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Chapter 1 
 
1.1. (a) The Lagrangian of the 1D H.O. reads as 

2 21 1

2 2 xL K V mx k x     

Hence the Lagrange equation of motion, 

 0 x x

d L L d
mx k x mx k x

dt x x dt

          
 


 

is in agreement with Newton’s or Hamilton’s equations of motion, i.e. 

xmx k x   

 
(b) The kinetic and potential energies are given by  

22
2 21 1

2 2 2 2
yx

pp
K mx my

m m
     , 2 21 1

2 2x yV k x k y   

and H and L read as 
,

.

H K V

L K V

 
 

 

Thus the Hamilton’s equations of motion are: 

x

x

x x

pH
x

p m

H
p k x

x


 



   






 

so that 

xmx k x   

Likewise, 

y

y

y y

pH
y

p m

H
p k y

y


 



   






 

and 

ymy k y   

One can also write the Lagrange equation of motion as 

0 x

d L L
mx k x

dt x x

        



 

and 

0 y

d L L
my k y

dt y y

  
      




 

Thus, Hamilton’s and Lagrange’s equation of motion lead to results, in complete agreement with 
each other and also with Newton’s equation of motion. 

 
(c) From (b) one can write 

2 20,       x
x x

kx x m     
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2 20,       y
y y

k
y y m     

For the initial condition given, one can obtain the solution as 
ˆ ˆ( ) ( ) ( )r t x x t y y t     

with  

0( ) cos xx t x t , 0( ) cos yy t y t  

It will be interesting to trace and examine r  versus t for various ratios of y x  . 
 
1.2. Consider the x-components of both sides: 
 

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

x

y yx xz z

x y z x

y x x z

y yx xz z

x

A

x y z
A AA AA A

x y z
x y z y z z x x y

A A A

x y z
A A A A

x y z y x y z z x

A AA AA A

y z z x x y



                                     

                          
   

  
     

 ------- (1) 

while 

  2

2 2 2

2 2 2

2 2 22

2 2

x x

yx z
x

y x xz

A A

AA A
A

x x y z x y z

A A AA

x y x z y z

  

       
                
  

   
     

   ------- (2) 

Thus, (1) and (2) are shown identical and one can prove the identities of y and z components in 
the same way. 

 
1.3. (a) The center of mass and relative coordinate systems are defined as 

 

 1 2 1 1 2 2m m X m x m x    ------ (1) 

1 2x x x   ------ (2) 

(corrections are due for X definition in the problem) 
Expressing x1, x2 in terms of X, x one can write with the operation, (1) + m2·(2) and (1) - m1·(2), 

2
1

1 2

m
x X x

m m
 


 ------ (3) 

1
2

1 2

m
x X x

m m
 


 ------ (4) 



3 
 

Thus using (3), (4) H can be expressed as 

 22 2 2 2 2
1 1 2 2 1 2

1 1 1 1 1 1

2 2 2 2 2 2
H m x m x k x x MX x kx          ------ (5) 

where 

1 2
1 2

1 2

,
m m

M m m
m m

  


 

 
The total kinetic energy consists of those of CM (with total mass M) and of relative motion (with 
reduced mass µ). 
One can thus write  

2 2
21
,

2 2 2

,    

p p
H kx

m

P MX p x




  

  
 

 
(b) The respective Hamilton’s equations of motion are:  

0

H P
X

P M
H

P
X


 



  





 

so that  

0MX   
Also, 

H p
x

p

H
p kx

x




 



   





 

and 
x kx    

The CM moves as a free particle while the relative motion executes harmonic oscillation with 
reduced mass, µ. 

 
(c) Note that  

2
c

k  with 
2 1

2
H

H
H H

m
m

m m
  


 

Hence, 

 213 1
2 3 10 29.7 newton/meter

2 Hk m     

 
1.4. The thermal speed is from the equipartition theorem given by 

21 3
.

2 2T Bm v k T   

At room temperature, T=300K, 
23 211.38 10 ( / ) 300 4.14 10 25.86 .Bk T J K K J meV        

Thus for electron at 300K 
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1/ 2 21 31 1/ 2 5(3 / ) (3 4.14 10 / 9.109 10 ) [ / ] 1.17 10 [ / ]Te Bv k T m m s m s         

The rest of thermal speeds can be found from Tev with proper scaling of mass and T: 
1/ 2

300
e

T Te

m T
v v

m
   
 

 

 
1.5. (a) Given 

( )
0 0ˆ ˆReE E cos( )i t kzx e x t kz       

H can be found from Maxwell’s equation, (1.40): 

0

0

ˆ ˆ ˆ

ˆE sin( )

E cos( ) 0 0

x y z

y k t kz H
x y z t

t kz

 



   
     

   


 

Integrating both sides w.r.t. t one finds, 

0 0 0

1 1 1
ˆ ˆ ˆcos( ) E cos( ) E cos( )

k
H y t kz y t kz y t kz

v
  

   
            

  
 

where 

, 1/ , /vk v        

Thus the Poynting vector is given by 
2

20Eˆ cos ( )P H z t kz
     
 

 

 
(b) Given λ=632.8nm 

8
15

9

3 10 /
4.75 10 /

632.8 10

c m s
v s

m 


   


 

6 31
1.53 10 / 1.53 10 /m nm


     

In an optical medium with the index of refraction n given by n2 = εr the frequency remains the 
same, while 

316vac nm
n

    
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Chapter 2 
 
2.1 (a) Given a photon of wavelength λ the energy and momentum are specified as 

c
h h 


   , p

c


  

λ ε (eV) p (meVs/m) 
10m (radiowave) 1.2410-7 4.1310-13 
1m (microwave) 1.2410-6 4.1310-12 
104nm (infrared) 1.2410-1 4.1310-7 
600nm (visible) 2.07100 6.9010-6 
200nm (UV) 6.21100 2.0710-5 
50nm (EUV) 2.4810 8.2710-5 
1nm (X-ray) 1.24103 4.1310-3 

 
2.2 (a) The total power generated is 

26

26 19

45

3.7 10 [ / ]

3.7 10 /(1.602 10 )[ / ]

2.31 10 [ / ]

W J s

eV s

eV s





  

 

 

The equivalent number of photons generated per second at 500nm, i.e. at photon energy of hc/λ 
= 2.5eV is 9.241044/s. Thus, at the surface of the sun, for instance, the flux of photons per area 
and per time is given by 

44

2

9.24 10

4 sR


 

with Rs denoting the radius of the sun. 
 
(b) The total number of photons reaching the earth per second is approximately given by 

44
2

2

9.24 10

4 E
SE

R
d





  

where dSE is the average distance between the sun and earth and RE the radius of the earth. 
 

2.3 (a) The thermal speed of the electron at room temperature is given from the equipartition 
theorem by 

21 3
.

2 2e T Bm v k T  

That is,  
1/ 2

53
1.17 10 /B

T
e

k T
v m s

m

 
  
 

  

at T=300K. Thus the de Broglie wavelength is found to be  
 

                         
96.22 10 6.22

  
e T

h
m nm

m v
    

   

The de Broglie wavelengths of other particles with mass m can be found in terms of that of 
electron: 
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   

 

1/2

1/2 1/2 1/21/2 1/2

1/2

3 3 3

  6.22 /

e

B B e B

e

mh h h

mk T m k T m k T
m

m

m m nm

      
    

 



 

with me denoting the rest mass of electron. Thus for the case of proton, for example, 
1/ 2

22.37 10e

p

m
m

   
 

  

and the corresponding de Broglie wavelength is shorter by the same factor. 
 
(b) Given kinetic energy E the associated velocity of electron is given in non-relativistic limit by  

21
,

2
mv E  

    so that  

 1/ 2
2Ev m  

Thus for E=200eV 
1/ 219

6
31

2 200 1.6 10
8.3 10 /

9.1 10
v m s





   
   

  

and de Broglie wavelength is given by 

118.8 10 0.088
h

m nm
mv

     

For K.E. larger than 200eV, the electron velocity could enter into the relativistic regime. In this 
case K.E. is specified as 

2
2 20

0 0 0 02 2

1
1 ,     

1 ( / ) 1 ( / )

m c
E m c E E m c

v c v c

 
     

   
 

with m0, E0 denoting the rest mass and rest energy of electron, respectively. 
Finding v in terms of E one can write 

1/ 2 1/ 2

0 0 2
0 0

0

2
1

2
,    0.5

1

E E
E Ev

E m c MeV
Ec
E

   
    

     


 

 
Hence for E E0, v  (2E/m0)

1/2 as it should and one can incorporate the relativistic effect by 
retaining terms proportional to E/E0. 
Once v is found, de Broglie wavelength is specified by 

2
0 / 1 ( / )

h

m v v c
 


 

Insert the value of v/c found without neglecting terms proportional to E/E0 and find the 
relativistic corrections in λ. 
 

