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1 Introduction

2 Modeling of Biochemical Systems

Answers to Problems

Problem 1
Problem 1a

Gluc G6P F6P F1,6P

ATP ADP

ATP ADP

HK PGI

PFK

FBP

Pi

S1 S2 S3 S4

S5
S6

v1 v2

v3

v4

S5 S6

For drawing the network you may either use the biological names or numbered
abbreviations. The second version simplifies the mathematical analysis. The ODE
system reads:
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_S1 ¼ � v1
_S2 ¼ v1 � v2
_S3 ¼ v2 � v3 þ v4
_S4 ¼ v3 � v4
_S5 ¼ � v1 � v3
_S6 ¼ v1 þ v3

Problem 1b
The stoichiometric matrix reads

N ¼

� 1 0 0 0
1 � 1 0 0
0 1 � 1 1
0 0 1 � 1

� 1 0 � 1 0
1 0 1 0

0
BBBBBB@

1
CCCCCCA
:

The rank of N is 4. It has 6 rows and 4 columns.

Problem 1c
Since the number of columns (4) is equal to the rank of N, we find no solution K for
the equation N �K ¼ 0. Hence, this system has no steady state, except of the trivial
steady state where all fluxes vanishes.
Two linear independent solutionsG for the equationG �N ¼ 0 are 0; 0; 0; 0; 1; 1ð Þ

and 1; 1; 1; 1; 0; 0ð Þ. This means that we find two conservation relations for the given
reaction system: ATP þ ADP ¼ const: and S1 þ S2 þ S3 þ S4 ¼ const:
Please keep in mind that in reality the metabolites of glycolysis are involved in

further reactions, which may violate these conservation relations.

Problem 1d
The reaction system in Example 2.6 has only three reactions since reaction FBP was
neglected, but also six substrates. This implies that Example 2.6 shows a nontrivial
steady-state flux and an additional conservation relation. Note: different model
formulations can imply different analysis results.

Problem 2

Problem 2a
N1:

d
dt
S1 ¼ d

dt
S2 ¼ d

dt
S3 ¼ � d

dt
S4 ¼ � 2

d
dt
S5 ¼ v1
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N2:

d
dt
S1 ¼ v1 � v2

d
dt
S2 ¼ v2 � v3

d
dt
S3 ¼ v3 � v4

d
dt
S4 ¼ v4 � v5

N3:

d
dt
S1 ¼ v1 � v2 � v3

N4:

d
dt
S1 ¼ v1 � v2 � v4

d
dt
S2 ¼ 2v2 � v3

d
dt
S3 ¼ v4

N5:

d
dt
S1 ¼ v1 � v2 � v3

d
dt
S2 ¼ � v2 þ v3

d
dt
S3 ¼ v2 � v3

N6:

d
dt
S1 ¼ v1 � v2

d
dt
S2 ¼ v4 � v3

d
dt
S3 ¼ v3 � v4

d
dt
S4 ¼ v5

Problem 2b
Ranks: N1 – 1, N2 – 4, N3 – 1, N4 – 3, N5 – 2, N6 – 3
Independent, nonzero steady-state fluxes:
N1 – none,
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N2 : K ¼

1

1

1

1

1

0
BBBBBB@

1
CCCCCCA

N3 : K ¼
1 1

1 0

0 1

0
B@

1
CA

N4 : K ¼

1

1

2

0

0
BBB@

1
CCCA

N5 : K ¼
2

1

1

0
B@

1
CA

N6 : K ¼

1 0

1 0

0 1

0 1

0 0

0
BBBBB@

1
CCCCCA

Conservation relations
N1 – has four independent conservation relations, for example

G ¼
2 0 0 0 1
1 0 0 1 0
� 1 0 1 0 0
� 1 1 0 0 0

0
BB@

1
CCA. The most intuitive solution is the linear combination

of the rows of G, i.e., S1 þ S2 þ S3 þ S4 þ S5 ¼ const:
N2 – none
N3 – none
N4 – none
N5 – G ¼ 0 1 1ð Þ or S2 þ S3 ¼ const:
N6 – G ¼ 0 1 1 0ð Þ or S2 þ S3 ¼ const:
N1 has only the trivial steady state (v1 ¼ 0) and N6 has only the trivial steady state

for reaction v5.
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Problem 3
Elementary flux modes
N3: v1; v2f g; v1; v3f g
N4: v1; v2; v3f g

Problem 4
There are two steady-state solutions for S1: S

1ð Þ
1 ¼ � 0:270778 and S 2ð Þ

1 ¼ 0:0422064.
Since biological concentrations must be nonnegative, we neglect the negative
solution. The flux control coefficients for the steady state with the positive concen-
tration of S1 read:

CJ ¼
1 0 0

0:956 0:5 � 0:456
1:048 � 0:548 0:5

0
@

1
A

Problem 5
The equation system reads

d
dt
A ¼ � v1 þ v3 ¼ � k1 �Aþ k3 �C

d
dt
B ¼ v1 � v2 ¼ k1 �A� k2 �B

d
dt
C ¼ v2 � v3 ¼ k2 �B� k3 �C

Problem 5a
The Jacobian reads

J ¼
� k1 0 k3
k1 � k2 0
0 k2 � k3

0
@

1
A

Problem 5b
The eigenvalues are

l1 ¼ 1
2

� 5þ i �
ffiffiffi
7

p� �
; l2 ¼ � 1

2
5þ i �

ffiffiffi
7

p� �
; and l3 ¼ 0:

The respective eigenvectors are

b 1ð Þ ¼
� 3

2
� 1

4
� 5þ i �

ffiffiffi
7

p� �
1
2
þ 1
4

� 5þ i �
ffiffiffi
7

p� �
1

0
BBBB@

1
CCCCA; b 2ð Þ ¼

� 3
2
þ 1
4

5þ i �
ffiffiffi
7

p� �
1
2
� 1

4
5þ i �

ffiffiffi
7

p� �
1

0
BBBB@

1
CCCCA; and

b 3ð Þ ¼
1

1

2

0
B@

1
CA:
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Problem 5c
The general solution has the form x tð Þ ¼Pn

i¼1
cib

ið Þelit and reads here

A tð Þ
B tð Þ
C tð Þ

0
BB@

1
CCA ¼ c1 �

� 3
2
� 1

4
� 5þ i �

ffiffiffi
7

p� �
1
2
þ 1
4

� 5þ i �
ffiffiffi
7

p� �
1

0
BBBBB@

1
CCCCCA � e12 � 5þi � ffiffi7pð Þ � t

þ c2 �
� 3

2
þ 1
4

5þ i �
ffiffiffi
7

p� �
1
2
� 1

4
5þ i �

ffiffiffi
7

p� �
1

0
BBBBB@

1
CCCCCA � e� 1

2 5þi � ffiffi7pð Þ � t þ c3 �
1

1

2

0
BB@

1
CCA

Problem 5d
For the initial conditions A 0ð Þ ¼ 1;B 0ð Þ ¼ 1;C 0ð Þ ¼ 0, we obtain

c1 ¼ � 1
2
; c2 ¼ � 1

2
; c3 ¼ 1

2

and hence:

A tð Þ
B tð Þ
C tð Þ

0
B@

1
CA ¼ � 1

2
�

� 3
2
� 1

4
� 5þ i �

ffiffiffi
7

p� �
1
2
þ 1
4

� 5þ i �
ffiffiffi
7

p� �
1

0
BBBB@

1
CCCCA � e12 � 5þi � ffiffi7pð Þ � t

� 1
2
�

� 3
2
þ 1
4

5þ i �
ffiffiffi
7

p� �
1
2
� 1

4
5þ i �

ffiffiffi
7

p� �
1

0
BBBB@

1
CCCCA � e� 1

2 5þi � ffiffi7pð Þ � t þ 1
2
�

1

1

2

0
B@

1
CA

Application of Euler�s formula (eij ¼ cosjþ i � sinj) yields

A tð Þ
B tð Þ
C tð Þ

0
B@

1
CA ¼ 1

14
� e� 5

2t �

7e

5
2
t þ 7cos

ffiffiffi
7

p

2
t

� �
� 3

ffiffiffi
7

p
sin

ffiffiffi
7

p

2
t

� �

7e

5
2
t þ 7cos

ffiffiffi
7

p

2
t

� �
þ 5

ffiffiffi
7

p
sin

ffiffiffi
7

p

2
t

� �

14e

5
2
t� 14cos

ffiffiffi
7

p

2
t

� �
� 2

ffiffiffi
7

p
sin

ffiffiffi
7

p

2
t

� �

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

Problem 6
We get Tr Aa = a and Det Aa = a.
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Problem 6a
The plot parametric plot of Det Aa versus Tr Aa looks as follows.

