5 (ArC), 139.1 (ArC), 138.7 (ArβCH), 136.3 (ArC), 134.0 (ArαCH), 133.0 (ArβCH), 131.6 (ArC), 130.2 (ArβCH), 129.7 (2 × ArγCH), 128.9 (2 × Ar α CH), 128.7 (ArC), 128.4 (2 × Ar γ CH), 127.9 (ArC), 127.6 (2 × Ar α CH), 52.5 (OCH₃), 52.0 (OCH₃), 35.4 (CH₂), 33.1 (CH₂), 30.0 (CH₂), 28.3 ppm (CH₂); HRMS (ES⁺): [M+Na]⁺ calcd. for C₂₇H₂₆NaO₅S₂, 517.1119; found, 517.1114.

Methyl 3-({4-[4-(methoxycarbonyl)phenyl]butyl}sulfanyl)-5-sulfanylbenzoate (29e)

To an ice-cold solution of **28e** (200 mg, 0.41 mmol) under a nitrogen atmosphere in anhydrous THF (5 mL) was added a 30 % solution of MeONa in MeOH (84.0 μ L, 0.45 mmol). The resulting mixture was stirred for 1 h at 0°C then quenched with a dilute aqueous solution of HCI (1 N) (5 mL) and extracted

with CH₂Cl₂ (3 × 25 mL). The combined organic extracts were washed with H₂O (3 × 25 mL), brine (25 mL), dried over MgSO₄ and the solvent removed under reduced pressure. Purification by flash chromatography using CH₂Cl₂ as eluent to afford 122 mg (77 %) of the desired compound as a colorless oil. $R_f = 0.65$ (silica gel, CH₂Cl₂/EtOAc 98:2); IR ν_{max} (film): 1718 (2C=O), 1282, 909, 735 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.95$ (d, 2H, J = 8 Hz, 2 × ArβCH), 7.71 (d, 2H, J = 1.5 Hz, 2 × ArαCH), 7.33 (t, 1H, J = 1.5 Hz, ArαCH), 7.23 (d, 2H, J = 8 Hz, 2 × ArβCH), 3.91 (s, 3H, OCH₃), 3.91 (s, 3H, OCH₃), 3.94 (s, 3H, OCH₃), 3.94 (s, 1H, SH), 2.96 (t, 2H, J = 7 Hz, CH₂), 2.69 (t, 2H, J = 7.5 Hz, CH₂), 1.80 (m, 2H, CH₂), 1.69 ppm (m, 2H, CH₂); ¹³C NMR (100.6 MHz, CDCl₃): $\delta = 167.1$ (C=O), 166.0 (C=O), 147.4 (ArC), 138.8 (ArC), 132.5 (ArαCH), 131.4 (ArC), 129.7 (2 × ArβCH), 128.4 (2 × ArβCH), 127.9 (ArC), 127.3 (ArαCH), 126.4 (ArαCH), 52.4 (OCH₃), 52.0 (OCH₃), 35.4 (CH₂), 33.0 (CH₂), 30.0 (CH₂), 28.3 ppm (CH₂); HRMS (ES⁺): [M+Na]⁺ calcd. for C₂₀H₂₂NaO₄S₂, 413.0857; found, 413.0852.

3-{[4-(4-Carboxyphenyl)butyl]sulfanyl}-5-sulfanylbenzoic acid (21e)

An aqueous solution of NaOH (1 N) (1.54 mL, 1.54 mmol) was added to **29e** (100 mg, 0.26 mmol). The resulting mixture was then heated at 70° C under a nitrogen atmosphere for 4 h. The reaction mixture was acidified with HCl (10 N). The white precipitate was collected by filtration, washed several times with

H₂O and dried overnight to afford 91 mg (99 %) of the desired compound as a white solid. m.p. 198-199°C; IR v_{max} (disc): 1688 (broad, 2 × C=O), 1566, 1428, 1291 cm⁻¹; ¹H NMR (500 MHz, DMSO-d6): δ = 12.99 (br s, 2H, 2 × OH), 7.85 (d, 2H, *J* = 7 Hz, 2 × ArβCH), 7.67-7.47 (m, 3H, 3 × ArαCH), 7.32-7.27 (m, 2H, 2 × ArβCH), 5.88 (br s, 1H, SH), 3.04-3.00 (m, 2H, CH₂), 2.68-2.60 (m, 2H, CH₂), 1.73-1.53 ppm (m, 4H, 2 × CH₂); ¹³C NMR (125.8 MHz, DMSO-d6): δ = 167.3 (C=O), 166.4 (C=O), 147.3

(ArC), 138.3 (ArC), 134.7 (ArC), 132.1 (ArC), 130.2 (Ar α CH), 129.4 (2 × Ar β CH), 128.5 (2 × Ar β CH), 128.4 (ArC), 125.7 (Ar α CH), 124.3 (Ar α CH), 34.4 (CH₂), 31.4 (CH₂), 29.5 (CH₂), 27.8 ppm (CH₂); HRMS (ES⁻): [M–H]⁻ calcd. for C₁₈H₁₇O₄S₂, 361.0574; found, 361.0563.