(c) One can find the de Broglie wavelength of proton by replacing the rest mass and rest energy 
of electron with those of proton in (b). 
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(d) Use (2.33), (2.34) in the text, obtaining  

2 0
2

1
. .

2 n

E
K E mv E

n
      

with E0 = 13.6eV denoting the ionization energy of H-atom. 
Thus, for n = 1 

1/ 21/ 2 19
60

31

2 2 13.6 1.6 10 /
2.2 10 /

9.1 10

E eV J eV
v m s

m





             
 

Hence,  

0.33
h

nm
mv

    

Here, v is in mildly relativistic range and one can incorporate its effect in a manner discussed in 
(b). For n = 100 

6
2

4

2.2 10
2.2 10 /

10
v m s


    

and 
4 30.33 10 3.3 10nm nm      

 
2.4 The ionization energy of the donor atom can be found from that of H-atom using the scaling  

relation, 

20
0

0

13.6 ( ) nm
E eV

m




    

Hence,  
2

0
0 3

0

8.7 10    0.9

9.6 10    0.1
n

n

eV m m
E

eV m m





  


 
  

With these values of E0, one readily finds de Broglie wavelength in a way discussed in the 
problem (2.3). 

 
2.5 Given kinetic energy, E one can find corresponding v by using the formula derived in problem 

(2.3). 
1/ 2 1/ 2

0 0 2
0 0

0

2
1

2
,    

1

E E
E Ev

E m c
Ec
E

   
    

    


 

Thus, for 10KeV electron, E0 0.5MeV and 

0.14
v

c
  

The relativistic correction as exhibited by 

2
0

1

1

m

m v
c


   
 

 

is then shown to be about 10%.  
Likewise for proton, E0 918MeV and v/c 1.510-2, therefore m/m0 1.01. 
For the ground state electron in H-atom, the K.E. is 13.6 eV (see (2.35) in the text) and v / c
710-3, m/m0 1.00 
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2.6 (a) Given the wavelength, λ=300nm, the photon energy is  

4.14
c

E h h eV


    

Hence, the photon is capable of inducing photoelectric effect in Li and Be. 
The corresponding stopping power is: 

4.14 2.3 1.8     for Li

4.14 3.9 0.24   for Be

V

V

 
 

 

(b) For a photon with λ=253.7nm, its energy is  

4.9
c

E h eV


   

Thus, the observed stopping power of -0.24V in copper indicates that the copper work function; 

mq  is 

4.9 0.24,mq   

i.e.  
4.66mq eV  . 

Hence, the longest wavelength of the photon capable of producing photoelectric effect is given 
by 

4.66 .
hc

eV

  

that is,  
266nm  . 

 
(c) There are typographical errors: 

Stopping power of -2.3V for λ=194nm (instead of 200nm) and of -0.9V for λ=248nm (instead of 
313nm). 
From the conservation of energy one can write 

1
1

2
2

2.3,      =194nm

0.9,      =248nm

m

m

c
h q

c
h q

 


 


 

 
 

Subtracting the second equation from the first one, 

1 2

2.3 0.9
c c

h
 

 
   

 
 

and  

  15

1

1 2

2.3 0.9
4.125 10

eV
h eVs

c c
s

 






 
 

 
 

  

Substituting h back into any of the two energy conservation equations, the work function is 
obtained: 

4.1mq eV   

 
2.7 (a) Use (2.31) in the text, i.e. 

2
n Br r n   

with rB denoting the Bohr radius of 0.053nm. Thus, on finds 
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0.053            for n=1  

0.21             for n=2n

nm
r

nm


 


 

(b) The angular momentum is quantized as 

nl n   

Thus,  
16

16

6.58 10    for n=1

13.2 10    for n=2
n

eVs
l

eVs





 
 


 

Since nr  is perpendicular to 
n

p  for circular orbit, 

34
25

9 2

1.055 10  1
/ 20 10

0.053 10  n n n

n Js
p l r

n m n







  


  

Hence,  
24

24

2 10  / 1

1 10  / 2
n

kgm s for n
p

kgm s for n





  
 

   
 

(c) The kinetic, potential and total energy associated can be readily found as discussed in the text. 
 
2.8 (a) Use (2.22) in the text:  

24 sin
2e

      
 

 

with λe = 410-13m. For  = /2 
12 32.5 10 2.5 10m nm        

(b) The incident X-ray has the wavelength given by 

52 10
i

c
h eV h


   , 

so that 
36.2 10i nm    

Hence the wavelength of scattered X-ray is given by 
38.7 10f i nm         

and  

41.43 10f
f

c
E h eV


    

Thus the recoil energy of electron is given from the conservation of energy as 
4 5(20 1.43) 10 1.86 10i fE E E eV eV         

 
2.9 With atomic number Z=2, the energy spectrum of He+ is specified from (2.35) by  

                          2
0 2 2 2

1 1 1
13.6 54.4nE E Z eV eV

n n n
         

    where 
2 2

2
0 2

13.6 54.4
2

MZ e m
E Z eV eV   


 

and is shown to be larger than that of H-atom by the factor of 4. 
The shortest radius corresponding to the ground state is to be obtained by scaling the Bohr radius: 
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2

1 2

1 0.05
0.025

2B
M

r r nm nm
me Z Z

    


 
It is clear from (2.36) in the text that the wavelengths corresponding to the Balmer series are 
shorter than those in H-atom by the factor of Z2, i.e. by the factor of 4. 

 
2.10 A charged particle under acceleration, a dissipates power as 

2 2
2 2

3
0

2
,

3 4
M

M

e e
P a e

c 
  ------ (1) 

An electron in circular orbit around proton in H-atom is under acceleration given (from (2.30) by 
2v

a v
r

  ------ (2) 

where r is the radius of the circular orbit. 
 
Thus, the power dissipated is specified by 

22 2

3

2

3
Me v

P
c r

 
  

 
------ (3) 

Since the energy of electron in circular orbit of radius r is given from (2.34) by 
2 2

2

0

,    
2 4
M

M

e e
E e

r 
   ------ (4) 

the rate with which r decreases in time due to power dissipation is described by 
22 2 2

2 3

2

2 3
M Me edE dr v

dt r dt c r

 
    

 
------ (5) 

Or  
4

3

4

3

dr v

dt c
  ------ (6) 

For given r, the centrifugal and centripetal Coulomb forces are balanced according to  
22

2
Memv

r r
 ------ (7) 

Inserting (7) into (6) and rearranging one finds 
22

3

4

3
Medr

dt c mr

 
   

 
 

That is, 
4

2
3 2

4

3
Me

drr dt
c m

   

Integrating both sides 

 
4

3 3
3 2

41

3 3
M

i f

e
r r t

c m
   

where ri, rf denote respectively the initial and final values of the electron radius. Since ri is the 
Bohr radius, rB and rf is the radius of the nucleus one can put 0fr   and write the time in 

which the electron spirals into the nucleus as 
3 2

3 11
4

1.32 10
4 B

M

c m
t r s

e
   

where the Coulomb constant 



11 
 

9 2 2

0

1
8.988 10 /

4
Nm C


   

has been used. 
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Chapter 3 
 
3.1 (a) Given the wavefunction, 

0

ˆ( , ) exp ( ) ( ,0)
ti

r t H t dt r        
One can write by definition 

0 00

00

0

( , )

( ,0) ˆ ˆlim exp ( ) exp ( )

( ,0) ˆ ˆlim exp ( ) 1 exp ( )

ˆ ( )
lim ( , )

ˆ ( ) ( , )

t t t

t

t t t

tt

t

r t
t

r i i
H t dt H t dt

t

r i i
H t dt H t dt

t

i
H t t

r t
t

i
H t r t













 



 

 




                   
                   

 




 

 

 

 

 





 

Hence 
( , ) ˆ ( ) ( , )
r t

i H t r t
t

 
 


  

(b) If 0
ˆ ˆ( )H t H , one can write 

0
0

ˆ

( , ) ( ,0) ( ,0)
i

H t i tr t e r e r  
      

where 

0 0
ˆ /H    

in agreement with the solution entering in the separation of variable technique.
 

 
3.2 Given the Hamiltonian, 

2
2ˆ ( )

2
H V r

m
   


 

the fact that V(r) is real ensures that 
*( ) ( )V r V r  

Thus, one can write for arbitrary but well behaving function f, g 
* *( )dr f Vg dr Vf g   

indicating that V is Hermitian. 
The x-component of the Laplacian operator, for example, can also be shown to be Hermitian by 
performing the integration by parts repeated twice in succession: 
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2
* * *

2

* 2
*

2

2 *

2

drf g f g dr g f
x x x x

f
g drg f

x x

f
dr g

x









              

 
  

 

 
   

 





 

Here use has been made of     0f g    . Hence Ĥ  is hermitian. 