20- 15- 10- 5- 0 5 10

10-

5-

0

5

10

15

20

Tr Aa

D
e

t
A
a

Problem 6b

The stability and character of the steady state changes with a:
a � � 10 saddle point
� 10 < a � 2� 2

ffiffiffiffiffi
11

p
stable node

2� 2
ffiffiffiffiffi
11

p
< a< 0 stable focus

0 < a< 2þ 2
ffiffiffiffiffi
11

p
unstable focus

2� 2
ffiffiffiffiffi
11

p � a unstable node

Problem 7
An important part of systemsbiology is data integration.Data used in systemsbiology
is very heterogeneous, e.g., experimental data is coming from different experimental
platforms or pathway data differs in the kind of information (e.g., protein–protein
interactions, description of the substrates, and products of a reaction, or a detailed
kinetic description of a reaction). The definition and standards and its use by systems
biology tools is therefore important for the data integration and the reuse of existing
data (e.g., quantitative models of biological systems).

2 Modeling of Biochemical Systems j9



3 Specific Biochemical Systems

Answers to Problems

Problem 1
Problem 1 actually refers to the model of glycolysis synthesis and not of threonine
synthesis. The matrix of flux control coefficients (normalized) for the toy model of
glycolysis (Section 3.1.2) reads

CJ ¼

0:75 0:5 0:5 0:5 0:5 0:5 0:5

0:75 0:5 0:5 0:5 0:5 0:5 0:5

0:75 0:5 0:5 0:5 0:5 0:5 0:5

0:75 0:5 0:5 0:5 0:648 0:352 0:5

0:75 0:5 0:5 0:5 0:75 0:25 0:5

0:75 0:5 0:5 0:5 0:5 0:5 0:5

0:75 0:5 0:5 0:5 0:602 0:398 0:5

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

Problem 2
Wefind a signaling time of tRasGTP ffi 13:966 and a signal duration ofWRasGTP ffi 15:626.

Problem 3
In the absence of phosphatases, phosphorylated kinases would accumulate due to
basal levels of active kinases. Activated kinases cannot be dephosphorylated.

Problem 4
(a) There are many solutions, for instance:

(2)(1)

(b) Themovement of the patterns is shown below (Animations byRodrigoCamargo).
Animation 1 Animation 2

10j
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Problem 5
Insert the solution as an ansatz into the diffusion equation and evaluate the
derivatives. The solution is lðkÞ ¼ Dk2.

Problem 6
The steady-state condition reads

Dr2sstðxÞ ¼ kðsstðxÞÞ2: ð1Þ
The ansatz

sstðxÞ ¼ a=ðxþ bÞ2 ð2Þ
leads to

rsstðxÞ ¼ � 2a

ðxþ bÞ3 ð3Þ

r2sstðxÞ ¼ 6a

ðxþ bÞ4 ð4Þ

ðsstðxÞÞ2 ¼ a2

ðxþ bÞ4 : ð5Þ

Inserting Eqs (4) and (5) into Eq. (1) yields a ¼ 6D=k, and with the boundary
condition sstð0Þ ¼ s0, the ansatz (2) yields b ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6D=ðksoÞ
p

. Alternatively, using (3),
we can express b by the production rate, i.e. the flux at x ¼ 0,

jð0Þ ¼ �Drsstð0Þ ¼ 2Da
b3

b ¼ 2Da
jð0Þ

� �1=3

:

Problem 7
When stripe formation is hard-wired, the pattern is reproducible and inheritable, so
its details can be optimized by mutation and selection. However, a genetic program
for each single stripe would require many additional morphogens and complicated
genetic regulation, which would only evolve if there was a strong selection pressure
on the exact shape of the pattern. Spontaneously forming stripes (like the zebra
patterns) tend to show individual-specific irregularities, which may also be an
advantage, e.g. if the pattern serves for camouflage.

Problem 8
The cell cycle is divided into the interphase, which is the period between two
subsequent cell divisions, and the M phase, during which one cell separates into
two. The interphase can be subdivided into G1, S, and G2 phase. A newborn cell

3 Specific Biochemical Systems j11



begins in G1 phase where it grows to a certain size, before entering the S phase.
During S phase (synthesis phase) the DNA is replicated. When finished the cell
enters G2 phase before starting with the nuclear division (mitosis) and subsequent
cytoplasmatic division (cytokinesis) during M phase. The cell cycle has three major
control points: (1) The �restriction point� (also known as �Start� in yeast) at the end of
G1 phase. At this checkpoint the cell determines whether the environment is
favorable for a new cell cycle. When passed the cell enters S phase. (2) Checkpoint
between G2 phase and M phase. At this checkpoint the cell determines whether the
DNA was successfully replicated. (3) Metaphase-to-anaphase transition checkpoint.
At this checkpoint, the cell determines whether all chromosomes are attached to the
spindle. When passed the cell cycle proceeds with the segregation of the
chromosomes.

Problem 9
The aggregation of Bax or Bak proteins at themitochondrial membrane can result in
an efflux of cytochrome c and other molecules from the mitochondrial intermem-
brane space into the cytosol that subsequently leads to the formation of the apopto-
some and finally to apoptosis. The aggregation of, e.g., Bax at the mitochondrial
membrane is usually inhibited by other molecules, like Bcl2. Bcl2 can also bind to
tBid, a protein that is formed by the initiator caspases of the extrinsic pathway. When
Bcl2 is inhibited by tBid, it cannot block the aggregation of Bax or Bak anymore and
this can results in an activation of the intrinsic apoptotic pathway.

Problem 10
Once a model is established that describes the system of interest (e.g., apoptosis) in
sufficient detail, it can subsequently be used for the identification of potential drug
targets by the simulation of the inhibitory effects of a potential drug. For example, this
can be done by the introduction of a hypothetical drug that can bind a specific model
component and by this result in a changed concentration of the active model
component.

12j 3 Specific Biochemical Systems



4 Model Fitting

Answers to Problems

Problem 1
There are 95 enzymes in BRENDA that fulfill the required criteria. Here is a
screenshot that shows how to perform the search in BRENDA.

Problem 2
DNA microarrays are used to measure the amount of large numbers of mRNAs in
the cell at a certain time point. These values are taken as indicator for the actual
protein concentrations. However, mRNA processing and degradation as well as the

j13



translation process add a large uncertainty to this correlation. The GFP technique
avoids this problem because it measures directly the amount of produced protein.
Furthermore, GFP measurements can be taken in very short time intervals, and
using the appropriate equipment measurements on single cells are possible. Thus,
the other main advantage is the high temporal and spatial resolution that the GFP
approach can provide.

Problem 3
Entering �mitochondrial DNApolymerase� into the quick search field at http://www
.yeastgenome.org results in one hit, telling us that the associated gene name is
�MIP1�. If we then use this gene name for the quick search field at http://yeastGFP
.ucsf.edu, we find out that around 377 molecules of the catalytic subunit of the
mitochondrial DNA polymerase exist in a single yeast cell.

Problem 4
With the assumptions made, maximum-likelihood estimation is equivalent to
minimizing the sum of squared residuals (SSR). The SSR reads

RðqÞ ¼
X
m

ðq1tm þ q2 � ymÞ2 ¼ jjq1 tþ q2 1� yjj2

¼ jjAq� yjj2 ¼ qTATAq� 2qTATyþ yTy

with the vector q ¼ ðq1; q2ÞT and the matrix A ¼ ðt; 1Þ containing the vectors t and
1 ¼ ð1; 1; . . .ÞT as columns. Minimization of RðqÞ leads to

0 ¼ rqR ¼ 2ATAq� 2ATy

Y q ¼ ðATAÞ� 1ATy:

Problem 5
(a) The different sample elements xðmÞ can be seen as independent random variables
with mean hXi and variance varðXÞ. Mean and variance of independent random
variables are additive, so

P
mxm has variancenhXi and variancen varðXÞ, respectively.

In the estimator �x, the sum is divided by n, so we obtain h�xi ¼ hxi and
varð�xÞ ¼ 1=n varðXÞ (because the variance scales with the square of the prefactor
1=n). (d) By computing the empirical mean from independent random samples
ðxð1Þ; . . . ; xðnÞÞ, we effectively draw from the true distribution of �x. However, a finite
number of such samples will not suffice to determine exactly the true mean and
variance. In bootstrapping, we resample from a given set of data. The distribution of
�x obtained from bootstrap sampling will be centered around the empirical mean of
this data set rather than around the true expected value hXi.