4-[(Acetylsulfanyl)methyl]benzoic acid (40)

40 was prepared following a previously described method,^[13] using 4bromomethylbenzoic acid (500 mg, 2.33 mmol) and potassium thioacetate (265 mg, 2.33 mmol) in EtOAc (10 mL) to afford 395 mg (81 %) of the desired compound as a white crystalline solid. $R_f = 0.2$ (silica gel, CH₂Cl₂/AcOH 100:1); m.p. 143-145°C (lit.^[14] 144-145°C); IR v_{max} (film): 3055, 1265, 749 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 11.88$ (br s, 1H, OH), 8.05

(d, 2H, J = 8 Hz, 2 × ArCH), 7.41 (d, 2H, J = 8 Hz, 2 × ArCH), 4.17 (s, 2H, CH₂), 2.38 ppm (s, 3H, CH₃); MS (ES⁻): m/z (%): 209 (100) [M–H]⁻.

4-(Sulfanylmethyl)benzoic acid (41)

41 was prepared following a previously described method, ^[14] using **40** (200 mg, 0.95 mmol) and 1 N KOH in MeOH (2.86 mL, 2.86 mmol) in MeOH (3 mL) to afford 158 mg (99 %) of the desired compound as a gold colored solid. $R_{\rm f} = 0.4$ (silica gel, CH₂Cl₂/EtOAc/AcOH 80:20:1); m.p. 144-146°C (lit.^[14] 155.5-157°C); IR

 v_{max} (disc): 1685 (C=O), 1609, 1427, 1317, 1291 cm⁻¹; ¹H NMR (400 MHz, CD₃OD): δ = 7.97 (d, 2H, J = 8 Hz, 2 × ArCH), 7.44 (d, 2H, J = 8 Hz, 2 × ArCH), 4.91 ppm (s, 2H, CH₂); MS (ES⁻): m/z (%): 167 (100) [M–H]⁻.

9. Enzyme kinetics

The zinc-*B*-lactamase from *Bacillus cereus* 569/H/9 was prepared as described.^[15] Protein concentration was calculated from spectrophotometric data using the extinction coefficient $e_{280} = 30,500 \text{ M}^{-1} \text{ cm}^{-1}$.^[15] Imipenem was provided by Merck Sharp and Dohme (Haar, Germany). HEPES buffer was purchased from Roth (Karlsruhe, Germany) and ZnCl₂ (98 % enriched) from Sigma-Aldrich (Steinheim, Germany). Water was purified with a Millipore (Bedford, MA, USA) water purification system. Kinetic parameters were determined in 15 mM HEPES, pH 7 at 24°C using a Lambda 9, (Perkin-Elmer instruments) spectrophotometer equipped with thermostatically controlled cells.

Imipenem hydrolysis was followed by monitoring the change in absorbance at 300 nm (? $e^{300}_{(imipenem)} = -9000 \text{ M}^{-1} \text{ cm}^{-1}$). The final BcII enzyme concentration was 10 nM. The substrate concentration was 160 μ M and equal to K_m value of the enzyme for imipenem. The inhibitors were dissolved in 4-10 % DMSO, HEPES 15 mM, pH 7 at 1-2 mg/ml and then diluted. Two different inhibitor concentrations were used for the K_i determinations. The presence of 0.5 % DMSO in the final solution did not show any effect on the activity (data not shown). K_i values were determined using the following equation for competitive inhibition:

$$v_o/v_i = [K_m (1 + I/K_i) + S] / K_m + S$$

- $v_{o}\;$ Initial rate in absence of inhibitor
- vi Initial rate in presence of inhibitor
- **S** Substrate concentration
- I Inhibitor concentration
- \mathbf{K}_{m} Michaelis Menten constant
- **K**_i Inhibition constant

For inhibition pattern determination, kinetic analyses were performed in 15 mM HEPES, pH 7 at constant temperature. Substrate concentration was varied between 40 and 200 μ M and the BcII concentration was fixed by 10 nM. Three analyses were performed for each inhibitor, where the inhibitor concentration [I] was varied ([I] = 0; [I] = K_i ; [I] =2 × K_i).

10. Native ESI-MS

10.1 Protein preparation

The enzyme samples were desalted using Microcon YM-10 (cut-off = 10,000 Da) centrifugal filters (Millipore, Bedford MA, USA) in 15 mM ammonium acetate buffers (pH 6.5, 7.0 or 7.5). Seven dilution/concentration steps were performed at 4°C and 14,000 g. The stock enzyme solution was diluted in NH₄OAc buffer to a final concentration of 100 μ M.