 

3.3 (a) If B̂  is Hermitian adjoint of Â , i.e. ˆB̂ A , it satisfies the relation 

 ** ˆdrf Ag dr Bf g  ------ (1) 

 

The relation (1) also specifies the Hermitian operator. That is, if Â  is Hermitian it should 
satisfy 

 ** ˆdrf Ag dr Af g  ------ (2) 

where f, g are arbitrary but physically well behaving functions. Hermitian operator is therefore its 
own Hermitian adjoint:  

ˆ ˆA A  
As a corollary take the complex conjugate of (1), obtaining 

   *
*ˆ ˆdrf Ag dr Bf g  ------ (3) 

Or equivalently,  

 ** ˆˆdrg Bf dr Ag f  ------ (4) 

Therefore,
 

Â  is shown the Hermitian adjoint of B̂  , i.e. 
ˆ ˆA B  

and one can thus write 

 B A B
    

 

(b) From (a) one can write using the definition of the Hermitian adjoint for any Â  

 
 
 

*
*

*

*

ˆ ˆ

ˆ                  

                  

i drf A g i dr A f g

i dr Af g

dr iAf g


     



 

 




------ (5) 

 
while  

 
 

*
*

*

ˆ ˆ

ˆ                  

i drf Ag i dr A f g

dr iA f g





  



 


------ (6) 

 
Combining (5), (6) 
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    *
* ˆ ˆ ˆ ˆdrf i A A g dr i A A f g         

q.e.d. 
 

(c)  ˆ ˆ ˆ ˆi f A g i A f g i Af g iAf g


      

while  
ˆ ˆ ˆi f Ag i A f g iA f g      

Hence, 

   ˆ ˆ ˆ ˆf i A A g i A A f g     

3.4 (a) Consider 

   
n n

nn n
x x n n

xp f p xf i x f xf
x x

  
      

  

Now, 
1 2 2

1 21 2 2

1

1
           

n n n n

n nn n n n

n n

n n

f f f
xf x C x C x

x x x x x x

f f
x n

x x

 

 





     
    

     
 

 
 

 

with n rC  denoting the combinatorial coefficient, n r

n
C

r

 
  
 

 

Thus, 

   
1

1

nn n
n

n n

n
x

i x f xf i n i f
x x x

i n p f





                 
  

  



 

 
That is, 

1, n n
x xx p i n p        

 
(b) Consider 

 
1

1

n n
x x

n n

n n n

n

p x f x p f

i x f x i f
x x

i nx f x f x i f
x x

i nx f







        
               

 

 

 



 

Hence,  
1, n n

xp x i n x         

 
3.5 Using the uncertainty relation, 

, ,x y zx p y p z p            

the minimum K.E. of an electron is to be expressed as 
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 
2 2

2 2 2
2 2 2 2

1 1 1 1 3 1

2 2 2x y zE p p p
m m x y z m L

 
           

   

with L representing the length of the cube. 
 

23 4

21 2

21 1

9.15 10 5.7 10       10

9.15 10 5.7 10         1

3.66 10 2.28 10    0.5

J eV for L nm

E J eV for L nm

J eV for L nm

 

 

 

    
     
    

 

 
3.6(a) For electron, its K.E. in the nucleus with diameter D is to be estimated by 

2
14

2

11 8

1
,          10

2

     6.1 10 3.8 10

E D m
m D

J eV





 

   


 

(b) For proton E  is to be found in terms of that of electron and the ratio of rest masses: 

8 53.8 10 2.06 10e

p

m
E eV eV

m
       

The proton can thus be contained within the nucleus, while the electron cannot be confined 
therein. 
 

3.7 The atomic transition frequency from the first excited state to the ground is given by 

2 1

1
13.6 1

4
h E E eV      

 
 

Hence  

1510.2
2.47 10 /

eV
s

h
    

The spread in   due to the finite lifetime of electron is to be estimated as 

h 



  

That is, 

71.6 10 / s
h




  

   
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Chapter 4 
 
4.1 (a) The electron is free to move along, say x-direction, while spatially confined in y, z direction 

Thus, the total energy is given by 
2 2

, 2x y x y

x
n n n n

k
E E E

m
  


 
where  

2 2
2

2

2 2
2

2

,       1, 2,
2

,       1, 2,
2

x

y

n x x

n y y

E n n
mL

E n n
mL





 

 

 

 
 

Here, the quantum wire has been modeled by infinite square well potentials in y, z directions. 
For L=1nm 

2 2
20 1

0 2
6.03 10 3.77 10 .

2
E J eV

mL

     
   

Thus, the lowest 4 quantized levels are: 
2 2 1

1,1 0

2 2
2,1 1,2 0

2 2
2,2 0

2 2
3,1 1,3 0

(1 1 ) 7.54 10

(2 1 ) 1.89

(2 2 ) 3.02

(3 1 ) 3.77

E E eV

E E E eV

E E eV

E E E eV

   

   

  

   

 

And the frequency of emitted photon, 
/E h    

when occurring in cascade is given by 
14

3,1 2,2
14

2,2 2,1
14

2,1 1,1

1.82 10 /s     

2.73 10 /s     

2.75 10 /s     

for E E

for E E

for E E


  
  
  

 

(b) For quantum well one can write 
2 22 2 2 2

2
22 2 2

yx
kk

E n
m m mL


  

 
 

Thus, the lowest 4 quantized energy level is given by 

0 0 0 0, 4 ,9  and 16E E E E E  

and the frequency of photons when emitted in cascade is given by 
14

4 3
14

3 2
14

2 1

6.38 10 /s     

4.56 10 /s     

2.73 10 /s     

for E E

for E E

for E E


  
  
  

 

 
4.2 The energy eigenfunctions satisfying the stationary boundary condition are given from (4.17) by 

3

22
sin sin sinyx z

nn n
u x y z

L L L L

            
      

 

where the quantum numbers satisfy the boundary conditions,  
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   1, 2,

   1, 2,

   1, 2,

x x x

y y y

z z z

k L n n

k L n n

k L n n






 
 

 





 

Hence the total number of states between k and k+dk is obtained by 

 

2

3

(4 ) / 8

/

k dk

L




 

Here, xk , yk , zk  values should be confined to positive values, hence the spherical shell is 

divided by 8. 
The number of states per volume is then specified including the spin by 

2 2

3 3 3 2

4 1
( ) 2

8( / )D

k dk k dk
g k dk

L L


 

   

In term of energy,  

 2

2

k
E

m



 

one can therefore write 
3/ 2 1/ 2

3 2 3

2
( )D

m E dE
g E dE





 

in complete agreement with the result derived using the periodic boundary condition. 
 

4.3 The Hamiltonian of the particle in 1D box and/or wire is given by 
2

2ˆ ( , , )
2

H V x y z
m

   


 

where 
0

0      
0( , , )

   otherwise

x

y

x L
for

y LV x y z

 
   
 

 

The energy eigenequation then reads as 
2

2 ( , , ) ( , , ) ( , , )
2

V x y z x y z E x y z
m

 
 
    
 


 ------ (1) 

The eigenfunction can be found, using the usual separation of variable technique, that is, by 
looking for the solution in the form 

( ) ( ) ( )u x u y u z   ------ (2) 
Inserting (2) into (1) and singling out x, y, and z components in the usual manner there results 

2 2
2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2
( ) ( ) 0,        

x

x

z

u x V x u x E u x

u y V y u y E u y

mE
u z k u z k

  
  

   


 ------ (3) 

where primes denote the differentiations w.r.t. the variables involved and 
0     0

( ) (4 )
    otherwise

xx L
V x a

 
 
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0     0
( ) (4 )

    otherwise
yy L

V y b
 

 
  

x y zE E E E   ------ (5) 

One can readily solve (3) using the stationary boundary condition, obtaining 

sin sin y ikzx
nn

N x y e
L L


     

   
  

 
with N representing the normalization constant and 

222 2 2 2

2 2
yx

x y

nn k
E

m L L m

  
    

 

 
 ------ (6) 

For x yL L L  , E  reduces to  

 
2 2 2 2

2 2
, 22 2x yn n x y

k
E n n

mL m


  
 

 

The ground state energy thus corresponds to the case, where 1x yn n  . 

The first excited state is doubly degenerate, corresponding to 2, 1x yn n   & 1, 2x yn n  . 

The second excited state with 2x yn n   is non-degenerate, while the third excited state is 

again doubly degenerate with 3, 1x yn n   & 1, 3x yn n  . 