Problem 6
(a)With exponentially distributed random errors, the probability to observe a data set
fðt1; y1Þ; ðt2; y2Þ; . . .g reads

LðqjyÞ �
Y
m

exp � jðym � xmðqÞj
a

� �

14j 4 Model Fitting



so the logarithmic likelihood is given by

lnLðqjyÞ ¼ � 1
a

X
m

jðym � xmðqÞjþ const:

Instead of maximizing the SSR, we can minimize the 1-norm

jjy� xðqÞjj1 ¼
X
m

jym � xmðqÞj;

that is, the sum of absolute values of the residuals. (b) In comparison to the SSR
(which is based on the 2-norm jjy� xðqÞjj2 ¼

P
mðym � xmðqÞÞ2), estimation using

the 1-norm will put less weight on points that deviate strongly from the regression
curve, so the estimation will be less sensitive to outliers.

Problem 7
The maximum-likelihood estimator is defined by a global maximum point of the
likelihood andother localmaximadonot play a role. If several parameter sets yield the
samemaximal likelihood value, the model is not identifiable. In Bayesian parameter
estimation, on the other hand, broad local maxima of the posterior density may be
more important than a narrow global one. Let us consider a local maximum point
surrounded by a hill in the posterior landscape pðqjyÞ. The hill represents a range of
similar parameter sets, which together have a posterior probability

PV ¼
ð
q2V

pðqjyÞdq

where V is the volume in parameter space occupied by the hill. This probability does
not only depend on the height of the hill, but also on its width in parameter space.
Therefore, a lower, but broad local maximum can represent a more probable
ensemble of parameter sets than a higher, but narrow global maximum. This fact
is acknowledged in Bayesian estimation.

Problem 8
With the equilibrium relation Keq ¼ cbound=cfree and the conservation relation ctot ¼
cfree þ ctot, we can solve for

cfree ¼ ctot=ð1þKeqÞ
cbound ¼ ctotKeq=ð1þKeqÞ:

The stoichiometric coefficients for the free concentrations cfree (from the old model)
can be used for the total concentrations ctot (in the new model). Within the kinetic
laws, cfree has to be replaced by ctot=ð1þKeqÞ. Formally, this is equivalent to a rescaling
of some kinetic parameters (e.g. Michaelis constants) in the kinetic laws by a factor
of 1þKeq.

j154 Model Fitting j15



Problem 9
(a) One way to interpret the statement is as follows: even if the behavior of several

elements (i.e., their internal dynamics and their potential response to external
influences) is known, the behavior of the coupled system is not obvious: although
it may be predictable in principle, we would maybe not be able to guess it. This
difficulty can be partially overcome by the use of mathematical models and
computer simulations.

(b) An important task in systems biology is to pinpoint the relevant elements of a
system and to understand which global behavior follows from their interactions.
It is usually acknowledged that the elements of a system are systems themselves,
but for simplicity or lack of knowledge, their inner structure is not resolved in the
model. This attitude combines holism and reductionism. The pure reductionist
approach - probing the parts under conditions where they are more or less
uncoupled - would provide detailed information about their properties, but it is
limited to somewhat artificial, non-physiological situations. A pure holistic
approach tests the parts as they are embedded in the living system; such data
will reflect a realistic, natural situation, but it is much harder to obtain detailed,
high quality data, and it is also much harder to analyze them because their
interpretation requires reliable models of the cell. Therefore, the interpretation
may be biased towards the mental models that we assumed in first place.

Problem 10
For bacteria, a comprehensive model would comprise thousands of genes, chemical
reactions, and metabolites (for numbers in a current E. colimodel, see section 8.1 in
the book). Each gene corresponds to at least one mRNA and one protein species.
Considering individual sorts of glycoproteins would add tens of thousands of
variables. In eukaryotes, the number of genes is on the order of 6000 (for yeast)
and 30000 (for mammals). When modelling alternative splicing and other sorts of
RNA, we need additional mRNA species. If we consider organelles, ubiquitous
substances includingmost metabolites possibly have to be described by variables for
individual compartments. In a particle-based model, we consider the positions of all
relevant molecules. With a protein concentration in the range of mM, we would
obtain about 1000 copies of a protein in a bacterium, i.e. 3000 degrees of freedom for
their positions in the cell. For the atoms inside these proteins, the number of degrees
of freedom would be thousands of times higher (with typical protein weights on the
order of 50 kD, corresponding to the weight of 50000 hydrogen atoms).

Problem 11
Obviously, a biochemical model cannot describe a system in all microscopic details
(at atomic resolution), all physical aspects (e.g. quantum mechanical effects), and
under all conditions (a moth being burned in a candle light). Therefore, one should
require a weaker form of correctness, e.g. �agreement with general physical laws,
biological knowledge about the system, and observations made in the system�. This
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kind of correctness can indeed be achieved, but it may not hold any more once new
data become available. A helpful guideline is keeping the following questions in
mind: for what purposes can/should a model be used? What models will actually be
reused by other people?

Problem 12
In order to determine an individual parameter, one should, as a rule of thumb,
measure variables that (i) respond strongly to this parameter and (ii) show little
correlation with variables that have beenmeasured before. A computational method
for optimal experimental design is as follows: infer a parameter distribution (e.g. a
posterior distribution) from the current model fit, draw parameter sets from this
distribution, and simulate the future experiment with these parameters. Then apply
the planned statistical analysis to the artificial data and compare the resulting
estimators to the �true� sampled parameters. This approach will indicate which
kinds of experiments can provide, on average, the most useful information.

Problem 13
The punishment terms for the different selection criteria read:

Criterion A B C

AIC 2k 4 6 8

AICc 2kþ 2kðkþ 1Þ
n� k� 1

40=7 � 5:71 10 16

BIC k log n 2ln10 � 4:61 3ln10 � 6:91 7:16ln10 � 9:21

By adding these terms to the log-likelihood, one obtains the selection criteria

Criterion A B C

AIC 14.0 11.0 10.0

AICc 15.71 15 18.0

BIC 14.61 11.91 11.21

where the best solutions are highlighted in red.
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5 Analysis of High-Throughput Data

Answers to Problems

Problem 1
The recursive formula that computes the possible combinations that result in a value
z of T can be described as (example in C programming language):

/�� function calculates number of combinations that the
Wilcoxon rank-sum ��/
/�� test statistic gets a value of z if the treatment series is
of size ��/
/�� n and if the control series is of size m ��/
int w_combi(int z, int n, int m)
{

/�� if sum is beyond possible bounds ��/
if(z < n�(n+1)/2 || z > (m+n)�(m+n+1)/2-m�(m+1)/2)
return(0);
/�� if we have the rank of only one datum ��/
else if(n == 1 && z < m+2)
return(1);
/�� if we have no control datum ��/
else if(m == 0 && z == n�(n+1)/2)
return(1);
else
return(w_combi(z-(m+n),n-1,m)+w_combi(z,n,m-1));

}

In the next stepwe use the fact that theWilcoxon distribution is symmetric around its
expectation, EðTÞ ¼ nðnþm þ 1Þ=2. We compute the lower and upper boundaries
of possible values of T that are more extreme than the observed value and sum all
combinations:
/� lower tail �/
for(i=min;i<=lower;i++)

�P += (double)w_combi(i,n,m);
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/� upper tail �/
for(i=upper;i<=max;i++)

�P += (double)w_combi(i,n,m);

To derive the final P-value, we divide by the number of all possible values for T.

Problem 2
The P-value for Student�s t-test is 0.963, thus the result is not significant at the 0.05
level. The P-value for Wilcoxon�s test is 0.028, thus the result is significant at the
0.05 level. The ratio (group 2 mean divided by group 1 mean) of the values is 1.02,
the ratio of the ranks is (188/112) 1.68. Thus, judging significance by values is less
successful than judging significance by ranks. This results from the fact that in
group 1 there are two outlier values (i.e. 5599 and 14820) which corrupt the ratio of
the values but less the ratio of the ranks. Thus, Wilcoxon�s test is less sensitive
against outlier values. To robustify Student�s t-test in that respect we can remove
the outliers from the sample.

Problem 3
Weuse theCauchy-Schwartz inequality to show the inequality given by the hint. Then
we define ai ¼ xni � xmi and show the inequality.

Problem 4
This is a practical exercise.

Problem 5
Use the formulas

EðXÞ ¼Pn
i¼0

ip ið Þ and VarðXÞ ¼ E X 2ð Þ�E Xð Þ2to derive the expectations and

variances. These are EðXÞ ¼ np and VarðXÞ ¼ np 1� pð Þ for the Binomial distribu-
tion and EðXÞ ¼ n K

N and VarðXÞ ¼ N� n
N� 1 n

K
N 1� K

N

� �
for the Hypergeometric

distribution.
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6 Gene Expression Models

Answers to Problems

Problem 1
We first compute the ratio

Z1=Z0 ¼
N

n� 1

� �
e�ðn� 1ÞbE0 e� bE1

N
n

� �
e� nbE0

¼ N!