10.2 Sample preparation for the different DCL

Prior to each run, under an oxygen-free atmosphere, individual thiol members of the C-SAR were freshly dissolved in DMSO at a final concentration of 100 mM. Each monothiol was then diluted to 75 μ M into the same mixture in 15 mM ammonium acetate buffer pH 7.5. The pH of the resulting mixture was then adjusted to the required value with a 2.8 % aqueous solution of NH₄OH using a pH-meter stick HI 1290 Piccolo. Each dithiol molecule was diluted to a concentration of 100 μ M in 15 mM ammonium acetate buffer at pH 7.5. The experimental samples were prepared by mixing the appropriate volumes of the monothiols, dithiol and the enzyme stock solution in 15 mM ammonium acetate at pH 7.5. The final concentrations for each monothiol, dithiol and the enzyme were 15 μ M, 45 μ M and 15 μ M respectively. An aliquot of this mixture was placed in a 96 well-plate sealed with adhesive aluminium foil and was subsequently taken out of the oxygen-free environment to be analysed.

10.3 Automated Nanoelectrospray Mass Spectrometry (additional information)

Samples were then infused to the Q-TOF through the ESI chip (estimated flow rate *ca.* 100 nL/min). Typically a spraying voltage of 1.70 kV \pm 0.1 kV depending on the "sprayability" of the sample and a sample pressure of 0.25 psi were applied. The instrument was equipped with a standard Z-spray source block. Clusters of Cs_(n+1)I_n (1mg/ml CsI in 100 % methanol) were used for calibration. Calibration and sample acquisitions were performed in the positive ion mode in the range of m/z 500-5000. Operating conditions for the mass spectrometer were: sample cone voltage (varied) between 20 to 200 V, source temperature 20°C. Acquisition and scan time were 30 s and 1 s, respectively. The pressure at the interface between the atmospheric source and the high vacuum region was fixed at 6.6 mbar (measured with the roughing pump Pirani gauge) by throttling the pumping line using an Edwards Speedivalve to provide collisional cooling. Data were smoothed by the Savitzky Golay method (smooth windows: 20, number of smooth: 4) the background subtracted and the masses finally calculated by centering. The standard deviation reported for all the calculated masses represents the precision of the mass calculation from m/z values reported from the ESI mass spectrum. Data were processed using MassLynx software v. 4.0.

11. References

- [1] L. Field, P. R. Engelhardt, J. Org. Chem. 1970, 35, 3647-3655.
- [2] S. Otto, R. L. Furlan, J. K. Sanders, *Science* 2002, 297, 590-593.
- [3] M. S. Newman, H. A. Karnes, J. Org. Chem. 1966, 31, 3980-3984.
- [4] D. Xu, Z. Lib, S. Ma, Tetrahedron: Asymmetry 2003, 14, 3657–3666.
- [5] H. Nomura, H. Akimoto, T. Miwa, *EP0340905* 1989.
- [6] W. Chu, Z. Tu, E. McElveen, J. Xu, M. Taylor, R. R. Luedtke, R. H. Mach, *Bioorg. Med. Chem.* 2005, 13, 77-87.
- [7] A. Carfi, E. Duee, M. Galleni, J. M. Frere, O. Dideberg, Acta Crystallogr. D. Biol. Crystallogr. 1998, 54, 313-323.
- [8] H. J. Kurth, U. Kraatz, F. Korte, Chem. Ber. 1973, 106, 2419-2426.
- [9] H. Miki, T. Nakahama, S. Yokoyama, S. Mashiko, U.S. Pat. Appl. Publ. 2002.
- [10] B. W. Fausett, L. S. Liebeskind, J. Org. Chem. 2005, 70, 4851-4853.
- [11] M. D. Varney, C. L. Palmer, W. H. Romines, 3rd, T. Boritzki, S. A. Margosiak, R. Almassy, C. A. Janson, C. Bartlett, E. J. Howland, R. Ferre, J. Med. Chem. 1997, 40, 2502-2524.
- [12] A. Gangjee, Y. Zeng, J. J. McGuire, F. Mehraein, R. L. Kisliuk, J. Med. Chem. 2004, 47, 6893-6901.
- [13] G. J. Bodwell, J. N. Bridson, S. L. Chen, R. A. Poirier, J. Am. Chem. Soc. 2001, 123, 4704-4708.
- [14] H. Okuno, K. Uoto, T. Tomohiro, M.-T. Youinou, J. Chem. Soc., Dalton Trans. 1990, 3375-3381.
- [15] R. Paul-Soto, R. Bauer, J. M. Frere, M. Galleni, W. Meyer-Klaucke, H. Nolting, G. M. Rossolini, D. de Seny, M. Hernandez-Valladares, M. Zeppezauer, H. W. Adolph, *J. Biol. Chem.* 1999, 274, 13242-13249.