One can specify the degeneracy of higher lying states in a similar manner. 
 

4.4 (a) The energy eigenequation for this quantum well reads as 
2 2

2
( ) ( ) ( )

2
V x u x Eu x

m x

 
    


 ------ (1) 

where for the bound state E < 0 and one may put 

E E   

Also, V(x) can be put in the form 

1 1
  ,   I

2 2( )
1

 0       ,              II
2

V d x d
V x

d x

     
 


 

Thus, (1) can be recast in regions, I, II as 

 2 2
2

2 2
2

2
( ) ( ) 0,       

2
( ) ( ) 0,       

m
u x k u x k V E

m
u x k u x E

    

   





 ------ (2) 

The solutions of (2) is readily obtained as 
sin cos      ,   I

( )
                        ,  IIx

A kx B kx
u x

Ce 


 


 

The boundary conditions for u(x) to satisfy are: 
1

( ) 0
2

u d   
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since 
1

( )
2

V d    and u  and u  should be continuous at 
1

2
x d . Thus, 

sin cos 0       (3a)
2 2

kd kd
A B

        
   

  

2sin cos        (3b)
2 2

dkd kd
A B Ce

       
   

  

2cos sin        (3c)
2 2

dkd kd
k A B Ce




              

  

From (3a) one finds B in terms of A, i.e. 

tan
2

kd
B A

   
 

 

and insert it into (3b), (3c), obtaining 

22 sin 0
2

dkd
A Ce

    
 

------           (4a) 

2

2

sin
2

cos 0
2

cos
2

d

kd
kd

A Ce
kd k

 
  

             
    

------ (4b) 

Note ln (4) that the coupled equations for A, C are sourceless, that is, homogeneous and A, C are 
therefore trivial, i.e. A = C = 0 unless the secular equation holds true: 

2

2

2

2sin
2

0sin
2

cos
2

cos
2

d

d

kd
e

kd
kd

e
kd k









   
 

          
 
 

------   (5) 

Since the parameters, k,   are functions of E , the bound state energy eigenvalue is found 

from this secular equation, (5). Once E  is found A, C are in turn to be determined from (4), 

leading to the explicit soution of the eigenfunction. 
 
(b) For the case of infinite square well potential of width, d the energy eigenvalues are given 
from (4.11b) as 

2 2
2

2
,             1, 2,

2nE n n
md


 
   ------ (6) 

It will therefore be interesting and instructive to compare a few energy eigenvalues found from 
the secular equation for given depth V and width d with E1 or E2 in (6) and examine the reasons 
for the difference in eigenvalues. 
 

4.5 The method for tackling this problem has been detailed in the text and solving the problem 
consists of repeating what has been discussed in detail in the text and obtaining concrete values 
of the quantities for given V, W, T 

 
4.6 (a) Given 
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            , I

           0, II2( )        
III    0            0 ,
IV            ,

V x d

V d x
V x

x d

V d x

 


   
 

 

 

One can readily set up in the usual manner the energy eigenequation and corresponding 
eigenfunctions. 
 
(i) for E > V 

1 1

2 2
1

0 ,      
2

ik x ik x
I

k
u i e re E V

m
   


 

2 2

2 2
2

2 2 ,      
2 2

ik x ik x
II

k V
u A e B e E

m
   


 

3 3

2 2
3

3 3 ,      
2

ik x ik x
III

k
u A e B e E

m
  


 

1ik x
IVu te  

(ii) for V >E > V/2 
2 2

1 ,      
2

x
Iu A e V E

m
 

  


 

2 2
2 2

ik x ik x
IIu A e B e   

3 3
3 3

ik x ik x
IIIu A e B e   

4
x

IVu A e   

(iii) for E < V/2 
x

Iu Ae  

2 2

2 2
2

2 2

1
,        

2 2
x x

IIu A e B e V E
m

     


 

 

4
x

IVu A e   

 
(b) The boundary conditions at x = - d, 0, d for the case V /2 < E < V, for instance, are specified 
by 

   

 

2 2

2 2

3 3

3 3

1 2 2

1 2 2 2

2 2 3 3

2 2 2 3 3 3

3 3 4

3 3 3 4

(1a)

(1b)

(1c)
        

(1d)

(1e)

(1f)

ik d ik dd

ik d ik dd

ik d ik d d

ik d ik d d

A e A e B e

A e ik A e B e

A B A B

ik A B ik A B

A e B e A e

ik A e B e A e

















 

 

 

   
  
  
 

  

 

 
(c) There are 6 conditions to be satisfied as specified in, (1), and there are 7 or 6 constants 
appearing in eigenfunctions, depending on E considered. 
For the case of (i), one can find r, A2, B2, A3, B3, t in terms of i0 and obtain the reflection and 

3 3
3 3

ik x ik x
IIIu A e B e 
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transmission coefficient, in terms of r / i0 and t / io, as was discussed in the text. 
For the case of (ii) or (iii) the six coupled equations are homogeneous and eigenfunctions are 
therefore trivial unless the secular equation is satisfied.  
From the secular equation, the bound state energy eigenvalues are found. 
The secular equation for (1) is found as follows. 
From (1a), (1b), A2, B2 are found in terms of A1 as 

2
2 1

2

1
1

2
ik ddA Ae e

ik
   

  
 

 ------ (2a) 

2
2 1

2

1
1

2
ik ddB A e e

ik
    

  
 

------ (2b) 

Likewise from (1e), (1f), 

3
3 4

3

1
1

2
ik ddA A e e

ik
    

  
 

 ------ (3a) 

3
3 4

3

1
1

2
ik ddB A e e

ik
   

  
 

------ (3b) 

Inserting (2), (3) into (1c), (1d), 

3 32 2
1 4

2 2 3 2

1 1 1 1 0ik d ik dik d ik dA e e A e e
ik ik ik ik

             
                

          
 ------ (4a) 

3 32 2 3
1 4

2 2 2 3 3

1 1 1 1 0ik d ik dik d ik d k
A e e A e e

ik ik k ik ik

             
                

           
 ------ (4b) 

Indeed the coupled equations for A1, A4 are homogenous and therefore the 22 determinant 
involving the coefficients should be zero for the wavefunction not to be trivial and the secular 
equation reads as, 
 

      

3 32 2

3 32 2

2 2 3 2

3

2 2 2 3 3

1 1 1 1

0

1 1 1 1

ik d ik dik d ik d

ik d ik dik d ik d

e e e e
ik ik ik ik

k
e e e e

ik ik k ik ik

   

   





      
            

      


       
             

         
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Chapter 5 
 

5.1 (a) Let 0 / 2/ 2 , e ik WikWe    . 
Then (5.25) – (5.28) read as 

* *
0A B i r     

 
------ (1) 

* *A B t   
 
------ (2) 

* *0 0
0

k k
A B i r

k k
     

 
------ (3) 

* *0k
A B t

k
   

 
------ (4) 

Thus, by performing the operation (1) ± (3), (2) ± (4), A, B are found in terms of i0, r: 
*

0 0
01 1

2 2

k kr
A i r

k k


 
         
     

------ (5) 

*
0 0

0* *
1 1

2 2

k kr
B i r

k k


 

         
     

------ (6) 

and 
*

0
*

1
2

k
A t

k




   
   

------ (7) 

*
01

2

k
B t

k



   
   

------ (8) 

Next, equating the right hand sides of (5), (7) and (6), (8), respectively and rearranging the terms 
one finds 

* *
0 0 0

0* 2 2 2

k k k k k k
t r i

k k k

  
  

  
 

 
------ (9) 

* *
0 0 0

0* *2 2 2

k k k k k k
t r i

k k k

  
  

  
 

 
------ (10) 

Thus, one can find r, t in terms of i0 by solving (9), (10), the results of which are in agreement 
with (5.29), (5.30). 
 
(b) The transmission coefficient is then specified as 

 
 

2 2

00
2 2 2 2 2

0 0 0 0

2/

/ 2 cos( ) ( ) sin

k kk m t
T

k m i k k kW k k kW
 

 




 

2 22 2
2 2 20 0

0 0

1 1

cos sin 1 sin
2 2

k k k k
kW kW kW

k k k k

 
    

    
   

 

 
2

2
2

1

2
1 sin [ ]

4 ( )
V m

W E V
E E V


 

 

 

where 2 2cos sin 1x x   has been used and k, k0 have been spelled out in terms of E, V. 
 