ðn� 1Þ!ðN� nþ 1Þ!
n!ðN� nÞ!

N!
ebðE0 �E1Þ

¼ n!ðN� nÞ!
ðn� 1Þ!ðN� nþ 1Þ! e

� bDE ¼ n
N� nþ 1

e� bDE

where DE ¼ E1 �E0 Assuming that N � n, we can approximate the first term by
n=N, and we obtain

Z1=Z0 � n
N
e�bDE :

Calculating Z1=ðZ1 þZ0Þ is now straightforward.

Problem 2
If m and cðtÞ are known, the synthesis rate can be expressed as

vðtÞ ¼ dcðtÞ
dt

þmcðtÞ: ð6Þ

If m has an unknown finite value, the relative weighting of both terms is unknown.
However, we can still consider the limiting cases �fast turnover� (m!1), which

yields vðtÞ ¼ mcðtÞ and �no degradation� (m ¼ 0), which yields vðtÞ ¼ dcðtÞ
dt

. If data

are only available for a couple of time points, the time derivative
dcðtÞ
dt

has to be

estimated. The results, and therefore the estimation of vðtÞmay become unreliable,
especially if the data are noisy.
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Problem 3
Summary of states and successive states

Predecessor state Successor state

# A B C D ! A B C D #
0 0 0 0 0 ! 0 1 0 0 2
1 1 0 0 0 ! 0 1 0 1 10
2 0 1 0 0 ! 1 1 0 1 11
3 1 1 0 0 ! 1 1 1 1 15
4 0 0 1 0 ! 1 1 0 0 3
5 1 0 1 0 ! 1 1 0 1 11
6 0 1 1 0 ! 0 1 0 1 10
7 1 1 1 0 ! 0 1 1 1 14
8 0 0 0 1 ! 0 1 0 0 2
9 1 0 0 1 ! 0 1 0 1 10
10 0 1 0 1 ! 1 0 0 1 9
11 1 1 0 1 ! 1 0 1 1 13
12 0 0 1 1 ! 1 1 0 0 3
13 1 0 1 1 ! 1 1 0 1 11
14 0 1 1 1 ! 0 0 0 1 8
15 1 1 1 1 ! 0 0 1 1 12

Sketch of the network

A

B

C

D

Possible state transitions (for numbering see the above table): (A) states sorted in a
circle, (B) states rearranged to make attractors and basins of attraction visible
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The system moves to one of the three periodic solutions (attractors) 11! 13! 11,
9! 10! 9, or 3! 15! 12! 3.

Problem 4
(i) ODE system describing direct mutual inhibition:

d
dt
AGene ¼ AGene

BGene
� k1

d
dt
BGene ¼ BGene

AGene
� k2

(ii) Mutual inhibition of mRNA formation

d
dt
AmRNA ¼ AGene � k1

1þ BmRNA=k1r
d
dt
BmRNA ¼ BGene � k2

1þ AmRNA=k2r

(iii) Mutual inhibition including gene, mRNA, and protein levels.

d
dt
AmRNA ¼ AGene � k1

1þ Bprotein=k1p
d
dt
Aprotein ¼ AmRNA � k1r

d
dt
BmRNA ¼ BGene � k2

1þ Aprotein=k2r
d
dt
Bprotein ¼ BmRNA � k2r

Although the above equations are very simple, they are not unique and you may
find other ways of descriptions. These equations consider only the production of
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compounds, not their degradation. Degradation should be included to prevent
unlimited growth.
Including more detail into the analysis refines the description and can make it

easier compatible to experimental data (e.g., for mRNA or protein abundance). On
the other hand, it increases the number of differential equations to be solved and the
number of parameters to be estimated.
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7 Stochastic Systems and Variability

Problem 1
Assuming a volume of 1 mm3 ¼ 10� 18m3 for a small prokaryotic cell and a concen-
tration of 1mM¼ 1mol/m3, we obtain an amount of 10� 18 NA � 6 � 105 molecules.
If we assume a Poisson distribution (e.g. due to random diffusion across the cell
membrane), the standard deviation is about

ffiffiffiffiffiffiffiffiffiffiffiffiffi
6 � 105

p
� 8 � 102, corresponding to a

relative deviation of about 0.1 percent. With a smaller concentration of 1 nM, we
obtain about 0:6	 0:8 molecules per cell. In this case, a stochastic modeling
approach should be used. For the eukaryote (example S. cerevisiae), the cell volume
is 125 times biggger, sowe obtain about 7:5 � 107 	 7:7 � 103 (metabolite) and 75	 8:8
(mRNA) molecules, with much smaller relative deviations.

Problem 2
The linearized chemical Langevin equation can be written as

dx=dt � AxþVBx

where V denotes the compartment volume. For a molecule species with particle
numberxi, thematrices(forasystemcontainingthissinglemoleculespeciesonly) read

A ¼
X
l

nil~eli; B ¼ V � 1=2
X
l

nil
ffiffiffiffi
vl

p
: ð7Þ

By solving the Lyapunov equation (7.11), one obtains the variance

Q ¼ varðxiÞ ¼ �V
ðPlnil

ffiffiffiffi
vl

p Þ2
2
P

l nil~e
l
i

: ð8Þ

Problem 3
We start with the Langevin equation for z ¼ ðg; x; yÞT,

dz
dt

¼ NWzþNDgðWzÞ1=2x; ð9Þ

with the stoichiometric matrixN and the unscaled elasticity matrixW . The matrices
N and W and the Jacobian A ¼ NW read
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N ¼
0 0 0 0

1 � 1 0 0

0 0 1 � 1

0
B@

1
CA; W ¼

wþ x 0 0

0 w� x 0

0 wþ y 0

0 0 w� y

0
BBBB@

1
CCCCA;

A ¼
0 0 0

wþ x �w� x 0

0 wþ y �w� y

0
B@

1
CA:

To compute the averagemolecule numbers, we disregard the noise term in (9), solve
the stationarity condition Az ¼ 0 while fixing g ¼ 1, and obtain the average amount
vector hzi and the corresponding propensity vector hai:

hzi ¼
1

wþ x=w� x

ðwþ x=w� xÞðwþ y=wþ yÞ

0
B@

1
CA; hai ¼ W hzi ¼

wþ x

wþ x

wþ xwþ y=w� x

wþ xwþ y=w� x

0
BBB@

1
CCCA:

To compute the covariance matrix Q ¼ covðzÞ, we solve the Lyapunov equation

AQ þQAT þ B̂B̂
T ¼ 0 ð10Þ

where

B̂¼NDgðhaiÞ1=2 ¼
0 0 0 0ffiffiffiffiffiffiffiffiffi

wþx
p � ffiffiffiffiffiffiffiffiffi

wþx
p

0 0

0 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wþxwþy=w�x

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wþxwþy=w�x

q
0
BB@

1
CCA:

As the covariance matrix Q is symmetric and the auxiliary variable g ¼ 1 is fixed
(no variance or covariances), Q must have the form

Q ¼
0 0 0

0 a b
0 b g

0
@

1
A

with a¼ varðxÞ; b¼ covðx;yÞ; g ¼ varðyÞ. We insert the matrices into the Lyapuov
equation (10), omit the vanishing first row and column (corresponding to the
auxiliary variable g), and obtain

0¼
�aw�x �bw�x

awþy �bw�y bwþy �gw�y

 !
þ

�aw�x �bw�x

awþy �bw�y bwþy �gw�y

 !T

þ
2wþx 0

0
2wþxwþy

w�x

0
B@

1
CA ð11Þ
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¼
�2aw�xþ2wþx awþy�bw�y�bw�x

awþy�bw�y�bw�x 2bwþy�2gw�yþ
2wþxwþy

w�x

0
@

1
A ð12Þ

By solving Eq. (11) for a, b, and g , we obtain

a ¼ varðxÞ ¼ wþx=w�x

b ¼ covðx;yÞ ¼ wþxwþy

w�x

1
w�xþw�y

g ¼ varðyÞ ¼wþxwþy

w�xw�y

�
1þ wþy

w�xþw�y

�

Problem 4
(a) The spectral response coefficient matrix for the parameter x reads

HðiwÞ ¼ Cðiw I�AÞ� 1B ¼
bþ iw 0

�a2 bþ iw

 !�1 a1

0

 !

¼ 1

ðbþ iwÞ2
bþ iw 0

a2 bþ iw

 !
a1

0

 !

¼ 1

ðbþ iwÞ2
a1ðbþ iwÞ

a1a2

 !
¼

a1=ðbþ iwÞ
a1a2=ðbþ iwÞ2

 !
:

We obtain the spectral densities for white noise input

F1ðwÞ ¼ H1ðiwÞH1ðiwÞ� ¼ a1

bþ iw
a1

b� iw
¼ a2

1

b2 þw2

F2ðwÞ ¼ H2ðiwÞH2ðiwÞ� ¼ a1a2

ðbþ iwÞ2
a1;a2

ðb� iwÞ2 ¼
a2
1a2

2

ðb2 þw2Þ2 :

(b) The covariance function for gene 1 can be computed by inverse Fourier
transformation

C1ðtÞ ¼ 1
2p

ð1
�1

a2
1

b2 þw2
eiwtdw ¼ a2

1

2b
e� bjtj: ð13Þ

Alternatively, we can obtain it from the definition of the covariance function, using
the pulse response function K1 ¼ e�bta1 (see Sigal et al. (2006) Nature 444, 643-646)
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C1ðtÞ ¼ hx1ðtÞx1ðtþtÞi¼
ðt

�1
K1ðt� t0Þxðt0Þdt0

0
@

1
A ðtþt

�1
K1ðtþt� t00Þxðt00Þdt00

0
@

1
A* +

¼
ðt

�1
e�bðt� t0Þa1xðt0Þdt0

0
@

1
A ðtþt

�1
e�bðtþt� t00Þa1xðt00Þdt00

0
@

1
A* +

¼ a2
1e

�bð2tþtÞ
ðt

�1

ðtþt

�1
ebt

0
ebt

00 hxðt0Þxðt00Þidt00dt0

¼ a2
1e

�bð2tþtÞ
ðt

�1
e2bt

0
dt0 ¼a2

1

2b
e�bt

where t is assumed to be non-negative. In this calculation, we used the autocorrela-
tion function of white noise, hxðt1Þxðt2Þi¼ dðt1� t2Þ, and the definition of Dirac�s d
distribution,

Ð1
�1 f ðt0Þdðt� t0Þdt0 ¼ f ðtÞ.

The spectral density F2 of gene 2,

F2ðwÞ ¼ a2
1

b2 þw2

a2
2

b2 þw2
;

is a product of two terms. Each of them has the same form as the spectral density of
gene 1. Therefore, the covariance function for gene 2 can be written as a convolution
of the inverse Fourier transforms,

C2ðtÞ ¼
ð1

�1

a2
1

2b
e� bjt� t0 j

� �
a2
2

2b
e�bjt0 j

� �
dt0 ¼ ða1a2Þ2

4b2

ð1
�1

e� bðjt� t0 j þ jt0 jÞdt0:

For positive time lags t > 0, the integral can be split into three parts,

ð1
�1

e�bðjt�t0 jþjt0 jÞdt0¼
ð0

�1
e�bðt�2t0Þdt0þ

ðt
0

e�btdt0þ
ð1
t

e�bð2t0 �tÞdt0

¼ e�bt 1
2b

e2bt
0

� 	0
�1

þte�btþebt
�1
2b

e�2bt0
� 	1

t
¼ 1

b
þt

� �
e�bt:

As the covariance function must be symmetric, we obtain

C2ðtÞ¼ða1a2Þ2
4b2

1
b
þjtj

� �
e�bjtj:

We normalize the covariance functions by their values at time lag t¼0 and obtain
the correlation functions

R1ðtÞ¼C1ðtÞ
C1ð0Þ¼ e�bjtj; R2ðtÞ¼C2ðtÞ

C2ð0Þ¼e�bjtjð1þbjtjÞ:
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Problem 5
(a) Let x denote a possible parameter value and pðxÞ a probability density. The entropy
is given by the functional

S½p
 ¼ �
ðb
a
pðxÞlog pðxÞdx; ð14Þ

which has to be maximized under the normalization condition

1 ¼ Z½p
 ¼
ðb
a
pðxÞdx:

Maximization of (14) implies that for any variation curve DpðxÞ, it must hold that

0 ¼ q
qa

S½pþaDp
 þ lZ½pþaDp
ð Þ

¼ q
qa

�
ðb
a
½pðxÞþaDpðxÞ
log½pðxÞþaDpðxÞ
 þl½pðxÞþaDpðxÞ
dx

� �
a¼0

where l is a Langrangian multiplier. This yields

0 ¼
ðb
a
DpðxÞlog pðxÞþ pðxÞ1=pðxÞDpðxÞþ lDpðxÞdx

¼
ðb
a
DpðxÞ log pðxÞþ 1þ l½ 
dx

for any variation DpðxÞ. The condition is only satisfied if the term in brackets
vanishes; this implies that the probability density must be constant over the entire
interval.
(b) Same proof idea as for (a).

Problem 6
The count number n for positive outcomes follows a binomial distribution with

probabilities ðnÞ ¼ N
n

� �
qnð1� qÞN� n, mean value hni ¼ qN, and variance

Nqð1� qÞ. The relative number q̂ ¼ n=N can be used as an estimator for the

probability q. It has the mean value hq̂i ¼ q and variance var ðq̂Þ ¼ qð1� qÞ
N

, so its

standard deviation decreases as 1=
ffiffiffiffi
N

p
.

Problem 7
In steady state, there is a single stationary flux through all reactions, which transports
a phosphate group from ATP to inorganic phosphate. In particular, the fluxes

J10 ¼ k10 ðuÞ½X �ATP
 ð15Þ

J30 ¼ k30 ½X �YP �ATP
 ð16Þ
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must be equal. Here X �ATP denotes the complex formed by X and ATP. The steady-
state concentration of the complex X�YP�ATP can be computed from its balance
equation

d½X �YP �ATP

dt

¼ kþ 3 X �ATP½ 
 YP½ 
 � ðk� 3 þ k30 Þ X �YP �ATP½ 
: ð17Þ

It reads

sstX �YP �ATP ¼ kþ 3

ðk� 3 þ k30 Þ
X �ATP½ 
 YP½ 
: ð18Þ

By inserting this expression into Eq. (16) and equating the result to Eq. (15), we obtain

k30
kþ 3

ðk� 3 þ k30 Þ
X �ATP½ 
 YP½ 
 ¼ k10 ðuÞ X �ATP½ 
:

Thus either ½X �ATP
 ¼ 0, i.e. the flux has to vanish, or the output concentration ½YP

will read

YP½ 
 ¼ ðk� 3 þ k30 Þ
kþ 3

k10 ðuÞ
k30

:

Problem 8
The values a, b, and x are measured in 1/s, 1/(mMs), and mM, respectively. The
behavior of the system must be independent of the choice of physical units; when
rescaling the time units by a factor 1=l, we replace a!l a; b!l b; x! x. Thus, if
x ¼ f ða; bÞ is a solution in the original units, then x ¼ f ðl a; l bÞ, with the same
mathematical function f , must be a solution as well. This does not only hold for a
change of time units, but also for an actual rescaling of time - which in turn is
equivalent to an increase of all enzyme activities because each reaction scales
proportionally with an enzyme activity. Therefore, x will not be changed if both
enzyme concentrations aremultiplied by a positive factor l and is therefore precisely
robust against coupled relative fluctuations of both enzymes.

Problem 9
Compute the steady state of the resulting closed-loop system: from equation (7.45),
we obtain

dz
dt

¼ �ðy� y0Þ ¼ � k u� k0 zþ y0: ð19Þ

For arbitrary, but constant input u and gain k, the steady-state condition dz=dt ¼ 0
yields

zss ¼ y0
k0

� k
k0

u: ð20Þ
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By equating Eq. (19) again to zero (steady state) and inserting Eq. (20), it follows that
yss ¼ y0.

Problem 10
If the enzyme concentrations appear as prefactors in the rate laws, then y�i scales with
k ¼ 0, while t�i scales with k ¼ 1, so we obtain the summation theorems

X
l

Cy�

il ¼ 0;
X
l

Ct�
il ¼ 1: ð21Þ
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8 Network Structures, Dynamics, and Function

Problem 1
(a) The adjacency matrices for the three graphs read

Aa ¼

� � � � � �
1 1 1 1 � 1

� � 1 1 1 �
� � � � � �
� � 1 1 � 1

� 1 � � � �

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

Ab ¼

� 1 � � � �
1 1 1 1 � 1

� 1 1 1 1 �
� 1 1 � 1 �
� � 1 1 � 1

� 1 � � 1 �

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

Ac ¼

� � 1 � � �
� 1 1 1 1 1

1 1 1 � 1 �
� 1 � � 1 1

� 1 1 1 � �
� 1 � 1 � �

0
BBBBBBBB@

1
CCCCCCCCA

If self-edges are not counted, the degrees for the six nodes read 1, 4, 3, 3, 3, 2,
respectively, for both graph (b) and graph (c). This yields the numbers of
potential three-loops, 0, 6, 3, 3, 3, 1 for the six nodes. The actual numbers of
three-loops are 0, 1, 2, 2, 1, 0 for graph (b) and 0, 3, 1, 2, 2, 1 for graph (c). The
clustering coefficient for node 1 is not defined. The clustering cofficients for the
remaining nodes read 1/6, 2/3, 2/3, 1/3, 0 for graph (b) and 1/2, 1/3, 2/3, 2/3, 1
for graph (c).
Graph (a) contains three feed-forward loops, 2! 3! 4; 3! 5! 4 and 5! 3! 4.
The shortest way from node 6 to node 5 contains three edges (via nodes 2 and 3),

while the shortest way from node 5 back to node 6 consists of a single edge. Hence,
the topological distance is not symmetric and cannot be a distance in the mathemat-
ical sense.
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Problem 2
As the degree k changes by a factor of 2 (from10 to 20), the corresponding percentage
changes by a factor of 2� g � 0:22, so the percentage of nodes with degree k ¼ 20 is
about 0.2 percent.