One can similarly obtain R given in (5.34)  

 
5.2 (a) The energy eigenequation of the particle reads as 



23 
 

2 2

2
( ) ( ) ( )

2
V x u x Eu x

m x

 
    


 

where 

1 1

2 1

0 0

( )        0

x

V x V x d

V d x


  
 

 

Equivalently, the equation is compacted as  
2 0u u    

with 
2 2

0 0
2 2

1 1 1
2 2

2 2 2

, 2

,        2

, 2

k k m E

k k m E V

k k m E V




  
  





 

The eigenfunction is readily obtained as 
0 0

1 1

2

0

 

ik x ik x

ik x ik x

ik x

i e re

u Ae Be

te





 
 



 

(b) The constants of integration are determined by the boundary conditions, operative at x=0, d1: 

0i r A B   ------ (1a) 

0 0 1( ) ( )ik i r ik A B   ------ (1b) 
1 1 1 1 2 1ik d ik d ik dAe Be te  ------ (1c) 

 1 1 1 1 2 1
1 2

ik d ik d ik dik Ae Be ik te  ------ (1d) 

Clearly, r, t, A, B can be specified in terms of i0, using (1a) ~ (1d). 
 
Perform the operation, (1a) ± (1b) / ik1, obtaining 

0 0
0

1 1

1
1 1

2

k k
A i r

k k

    
       

      
------ (2a) 

0 0
0

1 1

1
1 1

2

k k
B i r

k k

    
       

      
------ (2b) 

Similarly from (1c), (1d) one finds 

1 1 2 1 2

1

1
1

2
ik d ik d k

A e t
k

   
  

   
------ (3a) 

1 1 2 1 2

1

1
1

2
ik d ik d k

B e t
k

  
  

   
------ (3b) 

Thus, by equating the right hand sides of (2a), (3a) and (2b), (3b), there result 

1 1 2 1 0 02
0

1 1 1

1 1 1ik d ik d k kk
e t r i

k k k
       

         
       

------ (4a) 

1 1 2 1 0 02
0

1 1 1

1 1 1ik d ik d k kk
e t r i

k k k
      

         
       

------ (4b) 

And t, r are found in terms of i0 as 
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2 1 0 1

0

2 /ik d k kt
e

i D


 
------ (5a) 

0 2 0 2
1 1 1 12

1 1

0

cos 1 sin
k k k k

k d i k d
k kr

i D

 
  

 
 
------ (5b) 

with  

0 2 0 2
1 1 1 12

1 1

cos 1 sin
k k k k

D k d i k d
k k

 
   

   
------ (5c) 

Hence the transmission and reflection coefficients are given by 
2 2

0 2 12
2

0 0

4 //

/

k k kk m t
T

k m i D
 

  

------ (6a) 

 
2 2 2 2 2 2

20 0 2 0 2 0 2
1 12 2 4

0 0 1 1 1

/ 1
1 sin

/

k m k k k k k kr
R k d

k m i k k kD

              
     


  

------ 

(6b) 
where 

 
2 2 2 2 2

2 20 2 0 2 0 2
1 12 4

1 1 1

1 sin
k k k k k k

D k d
k k k

    
      
     

Note from (6a), (6b) that 
1,R T   

as it should. 
 
(c) Since k0, k1, k2 are functions of E with V1, V2 , d1 as parameters, R for instance is shown 
sensitively dependent on these quantities, in particular 1 1sin k d . Evidently it is analogous to 

antireflection coating. 
 
5.3 (a) Consider the motion of the particle on x – z plane. The energy eigenequation then reads as 

 
2 2 2

2 2
( ) ( , ) ( , )

2
V z u x z Eu x z

m x z

   
        


 

where 

1

2

0
( )      

0

V z
V z

V z


  

 

Equivalently one can write 
2( ) ( ) 0xu x k u x  

 
------ (1) 

2( ) ( ) ( ) 0u z k z u z  
 
------ (2) 

where primes denote respective differentiations and 

2
2

2
x x

m
k E

  
------ (3a) 
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 

 

2 2
1 1 12

2

2 2
2 2 22

2
,  ,  0

2
,  ,  0

z z z

z

z z z

m
k k E V z

k
m

k k E V z

    
   





 
------ (3b) 

 

x zE E E 
 
------ (3c) 

 
The solutions of (1), (2) can be readily obtained. The particle moves as a free particle along x-
direction, i.e. 

( ) xik xu x e
 

------ (4a) 

while

 

1 1

2

0( )
z z

z

ik z ik z

ik z

i e re
u z

te

 
 
  

------ (4b) 

The boundary conditions for u(z) to satisfy at z=0 are: 

0

2
0

1

z

z

i r t

k
i r t

k

 

 
 

Hence, r, t can be found in terms of i0: 

2 1
0

2 1

1

1
z z

z z

k k
r i

k k




  
------ (5a) 

0
2 1

2

1 z z

t i
k k


  

------ (5b) 

(b) The incident, reflected and transmitted wavefuctions reads then as 
 1( , ) x zi k x k z

iu x z e 
 

------ (6a) 

 1( , ) x zi k x k z
ru x y e 

 
------ (6b) 

 2( , ) x zi k x k z
tu x y e 

 
------ (6c) 

Equivalently, one may introduce k, θi, θt such that 
cosx ik k 

  
------ (7a) 

1 sinz ik k 
  

------ (7b) 

2 sinz tk k 
 

------ (7c) 

and represent incident wavefunction as 
 cos sin( , ) i iik x y

iu x z e  
 In which case one can write from (6b) 

 cos sin( , ) i iik x y
ru x z e  

 so that the incident and reflected angels are shown identical:  

i r 
 

------ (8) 

The transmitted wave is likewise to be expressed as 
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 cos sin( , ) i tik x z
tu x z e    

and one can write 

 

 

22
21

2 1
12

2
sin

sin 2

z
zi z

t z z
z

m
E V E Vk k

k k m E V
E V




 
  








------ (9) 

 
(c) The transmission and reflection coefficients are given from (5) by 

 

   
   

2
2 2

2 11 2 1

1 0 2 1 2 1

11

1 1

z zz z z

z z z z z

E V E Vk k kr
R

k i k k E V E V

                 


  

 

 

 
 

   

   

2 2
2 12 12

2 2
0 0 2 1 2 1

44

1 1

z zz z

z z z z

E V E Vk kk t
T

k i k k E V E V

 
  

         


  

 

 
and 

1R T   
 
as it should. 
 
(d) Evidently (8), (9) are analogous with reflection and refraction of light at a dielectric interface. 
 

5.4 (a) The potential is specified as 
0 I

II

( )                0 III

2 IV

20 V

i

i i

i i

i i

i

x x

x x d xV

V x d x x d W x

d W x x d W xV

d W x x


        
      

  

 

The energy eigenequations are given by 
2 0iu k u   ------ (1a) 

with 

 

1 3 5 02

2 4 2

2
,    I,III,V

2
,    II,IV

mE
k k k k

m
k k E V k

   

   





------ (1b) 

And one can write eigenfunctions as 
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0 0

0 0

0

0
I,

II,

        III,

IV,

V

ik x ik x

ikx ikx

ik x ik x

ikx ikx

ik x

i e re

Ae Be

u Ce De

Fe Ge

te









 
  
 


------ (2) 

 
 
(b) The boundary conditions operative at xi between regions I, II are:  

 
0 0

0
i i i iik x ik x ikx ikxi e re Ae Be     

0 0
0

0 0

i i i iik x ik x ikx ikxk k
i e re e e

k k
     

One can thus find i0, r in terms of A, B: 

0
0

0 0

1
1 1

2
i i iik x ikx ikxk k

i e A e B e
k k

     
       

     
 

0

0 0

1
1 1

2
i i iik x ikx ikxk k

r e A e B e
k k

    
       

     
 

or equivalently 

0
0( , , )i

i A
M k k x

r B

   
   

   
------ (3a) 

 
where the 2×2 matrix reads as 

0 0

0 0

0 0

0

0 0

1 1
1

( , , )
2

1 1

i i i i

i i i i

ik x ikx ik x ikx

i

ik x ikx ik x ikx

k k
e e

k k
M k k x

k k
e e

k k

   

 

    
     

                   

------ (3b) 

 
One can likewise apply similar boundary conditions at successive interfaces, obtaining 

 

0( , , )i

A C
M k k x d

B D

   
    

   
------ (3c) 

 

0( , , )i

C F
M k k x d W

D G

   
     

   
------ (3d) 

 

0( , , 2 )
0i

F t
M k k x d W

G

   
     

   
------ (3e) 

 
Hence one can correlate r, t with i0 using (3a) – (3e): 
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0

0T

i t
M

r

   
   

   
------ (4) 

 
where MT consists of 

0 0 0 0

11 12

21 22

( , , ) ( , , ) ( , , ) ( , , 2 )

     

T i i i iM M k k x M k k x d M k k x d W M k k x d W

m m

m m

     

 
  
 

------ (5) 

 
(c) Now that the matrix elements of MT have been specified explicitly, R, T can be found from 

 

11 120

21 22 0

m mi t

m mr

    
     

    
 

Specifically, 
2 2

0

0 0 11

/ 1

/

k m t
T

k m i m
 



 

2 22

0 21

0 0 11

/

/

k m mr r t
R

k m i i t m
   



 

 
(d) The matrix element, say m11, is a function of energy, E of incoming particle with V, d, W as 
parameters. Thus finding the condition for 100% transmission amounts to finding E such that 

2

11 1.m   

 
(e) The analysis can be extended to any number of barriers separated by equal distances by 
introducing corresponding matrices. 
Hint: Try 1 barrier first and add one more barrier and find the pattern emerging. 
 

5.5 This problem can be tackled exactly in the same manner as in (5.4) except that MT in (5) therein 
has to be modified as 

 

0 0 0 0( , , ) ( , , ) ( , , ) ( , , 2 )T i i i iM M k k x M k k x d M k k x d W M k k x d W         

where 

 
2

2m E V
k


 


.

 

 
 



29 
 

Chapter 6 
 
6.1 (a) From (4.11(b)) the quantized energy levels are given by  

2 2
2

2
,           1, 2,

2nE n n
mW


 
  ------ (1) 

For electrons with rest mass m0  

   
 

2 234

2
1 231 9 2

2 19

2 19

2

1.055 10 3.14
[ ]

2 9.1 10 10

    (0.603 / ) 10 [ ]

    (0.603 / ) 1.6 10 [ ]

    (0.376 / )[ ]

E n J
w

w J

w eV

w eV



 








  

 

  



 

where the width of the well has been scaled w.r.t nanometer, i.e. 
910W w 

 with w denoting nm. 

For mn= 0.2m0, 

 2 2 20
2

0.37
[ ] 1.86 / [ ]n

n

m
E n eV w n eV

w m

 
   

 
------ (2) 

 

(b) Specify V(x) as 

0 I

( ) 0          0       II

III

V x

V x x W

V W x


  
   

Then the bound state eigenfunctions can be expressed as 

0

( )   0

x

ikx ikx

x

Ae x

u x Be Ce x W

De W x









 
   
 

 

where  

 

2

2

2

2
,          

m
k E

m
V E E V



  




 

From the boundary conditions for u(x) to satisfy at x=0, W, on finds the non-trivial values of A, B, 

C, D, provided the secular equation is satisfied. From the secular equation quantized energy 

levels for bound states are obtained. 

It will be interesting and instructive to perform the graphical analysis and compare the results 
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with (1). It will also be interesting to compare the resulting ground state energy eigenvalue with 

that of the infinite square well potential and examine the reasons for the difference, if any (see 

Fig. 4.7 in the text and seek the reasons for difference). 

 

(c) For m= m0 for example one can write from (1) 

2

0.376 25

2 2
Bk T

eV meV
w

 
 

Hence  

376 /12.5 5.5w    and 5.5W nm
  

(d) Consider the case where W=2nm, i.e. w=2. Then from (a) 

2 20.37
[ ] 0.1 [ ]

4nE n eV n eV  
 

Thus, energy levels up to n = 4 are given by ~ 0.1, 0.4, 0.9, 1.6 eV, respectively. 

For the other limit of W = 200nm , the energy levels are reduced by a factor, 10-4. 

The density of states is then described by step functions, with each step occurring at every 

quantized energy level at a height specified from (4.29) by  

                         

2
2 /Dg m  

 
 

6.2 (a) The tunneling probability through the square barrier potential is given from (6.5), (6.6) by 

2
2

2

1

1

2
sinh ( )

4 ( )

T

V m
d V E

E V E




  
 

 

Thus, T can be found explicitly by inserting the given barrier height V and thicknesses dL, dR and 

the energy eigenvalues of the well, E. It will be interesting to compare the tunneling probability 

through the two barriers with different thickness. 

 

(b) The lifetime is to be specified first by the condition,  

1TN  ------ (1) 

where N is the average number the electron encounters the barrier for tunneling through. Once N 

is found in terms of the tunneling probability, T the lifetime is found by multupling the round trip 

time with N:  

(2 / )W v N  ------ (2) 

Here 2W is the round trip distance and v the velocity of electron given in terms of E as  
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21

2
mv E  

Since dR (10nm) << dL (50nm), R LT T , so that the electron lifetime is practically determined 

by the barrier on the right hand side. 
Thus using TR found in (a) and the values of W and energy E of the subband,   can be 
calculated using (2). 
 

6.3 (a) As discussed in (6.2) the electron lifetime is determined by the tunneling probability through 
the potential barrier with thickness, dR (<< dL). 
The velocity of electron residing in the ground state energy level of the well is given by 

2 2
2

1 2

1

2 2
mv E

mW


 


------ (1) 

That is, 

v
mW





------ (2) 

and depends on the width of the well. 

With an external electric field E  applied, the potential barrier is transformed into either 

trapezoidal or triangular shape. The tunneling probability is then given from (6.11), (6.12) 
by 

fT e ------ (3a) 
where 

   

 

33
22

1 1

3

2
1

4 2

3
          

4 2  3(b)
2

 3(a)R

m
V E V E q E d

q E
f

m
V E

q E

  
     

  
 






 

Thus one can find T for given |E|, W and find the lifetime: 

2 1W

v T
   ------ (4) 

Note here that the velocity of electron, v as give by (2) can be used, provided v is greater than the 
thermal speed, vT. Otherwise, vT should be used instead in (4) 
 
(b) The potential barrier 

( ) ,            3.1V x V q E x V eV    

becomes a triangular barrier to electrons at the ground state, if  
2 2

1 22RV q E d E
mW


  


 

Thus the required electric field can be estimated by putting 1 0E  , obtaining 

19
7

19 9

3.1 1.6 10 /
3.1 10 / 31 /

1.6 10 10 10R

V eV J eV
E V m mV nm

q d C m



 

 
    

   
 

Consider the case where W = 50nm. 
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The ground state energy given from problem 6.1 by 

1 2

0.376
0.15

50

eV
E meV   

is then smaller than the thermal energy at room temperature. Hence for estimating the lifetime the 
thermal velocity of electron should be used. 
Thus, form (3), (4) one can write 

2 1

T

W

v T
   ------ (5) 

where 

21 1
,

2 2T Bmv k T  

and  

3
2

4 2
exp ,        3.1

3

m
T V V eV

q E
  


 

At room temperature, T=300K and 46.75 10 /Tv m s  . Hence, the electric field required for 

610 s  is found from 
9 36 2

4

2 50 10 4 2
10 exp

6.75 10 3

m
V

q E


  


 
 

so that 
91.36 10 / 1.36 /E V m V nm   

 
6.4 (a) Use the F - N tunneling probability for estimating the electric field and write 

3
2

4 2
exp

3

m
T V

q E



------ (1) 

where the work function, V = 4.5eV is the barrier the electron encounters when incident from the 
metal to the sample. One finds the required electric field, |E| by putting T = 10-4 in (1)  

34 2
4 2

10 exp
3

m
V

q E
  


 

or 

 

3
2

94 2
exp 7.05 10 / 7.05 /

3 4 ln10

m V
E V m V nm

q


  





 

With this electric field applied the electron indeed encounters the triangular potential barrier 
while tunneling to the sample 1nm distance away, as was assumed. 
 