Problem 3
To test if self-inhibition appears as a network motif, we compare the network to a
random graph GEðn;mÞ with the same number of nodes (n) and edges (m). In this
background model, the probability to find a self-edge at a specific gene is approxi-
mately q ¼ m=n2. Checking every gene for a self-edge corresponds to n (approxi-
mately independent) trials, so we expect a number of nq	 ffiffiffiffiffi

nq
p

self-edges in total.
With n ¼ 424 nodes and m ¼ 519 edges, this would yield about 1.2	 1.1 self-
inhibitions. The number 42 deviates from the expected value by about 37 standard
deviations and is therefore highly significant. This conclusion depends on the choice
of the background model. Self-inhibitions could have evolved in this high number
by active selection because they can stabilize protein levels and speed up responses.

Problem 4
Networkmotifs are local patterns in a graph that appear significantlymore often than
in a random graph, which represents the background model. Self-inhibition is a
motif in transcription networks. It can stabilise expression levels, which may help to
make the network robust against external perturbations and against varying expres-
sion of other genes in the cell. In addition, self-inhibition can speed up responses to
external stimuli without requiring a fast protein turnover. This allows the cell to adapt
rapidly to environmental changes at a relatively low energetic price. The evolution of
network motifs can be explained by active selection for network motifs that increase
the cell�s fitness, or by neutral evolutionary mechanisms like gene duplication. Note,
again, that the �network motif� property depends on the definition of the random
graph that is used as the background model.

Problem 5
The gene groups X1 and X2 show a pulse; sK is switched on with a delay, leading to
another delayed pulse of X3 and a sustained activation of X4.

Problem 6
Homology: (i) the skeleton structure of different mammalian species; (ii) Sequence
similarity between genes of common evolutionary origin; (iii) Evolutionarily con-
served master regulators. Analogy: (i) Eyes of insects and vertebrates; (ii) Evolution-
arily unrelated signalling systems in bacteria (two-component systems) and in
eukaryotes (MAP kinase cascades); (iii) Self-inhibition of evolutionarily unrelated
regulatory proteins.
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Problem 7
Let us consider three limiting cases: (i) If two gene products can completely
compensate for each other, a double deletion will strongly affect the genes� function,
while single deletions will have little effect (aggravating epistasis). (ii) If two gene
products need to be present to exert their function, then this functionwill be lost after
a single deletion and the second deletion will have little further impact (buffering
epistasis). (iii) If there is no functional relation between the genes at all, we may
assume that each single deletion decreases the fitness by a certain factor, irrespective
of the remaining genetic background. With the usual definitions of epistasis, this
would yield an epistasis value of zero. If we just consider these extreme cases, then
the epistasis value of two genes would allow to predict their functional relation
(�compensation�, �cooperativity�, or �functional independence�). In reality, genes
may also showpartial compensation or cooperation, leading to intermediate epistasis
values.

Problem 8
If an engineered gene circuit shows a predicted dynamics or exerts a predicted
function, this indicates that its function is relatively independent of the rest of the cell,
e.g., that it is only weakly affected by fluctuations in cell variables like protein
production or growth rate. A successful implementation of a gene circuit makes it
more likely that other circuits built from the same elements will also exert their
predicted function.

Problem 9
We collect the vectors ya; yb; . . . for all modules in a vector y for the entire system.
For this vector, we obtain the response matrix

~R
Y
p ¼ qy

qp
¼ qs

qp
þ qs

qxm






x¼y

qy
qp

¼ ~R
S
p þ ~R

S
S
~R
Y
p :

ð22Þ

If ~R
S
S is invertible (which we need to assume), then solving for ~R

Y
p yields Eq. (8.13).
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9 Optimality and Evolution

Answers to Problems

Problem 1
(a) The linear programming problem for the flux vector v reads

ð0 0 1Þv ¼! max

1 0 0

0 1 0

� 1 0 0

0 � 1 0

0 0 � 1

0
BBBBBBBB@

1
CCCCCCCCA
v �

1

2

0

0

0

0
BBBBBBBB@

1
CCCCCCCCA

Nv ¼ 0:

with the stoichiometric matrix

N ¼ ð1 1 � 1Þ

for the balanced metabolite X. The optimal solution is v ¼ ð1 2 3ÞT (red dot in
Figure (b)). (b) The constraint v3 ¼ 1 already determines the optimal value of the
objective function. The optimum can be achieved with different flux distributions
v ¼ ða 1�a 1ÞT, where a can only assume values between 0 and 1 (red line in
Figure (c)).
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Problem 2

(a) A forward reaction flux would require differences of the chemical potentials
mA >mB, mB >mC, mC >mA, which leads to the contradiction mA >mA.

(b) The stoichiometric matrix reads N ¼ 1 � 1 � 1 0
0 1 1 � 1

� �
. The stationary

fluxes can be written as linear combinations of the fluxes u ¼ ð1 1 0 1ÞTand
w ¼ ð1 0 1 1ÞT. As a circular flux between B and Cwould be thermodynam-
ically unfeasible, fluxes 2 and 3 must have the same sign (or at least one of them
has to vanish). This leaves as possibilities v ¼ auþ bw wherea and b have either
the same sign or at least one of them is zero.

Problem 3
(a) and (b) The energy balances for the (hypothetical) uncoupled reactions and for the

coupled reaction with production of n ATP molecules read

2 ADP ! 2 ATP 2�49 kJ/mol
glucose ! 2 lactate � 205 kJ/mol
n ADP þ glucose ! n ATP þ 2 lactate 49 n� 205 kJ/mol

For different values of n, we obtain the energy values � 205 kJ/mol (n ¼ 0),
� 156 kJ/mol (n ¼ 1), � 107 kJ/mol (n ¼ 2), � 58 kJ/mol (n ¼ 3), � 9 kJ/mol
(n ¼ 4), 40 kJ/mol (n ¼ 5). The process is feasible for all negative energy balances,
i.e., for 0 � n � 4.

(c) We assume that the flux j can be written as j ¼ kð205� 49nÞ mol/s, with a
dimensionless proportionality constant k. The production rate of ATP reads
nj ¼ kð205n� 49n2Þ. The condition for maximal ATP production rate is

0 ¼ d
dn

kð205n� 49n2Þ ¼ kð205� 2 � 49nÞ

Y n ¼ 205=98 � 2

The efficiency (ATP production per glucose molecule) is given by n itself. The
maximal possible value is n ¼ 4, because for n � 5, the process would be thermo-
dynamically infeasible.

Problem 4

J ¼
S0
Qr
j¼1

qj �Sr

Pr
l¼1

1
kl

Qr
m¼l

qm

¼ 1 � 54 � 1
1
1 � 54 þ 1

1 � 53 þ 1
1 � 52 þ 1

1 � 51
¼ 624

780
¼ 0:8
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Problem 5
The steady-state flux is maximal, if all enzyme concentrations are maximal, here
Ei ¼ 2 for i ¼ 1; . . . ; 4. We get

J ¼
S0
Qr
j¼1

qj �Sr

Pr
l¼1

1
Elkl

Qr
m¼l

qm

¼ 1 � 54 � 1
1
2 � 54 þ 1

2 � 53 þ 1
2 � 52 þ 1

2 � 51
¼ 1048

780
¼ 1:6

Problem 6
If restrictions apply only to the sum of enzyme concentrations, we use the relation

Eopt
i ¼ Etotal �

ffiffiffiffiffi
Yi

p � Pr
l¼1

ffiffiffiffi
Yl

p� �� 1

with Yl ¼ 1
kl

Qr
m¼l

qm, hence

Y1 ¼ 54; Y2 ¼ 53; Y3 ¼ 52; Y4 ¼ 51

Eopt
1 ¼ 8 � 25

6 5þ ffiffiffi
5

p� � ¼ 4:606; Eopt
2 ¼ 8 � 5 � ffiffiffi

5
p

6 5þ ffiffiffi
5

p� � ¼ 2:060; Eopt
3 ¼ 8 � 5

6 5þ ffiffiffi
5

p� �
¼ 0:921; Eopt

2 ¼ 8 � ffiffiffi
5

p

6 5þ ffiffiffi
5

p� � ¼ 0:412

Problem 7
The resulting optimal steady-state flux is

Jopt ¼ 1 � 54 � 1
� � � 8

1
25 � 54 þ 1

5 � ffiffi5p � 53 þ 1
5 � 52 þ 1ffiffi

5
p � 51

� �
� 6 � 5þ ffiffiffi

5
p� �

¼ 624 � 8
6 � 5þ ffiffiffi

5
p� �� �2 ¼ 2:648

Problem 8

It holds
dS0
dt

¼ � k1 �E1 � S0 and dS1
dt

¼ k1 �E1 � S0 ¼ � dS0
dt

:

S0 tð Þ ¼ S0 0ð Þ � e� k1E1t; S1 tð Þ ¼ S0 0ð Þ � e� k1E1t e� k1E1t � 1
� �

t ¼ 1
S0 0ð Þ

ð1
t¼0

S0 0ð Þ�S1 tð Þð Þdt ¼ 1
k1E1

For two reactions:

S0 tð Þ ¼ S0 0ð Þ � e� k1E1t; S1 tð Þ ¼ S0 0ð Þ � k1
k2 � k1

e� k1E1t � e� k2E2t
� �

S2 tð Þ ¼ S0 0ð Þ � 1
k1 � k2

� e� k2E2tk1 þ k1 � k2 þ e� k1E1tk2
� �

t ¼ 1
S0 0ð Þ

ð1
t¼0

S0 0ð Þ�S2 tð Þð Þdt ¼ k1E1 þ k2E2

k1E1
S0 0ð Þ
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Problem 9
In stationary state, both strategies have the same fitness value f1 ¼ f2, so

f11x1 þ f12x2 ¼ f21x1 þ f22x2:

Solving for the ratio x1=x2 yields

0 ¼ ð f11 � f21Þx1 þð f12 � f22Þx2
Y x1=x2 ¼ �ð f12 � f22Þ=ð f11 � f21Þ

¼ � ðc� vÞ=2
� v=2

¼ c� v
v

:

Problem 10
The rate equations for the resource concentration s and the population sizes ni read

ds=dt ¼ v�
X
i

ni J
S
i ðsÞ

dni=dt ¼ a JATPi ðsÞni � bni

with constants a and b.

(a) For a single strain, the steady-state equations read

0 ¼ v� n JSðsÞ
0 ¼ a JATPðsÞn� bn

Solving these equations for n yields n ¼ hva=b where h ¼ JATPðsÞ=JSðsÞ.
(b) In a direct competition, the net growth rate for the ith strain reads JATPðsÞ� b=a, so

the strain with the largest ATP production rate (at the current level s) will grow at
the highest rate and outcompete the other strains.
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10 Cell Biology

Answers to Problems

Problem 1
Proteins can have either a filamentous structure or a globular structure. The exact
protein structure is defined by the amino acid sequence and interaction with the
molecules in the protein�s environment. Electrostatic interactions between the
individual amino acids themselves and the protein environment (e.g., the pH or
other interaction partners, like other proteins, lipids or ions) determine the exact
three-dimensional protein structure. Proteins are described by different structures.
The primary structure is simply the sequence of the amino acids. Very regular
molecular arrangements constitute the secondary structure, e.g., an a-helix or a
b-sheet. The elements of the secondary structure are fold further into a specific three-
dimensional structure, the so called tertiary structure. The tertiary structuremight be
influenced by posttranslational modifications or interactions with ions that stabilize
specific conformations. Assemblies of several proteins determine the quaternary
structure. It is controlled by interaction and aggregation of individual protein
monomers. Many proteins like tubuline or superoxide dismutase are only functional
as multimers in such quaterny structure.

Problem 2
There are four different nucleotide bases used by the genomicDNA.With twobases it
would be possible to code only 42 ¼ 16 different states. Since there are 20 different
amino acids used in protein biosynthesis plus a stop signal for translation, at least 21
different states must be able to be represented by the genetic code. This makes it
necessary to use at least a combination of three nucleotides (43 ¼ 64 combinations)
for the representation of 21 different states.

Problem 3
Covalent cross links between protein residues, in particular disulfide bridges
between cysteine residues can stabilize their three-dimensional structure. Moreover,
a high rate in protein synthesis can guarantee that sufficient functional proteins for
the maintenance of cellular processes are present.
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Problem 4
After translation, a protein can obtain new properties from posttranslational mod-
ifications of the amino acids. Different functional groups can be attached to the
amino acids, like lipids, carbohydrates, acetate and phosphate. Moreover, disulfide
bridges between cysteine residues can be established or proline residues can be
modified to hydroxyproline by addition of a hydroxyl group.

Problem 5
Prokaryotes are evolutionary prior to eukaryotes. Since prokaryotes do not have an
efficient compartmentalization, anmRNAmolecule can undergo translation already
while it is still transcribed. During the evolution of eukaryotic cells transcription and
translation became spatially separated and processes for mRNA sequence modifica-
tion became possible, e.g. splicing. An advantage of splicing is that regions of the
coding mRNA template can be removed or alternatively be used. This introduces a
greater variability of proteins that are transcribed from a single gene.

Problem 6
A compartment provides a local reaction space and thus substrates and products of a
reaction or of a reaction sequence are in close proximity. This enables sequential
reaction processes, in which products of a previous reaction can easily be used as
substrates of another reaction. This is also a very important precondition for the
development of life. Eukaryotic cells benefit from compartmentalization as individ-
ual processes of the cell can be separated from each other, e.g., highly reactive
substances can be separated to protect other cellular structures (e.g., DNA) from
getting damaged. Thus, compartmentalization allows the establishment of local
reaction spaces and the separation of cellular processes.

Problem 7
Proteins that have a signaling sequence that roots them to the membrane are
synthesized by ribosomes of the rough ER. All proteins are synthesized from the
N-terminus to theC-terminus and those proteins that are transmembrane proteins of
the cell membrane have their N-terminus in the ER lumen and their C-terminus
remains outside. Subsequently, post-translational modification can take place in the
ER lumen and the Golgi complex. Finally, the vesicles containing the newly synthe-
sized transmembrane proteins fuse with the cell membrane and the N-terminus that
is inside the vesicles will face the outer cellular space.

Problem 8
Mitochondria have their own DNA and can only be derived from an existing
mitochondrion. Thus, if a new cell looses all of its mitochondria it probably will
die, since mitochondria cannot regrow anymore.

10 Cell Biology j39



11 Experimental Techniques in Molecular Biology

Answers to Problems

Problem 1
Under the assumption that all four nucleotides appear with the same probability in
the target DNA there is on average one BamHI recognition site for every 46 ¼ 4096
nucleotides. So we can expect to find around 12 recognition sites in bacteriophage l.
Under the same assumptions we expect for a restriction enzyme with an 8 bp long
recognition sequence approximately 4600000/48¼ 70.19 cutting sites. For real
sequences the actual number of restriction sites can be quite different since the
nucleotide frequencies are often unequal.

Problem 2
100ml medium can contain 109 bacteria and so to know how many generations it
takes to reach this number we have to solve the equation: 2x ¼ 109. After 29.89
generations, that means after 9 h, 57min and 48 s the bacterial population has
reached this size. However, in reality this calculation would be too simplistic, since
the growth rate declines with increasing population density and decreasing nutrient
content of the medium.

Problem 3
The gel matrix not only provides structural stability for the gel but also represents an
obstruction for the moving macromolecules. If the pores are too small the macro-
molecules cannot migrate at all. To separate large fragments of DNA or proteins the
pore size has therefore to be increased. There is of course a limit to this strategy since
reducing the matrix content leads to very fragile gels.

Problem 4
The amino acids of proteins contain functional groups that carry charges depending
on the pH. Under a very acidic pH the carboxyl groups are neutral while the amino
groups carry a positive charge leading to a positive net charge for the protein. At a very
high pH the amino groups are neutral and the carboxyl groups are negatively
charged, resulting in a negative net charge. Consequently, there exists a pH value
where negative and positive charges are exactly equal so that the net charge of the
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protein is zero. This pH value is the isoelectric point of the protein. This phenome-
non is the basis for an electrophoresis variant called isoelectric focusing where
proteins migrate through a pH gradient until they reach their isoelectric point
(because neutral molecules don�t move in an electric field).