(b) Use the direct tunneling probability, put T = 10-4 , and write 

 
334 22

4 2
10 exp

3

m
V V q E d

q E
       

 

Since 0.1 V is applied between the tip and sample, one can put |q E| d = 0.1 eV and d can be 
found by inserting given parameters in the equation, 
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 
334 22

4 2
10 exp 0.1

3 0.1

m d
V V

q
       

 

 
6.5 (a) Using (6.13), (6.14) and applying the boundary condition, 

1

1

( ) ( )

( ) ( )

j j j j

j j j j

U z U z

U z U z
z z






 


 

 

one can write 

1 1

1 1

------ (1a)
    

------ (1b)

j j j j

j j j j

ikz ikz z z
j j j j

ikz ikz z z
j j j j

A e B e A e B e

i
A e B e A e B e

k

 

 

 
 

 
 

  

    
 

Solving for Aj, Bj in terms of Aj+1, Bj+1 one obtains 

1 1

1 1

1 1 ------ (2a)2
    

------ (2b)1 1
2

j

j j

j

j j

ikz
z z

j j j

ikz
z z

j j j

e i i
A A e B e

k k

e i i
B A e B e

k k

 

 

 

 




 


 

               

               

 

One can thus introduce the transfer matrix connecting Aj, Bj to Aj+1, Bj+1 as 

1

* *
1

j j

j j

A A

B B

 
 





    
    
    

------ (3a) 

where  

( )

( )

1
1 ------ (3b)

2
    

1 ------ (3c)1
2

j

j

i i k z

i i k z

i
e

k

i
e

k













   
 
   
 

 

(b) One can likewise connect Aj+1, Bj+1 to Aj+2, Bj+2, applying the boundary condition at zj + d to 
the wavefunctions, Uj+1(z), Uj+2(z), obtaining 

*
1 2

*
1 2

j j

j j

A A

B B
 
 

 

 

    
    
    

------ (4a) 

 
where  

( )( )

( )( )

1 ------ (4b)
    

------ (4c)1
( )

j

j

i k i z d

i k i z d

k
e

i

k
e

i











 

 

   
 

 
   

 

Combining (3), (4), one can connect Aj, Bj to Aj+2, Bj+2: 
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*
2

* * *
2

11 12 2

21 22 2

( ) ( , )
       

( , ) ( )

j j

j j

j j

j j

A A

B B

m d m z d A

m z d m d B

   
   









     
     
     
  

   
  

------ (5a) 

with 

11

2 2

*
22

( )

cosh sinh
2

ikd

m d

k
e d i d

k

m

 

 


 

 
  

 


 
------ (5b) 

* *
12

2 2
(2 )

*
21

( , )

sinh
2

j

j

ik z d

m z d

k
ie d

k

m

 

 


 

 





       

------ (5c) 

 
(c) In the presence of one barrier potential, one can write 

11 12 2

21 22

( ) ( , )

( , ) ( ) 0
j j j

j j

A m d m z d A

B m z d m d
    

    
    

------ (6) 

Here 2 0jB   , since there is no reflection beyond the single barrier. The transmission 

coefficient can thus be obtained as  
2

2

2

11

1

( )

j

j

A
T

A m d

  ------ (7) 

where  

 

22 2
2 2 2

11

22 2
2 2

22 2

2
2 2

2
2

2

( ) cosh sinh
2

             1 sinh sinh
2

             1 sinh
4

2
             1 sinh ( )

4( )

k
m d d d

k

k
d d

k

k
d

k

V m
d V E

V E E

 


 







 
   

 

 
    

 


 

  
 

 

in complete agreement with (6.5) in the text. 
 
(d) It also follows from (6) that 
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2 2*
12 2

11 2

2

2 2
(2 )

2 2

22 2
2

22 2
2

( )

( , )

sinh
2             

cosh sinh
2

sinh
2

             

1 sinh
2

         

j

j j

j j j

ik z d

ikd

B m d A
R

A m z d A

k
ie d

k
k

e d i d
k

k
d

k

k
d

k

 

 


 


 






 

 





  

  
  

 
 
 
 

  
 

 

in agreement with (6.7) in the text. 
 

6.6. In the presence of two potential barriers W distance apart, one can put Bj+4 = 0 because of no 
reflection after tunneling through the second barrier and write 

11 12 11 12 2 4
* * * *
12 11 12 2 11

( ) ( , ) ( ) ( , )

( , ) ( ) ( , ) ( ) 0
j j j j

j j j

A m d m z d m d m z d A

B m z d m d m z d m d
 



     
     

       

where  

                         
2j jz z W d   

  
Then, as shown in (6.23), (6.24) in the text on can find 

2 2 2
4

22 2 2
1

4

( )sinh

ikd
j

ikW
j

A e k

A D e k d



 


  

   

------ (1a) 

 
where 

22 2
1

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2

( )sinh 2 cosh

    ( ) sinh 4 cosh

    4 ( ) sinh

i

i

D k d ik d

k d k d e

k k d e





   

   

  

    
    
    

------ (1b) 

    with 

2 2

2 cosh
tan

( )sinh

k d

k d

 
 




------ (1c) 

Here D1 has been put into a phasor representation and use was made of  
2 2cosh 1 sinhx x   

Since the velocities of incident and transmitted electron are the same, one can express the 
tunneling probability across two potential barriers as 
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2

4
2

2 2 2

2
2 2 2 2

2 2 ( )
1

1

2
1

22 ( )
1

(4 )
    

( ) sinh
1

    
1

j
B

j

i kW

B

i kW
B

A
T

A

k

k d
D e

D

T

e R







 












 


 

------ (2) 

Here T2B has been expressed in terms of the tunneling probability through the single barrier, T1B 
and the corresponding reflection coefficient, i.e. 

2 2

1
1

2 2 2 2

1
1

4

( ) sinh

B

B

k
T

D

k d
R

D



 






 

 
(2) can be further compacted into a more transparent from by putting the denominator into a 
phasor notation: 

 

2

1

2 2 2 2
1 1

2 2
1 1

2 2 2
1 1

1

(1 cos ) sin

1 2cos

1 4 sin
2

i
B

i
B B

i
B B

i
B B

e R

R R e

R R e

R R e









 







    
    
     

------ (3) 

 
where  

1

1

sin
tan ,      2( )

1 cos
B

B

R
kW

R

  


  


 

and use has been made of 

2cos 1 2sin
2

    

Inserting (3) into (2) and identifying T1B = 1- R1B one can write 

2
21

2
1

1

1 4 sin ( )
B

B

B

T
R

kW
T




 
------ (4) 

One can clearly notice from (4) that the resonant tunneling occurs, i.e. 
T2B = 1 for 

,      1, 2,kW n n      

It will be illuminating to plot T2B versus incident electron energy for various values of the 
potential barrier and the quantum well in between the two. 
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Chapter 7 
 

7.1 (a) Consider the dispersion relation, (7.22) in the text: 
2 2

1
1 1

1

cos cosh sin sinh cos
2

k
k a b k a b kd

k

 



  ------ (1) 

In the limit b0, V, such that the value Vb is finite, then 

2

2
( ) 0

m
b V E b   


 

so that 

2

2 2 2 2
1

2
1 11

cosh 1

2
sinh

2 / 2 /

2 22 2 /

b

m
b V b

k mV mV

k kk mV

d a b a













  

 



 




------ (2) 

Hence the second term on the left of (1) reads as 
2

2 1
1 2

1 1

sin2 /
2 / sin ,      

2

k amV a mVba
mV b k a P P

k a k a
    

 


------ (3) 

Inserting (3) into (1) one can write with the use of (2) 

1
1

1

sin
cos cos

k a
P k a ka

k a
  ------ (4) 

 
(b) The simplified dispersion relation (4) is a handy equation by which to examine the energy 
band as a function of parameters involved such as Vb, a, etc. 
It will be interesting and instructive to examine the widths of allowed bands and energy gap as a 
function of these parameters and to interpret the results. 
 

7.2 (a) Given the coupled equation (7.41) for x1, x2 one can find x1 for instance using the Kramer’s 
rule: 

1

0 2

0 1
0

1 2

2 1

x






 




 

Hence it is evident that x1 = x2 = 0 unless the secular equation holds true, i.e. 

 

1 2
0

2 1








------ (1) 

 
(b) Evaluating the determinant (1) on can write 

 2
1 4   

so that 
3, 1   ------ (2) 
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Inserting these two roots into any one of two coupled equations in (7.41) one finds 
 

1 22 2 0        for   3x x     ------ (3a) 

and  

1 22 2 0        for   1x x     ------ (3b) 

Hence there exists an infinite number of solutions in the coupled equation, provided x1, x2 are 
constrained by (3). 
 
(c) Insert 3   for instance into the two coupled equations in (7.41), obtaining 

 

1 2

1 2

2 2 0

2 2 0

x x

x x

  
 

 

Clearly both equations lead to identical constraints. 
 
(d) The two sets of solutions ( 1x , 2x )corresponding to   and   can be represented by 

column vectors, i.e. 

1 1

1

1
X x

 
  

 
 

and 

2 1

1

1
X x

 
   

 

The length of the column vector is defined as 

  

  

2 2
1 1 1 1

2 2
2 2 1 1

1
1 1 2

1

1
1 1 2

1

X X x x

X X x x

 
  

 
 

    

 

Thus if normalization condition is imposed, that is the unit length condition is imposed, 
2
12 1x   

and 

1

1

2
x   

 
7.3 (a) Starting from (7.14) in the text, perform the operation,  

 

  1(7.14 ) (7.14 ) /a b ik  

obtaining  

1 1

1
1 1

2
ikd d di i

A e e C e D
k k

       
       

    
------ (1a) 

1 1

1
1 1

2
ikd d di i

B e e C e D
k k

       
       

    
------ (1b) 

Also, perform the operation, 

  1(7.15 ) (7.15 ) /a b ik  
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obtaining 

1

1 1

1
1 1

2
ik a a ai i

A e e C e D
k k

       
       

    
------ (2a) 

1

1 1

1
1 1

2
ik a a ai i

B e e C e D
k k

       
       

    
------ (2b) 

Thus, equating (1a), (2a) and (1b), (2b), respectively and rearranging the terms, one can 
reproduce (7.19), (7.20) in the text. 
 