Problem 5
There is a technical and a practical reason for the use of a secondary antibody in
Western blotting. The technical reason is signal amplification. Normally, several
secondary antibodies can bind to each primary antibody resulting in an amplification
of the fluorescence signal. Furthermore, the same secondary antibody can be used in
many experiments. It is therefore more practical and time saving to label large
quantities of the secondary antibodywith afluorescent dye instead of small quantities
of primary antibodies for each experiment.

Problem 6
AHis-tag is a short sequence of usually six histidine amino acids that is introduced at
the N- or C-terminus of proteins. This makes it possible to detect or purify the
modified protein with high specificity using commercially available antibodies
against the His-tag.

Problem 7
The sedimentation coefficient �S� is specified in Svedberg units. The larger the
sedimentation coefficient, the faster the sedimentation rate of the macromolecule. S
depends on the mass (m) and density of the particle (rpar ), as well as on the density
(rsol) and friction (f) of the medium. The ribosomal subunits, for instance, got their
name from their sedimentation coefficient (40S subunit and 60S subunit). Because
the friction is controlled not only by the size of the particle, but also by its shape, S
values are not additive. The complete ribosome (40S plus 60S) sediments at 80S and
not at 100S.

S ¼
m 1�rsol=rpar
� �

f
:

Problem 8
High-performance liquid chromatography, also known as high-pressure liquid
chromatography, uses pressures of several hundred atmospheres to force the protein
solution through the column material. This leads to higher flow rates, which leaves
the molecules less time for diffusion and thus results in a higher resolution of the
separation process. Since the column material is packed more densely than in
conventional columns, the columns can be much smaller to achieve the same
resolution. This, in turn,means that very small probe volumes can be used forHPLC.

Problem 9
Proteins pose twomain problems for high-throughput techniques that aremuch less
pronounced for DNA-based techniques. First, proteins have to be synthesized in
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sufficient quantities in appropriate organisms. However, overexpressing proteins
can lead to problems because theymight be toxic or precipitate in the cell. The second
obstacle is the purification of the synthesized proteins. Since proteins are chemically
much more diverse than DNA, the optimal purification procedure often varies from
protein to protein. His-tagging the desired protein can help to reduce this problem,
since it allows us to use one type of antibody for the purification of all tagged proteins.

Problem 10
The mass of the amino acids of the first peptide is 134þ 76þ 133þ 147þ 132þ
156 ¼ 778 Da. But we have to subtract the masses of five water molecules that are
released by the condensation process. So the mass of the first peptide is 688 Da.
Similarly we calculate the mass of the second peptide to 132þ 76þ 134þ 147þ
132þ 156� 5� 18 ¼ 687 Da. The difference is approx. 1455 ppm ð106 � 1=687Þ, an
accuracy easily achieved by modern mass spectrometers.

Problem 11
This is classical genetics. If an animal heterozygous for the transgene �A� is crossed
with another heterozygous animal the fraction of homozygous offspring is:
Aa� Aa ¼ AAþ 2Aaþ aa. This means 25% of the offspring are homozygous for
AA. If crossed with a wild type animal there will be no homozygous AA offsprings at
all since: Aa� aa ¼ 2Aaþ 2aa.

Problem 12
The RNAi technique uses short double stranded pieces of RNA to trigger the
degradation of mRNA containing the sequence of this dsRNA. The method has
twomain advantages over knockout animals. The synthesis of the required dsRNA is
fast and cheap so that more experiments can be performed in the same time, or the
same experiment can be completed much faster. The second advantage is that genes
can be studied, whose knockout is lethal by applying the technique only after the
animal is born. But themethod also has disadvantages. Themajor problem is that the
effect is only transient. The transfected RNAi molecules are degraded or diluted so
that the knock down effectfinally disappears. Another problem is the variability of the
effect. Knockouts completely destroy the activity of a gene, while the RNAi suppres-
sion level varies from sequence to sequence.

Problem 13
If the binder has two binding sites for the target the following reactions are possible:

T þ BÐkon
koff

TB

TBþ TÐkon
koff

T2B
;

where kon and koff of both reactions are equal since the binding sites are identical in
case of an antibody. This means we now have two species with bound target (TB and
T2B) and thus we need two differential equations. For pedagogical reasons the terms
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of thefirst equation have not been simplified, so that the reader canmore easily follow
the derivation of the individual expressions.

dTB
dt

¼ kon � B0 �TB�T2Bð Þ �T0 � koff �TBþ koff �T2B� kon � B0 �TB�T2Bð Þ �TB
dT2B
dt

¼ kon � B0 �TB�T2Bð Þ �TB� koff �T2B

During the washing period both species are released from the surface (TB�!koff B,
T2B�!koff TB). After solving the differential equation for T2B, we can replace T2B in
the equation forTBwith this expression and then also solve this differential equation.
TB0 and T2B0 are the concentrations of TB and T2B at the start of the washing step.

dTB
dt

¼ � koff �TBþ koff �T2B

dT2B
dt

¼ � koff �T2B

T2BðtÞ ¼ T2B0 � e� koff � t

TBðtÞ ¼ koff � t �T2B0 þ TB0
� � � e� koff � t
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12 Mathematics

13 Statistics

14 Stochastic Processes

15 Control of Linear Systems

16 Databases

Answers to Problems

Problem 1
Databases can provide information about components and reactions, including
stoichiometry and reaction properties (e.g. reversibility of a reaction), information
about the kinetic laws and their respective parameters, as well as experimental data
from individual small scale or large scale experiments that can be used, e.g., for
parameter fitting.

Problem 2
For instance, the Reactome database is a valuable starting point for the development
of different models. E.g., it provides detailed information about individual reactions

44j



of gycolysis. Once the individual reactions of the system are defined, kinetic
parameters of the respective enzymes can be found in BRENDE or SABIO-RK.

Problem 3
The content information of the ConsensusPathDB website (Version 10, April, 4th

2009) indicates that 4792 reactions from Reactome are present in the Consensus-
PathDBandonly 296 of themcanbemapped to the 1629 reactions thatwere imported
from the KEGG database. Both databases have 1025 physical entities in common.

Problem 4
Bcl-XL can be found in 10 different databases that have imported into Consensus-
PathDB (Version 10, April, 4th 2009). Selecting only the entry Bcl-XL from the search
results and preceding to the interaction listing indicates that Bcl-XL has 326
interactions annotated in the different databases present in ConsensusPathDB from
which 98 are distinct. Now several interactions can be selected and visualized within
ConsensusPathDB. Subsequently, the interaction networks can also be exported into
several formats.
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17 Modeling Tools

Answers to Problems

Problem 1
The smaller the number of the modeled entities, the more important it is to use
stochastic techniques. If only few molecules of a certain type exist it becomes
increasingly unrealistic to treat this number as continuous variable. Furthermore,
under those conditions it is important to take randomfluctuations into account, since
they lead to very large relative changes in numbers (a jump from two to three
molecules is a 50% increase). However, small numbers are a necessary, but not a
sufficient condition to see differences between a deterministic and a stochastic
simulation of a system. Only if additional conditions exist that are not easy to identify
in advance, the two types of simulation will differ. This would be the case if different
steady states exist, which are so closely together that they can be crossed by random
fluctuations, if self-replicating entities are modeled (which exist in 0 or more copies)
or if the rare species acts as activating switch for a genetic program.

Problem 2
In the last years it was recognized that the lack of portability is an important
stumbling block for the development and re-use of large models. To solve this
problem SBML, the Systems Biology Markup Language, has been developed. Over
100 software tools now support SBML so that researchers can easily exchange
equations, parameter, and initial concentration settings as well as auxiliary informa-
tion like boundary conditions and compartment information.

Problem 3
libSBML is a library that can be called from many programming languages like
C/Cþþ , Java, Python, Perl or List and is used to manipulate SBML files. libSBML
provides functions to read, write, and create models that conform to the SBML
standard.
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Problem 4
Yes.Matlab can use the libSBML library to create SBMLmodels and forMathematica
the package MathSBML is freely available, which provides the same functionality as
libSBML.

Problem 5
See the movie CellDesigner4_Intro_ax01.wmv (also available at http://www2.hu-
berlin.de/biologie/theorybp/video_tutorials.php).

Problem 6
See the movie Copasi4B24_TimeCourse_ax02.wmv (also available at http://www2
.hu-berlin.de/biologie/theorybp/video_tutorials.php).

Problem 7
See themovie Copasi4B24_ParameterEstimation_ax03.wmv (also available at http://
www2.hu-berlin.de/biologie/theorybp/video_tutorials.php). The fitted value for
Vmax is 23.36mmol/l and for Km we get 197.17mmol/l.

Problem 8
See the movie Dizzy_TimeCourse_ax04.wmv (also available at http://www2.hu-
berlin.de/biologie/theorybp/video_tutorials.php).
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