(b) Once the matrix elements entering in the 22 determinant are specified explicitly it is a 
lengthy but straightforward algebra to obtain the dispersion relation given in (7.22) in the text. 
Here, recognizing the identity, 

2 1 2 cosikd ikde e kd    
is helpful. 
 
(c) It is extremely desirable to carry out the graphical analysis of the dispersion relation, 
following the method detailed in the text and using the values of the parameters given in the 
problem. 
The problem provides a simple but practical example, the numerical analysis of which can 
provide a concrete feeling for the subbands. The energy eigenvalues in quantum well or subbands 
are used extensively for modeling semiconductor devices. 
 
(d) The physical significance of the dispersion relation (7.22) is to find E - k pair to render the 
wavefunction in (7.11) non-trivial. Specifically, given a pair of E and k, C can be found in terms 
of D from (7.19) and A, B can in turn be found in terms of D from (7.14) or (7.15). 
Constructing a few Bloch wavefunctions in this manner could be rather instructive. 
 
(e) Yes, there is a similarity. 
Specifically, finding ,   in (7.2) corresponds to finding the dispersion relation between E, k 

in (7.22).  
Also, finding the relation x2 = x1 corresponds to finding non-trivial Bloch wavefunction for 
given E, k pair. 
 

7.4 The problem consists of graphically analyzing the dispersion relation (7.22) in the text, using 
typical barrier height, width and the distance of separation between the barriers, i.e. the width of 
the quantum well. 
The resulting energy band configuration provides the general features of the typical energy 
eigenvalues or subbands in quantum well. 
 

7.5 This problem is the continuation of (7.4), emphasizing the application aspect of the dispersion 
relation for designing the energy bands. 
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Chapter 8 
 
8.1 (a) Consider the energy eigenequation of the Harmonic oscillator:  

2 2
2

2

1
( ) ( )

2 2
kx u x Eu x

m x

 
    


------ (1) 

Introduce a variable   as 
1/ 4 1/ 2

2
2

, ,
mk m

x k m
            

    
 

Then the dimension of the constant,   can be found in terms of mass M, length L and time T: 

 

1
2

1
2

2 2

1
1 1M

T
L LL

M T
T



 
 

         
  

  

 

Hence   represents a dimensionless displacement of the oscillator from the equilibrium 

position. Using the chain rule one can perform the differentiation, 

2 2
2

2 2

x x

x

 
 




   
 

   

 


 

 

so that 
2 2 2 2 2

2 2 2

1

2 2 2

m

m x m

 
 

          
  


------ (2) 

Also, 
2

2 2 2 2 2
2

1 1 1 1

2 2 2 2
kx m m

m

   
 

  
  ------ (3) 

Inserting (2), (3) into (1) one can write 

 2 2
0,        

E
u u  


    


------ (4) 

 
(b) If the solution of u is sought in the form 

   
21

2u H e


 


 ------ (5) 

one can perform the differentiation, using the chain rule, 

 
21

2u H H e





   ------ (6a) 

 

 

2

2

1

2

1
2 2   2 1

u H H H H H e

H H H e





  

 





         

      

------ (6b) 

Inserting (6) into (4) there results 
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 2 1 0H H H       

8.2 (a) Consider the matrix element,  

2 2

2

2
22 2

3

n n

n
n n

u x u

N
d e H H e

 

 


  


 

     

------ (1) 

Now, using the recurrence relation, (8.32) in the text 

1 1

1

2n n nH H nH     

one can write 

 2 2 2 2
1 1 1 1

1

4n n n n nH H n H H H      
   

------ (2) 

Inserting (2) into (1) and performing the  -integration with the use of the orthonormality of 

eigenfunctions (see (8.38)), there results 
2

1
1 2

3

1
2

2

1 2 ( 1)!
2

42 !

1 1
,              

2 2

1

2

n n

n
n

n

u x u

n
n

n

n n m

n
m

  
 







  

   
   

        
   
   
 




------ (3) 

    Next, consider the matrix element, 

 

 

2 2

2 2 2

2

2

2
2 2 2 2

2

2

2 2 2 2 2

2

2 2 2

( )

( ) ( )

( )

n x n

n n n

n n n n

n n

u p u

N d e H H e

N e H H e d e H

N d e H

 

  



 


 
 

 


  




   




 




  



              

 
  

  













------ (4) 

Here the integration by parts has been performed. Next, using the recurrence relation (8.30), 
(8.32) in the text, one can write 

 
2 2

2

2

2 2

2
1 1 1

2
1 1

( )

1
                   2

2

1
                   

2

n n n

n n n

n n

e H H H e

H nH nH e

H nH e

 








 



  



 

   


     
 

    
 

------ (5) 
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Inserting (5) into (4) and performing the integration with the use of orthonormality of 
eigenfunctions, there results 

2

2

2
2 2 2

1 1

2 1 2 1

2 2 2

ˆ

1

2

1
2 ( 1)! 2 ( 1)!

42 !

1
,              

2

1

2

n x n

n n n

n n

n

u p u

N d e H nH

n n n
n

m
n

m n



 

  


 



 

 

 

     
 

           
    
 
   
 










------ (6) 

 

(b) Consider the variance in x, x : 

 22

22

22

22

2

      2

      2 |

      

      

n n

n n

n n n n n n

n n

n n

x u x x u

u x x x x u

u x u x u x u x u u

u x u x

u x u

  

  

  

 



 

Since 0n nu x u x   from parity consideration. 

Likewise one can evaluate 2
xp  as 

 22

22

2

      2

      

x n x x n

n x x x x n

n x n

p u p p u

u p p p p u

u p u

  

  



 

Since xp = 0. Hence using (5), (6) one can write 

1
2

                

1 1

2 2

1

2

xx p n m n
m

n




                 
   
 

 



 

 
(c) Consider the x-matrix element: 
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2 2

2

2 2
2

1 12

, 1
1

2

, 12

,            

1

2

1
2 !

2
1

2 !
2 ! 2 !

0    otherwise

l l

l l
l l

l l
l l l

l
l l

l
l ll l

u x u

N N
d e H H e x

N N
d e H H l H

l

l l
l l

 



   





 

   
 



  


 
  







  

    
 

 
              






 

which leads to (8.51) in the text. Here the recurrence relation (8.32) has been used. 
 
Consider next the matrix element involving p: 

2 2

2 2( )l l l l l lu u N N d e H H e
x

 


  

  


 

   

Using (8.30), (8.32) one can write 

 
2 2

2

2

2 2

2
1 1 1

2
1 1

( )

1
                  2

2

1
                  

2

l l l

l l l

l l

H e H H e

l H H l H e

l H H e

 





 


 

  



    



  

 

     
 

   
 

 

Hence 

2

1 1

, 1
1 1

2 2

, 1

1

2

2 !

1
2 !

22 ! 2 !

0    otherwise

l l

l l l l l

l
l l

l
l ll l

u x u

N N d e H l H H

l l

l
l l



 
   
 



 
   







    
 

  


                    



  

which leads to (8.52) in the text. 
 

8.3 (a) The classical oscillator with amplitude x0 and oscillating in time with ω is described by 

0 cos ,x x t  

in which case one can write 

0 sin .v x x t     

Thus, the kinetic energy averaged over a period of oscillation is given by 
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2 / 2 2 2
2 / 2 2 2 2 20 0

0 00

( )1 1/ 2 1/ 2 1 2 1
sin

2 2 / 2 / 2 / 2 2 2

dtv t xm m
K m x t x m

 
    

      
    

 ------ 

(1) 
Also, the average potential energy is given by 

2 2
2 / 2 2 20 0

00

/ 2 1 1
cos ,          

2 / 2 2 2 2

x m xk
V x t k k m

   
 

 
     

 
 ------ (2) 

Hence it follows from (1), (2) that  

1

2
K V E   

where E  is the total energy which in this case is time independent. In fact, classically the 

total energy is independent of time in a conservative system as in harmonic oscillator. 

2 2

2 2 2 2 2
0 0

2 2
0

1 1

2 2
1 1

  sin cos
2 2
1

  ,                       
2

E mv kx

m x t kx t

m x k m

  

 

 

 

 

 

 
Quantum mechanically, the average kinetic energy is given by 

21 1
ˆ

2 2 2n x nK u p u n
m

     
 


 

where the result obtained in (6) in problem (8.2) has been used. Similarly using (3) therein one 
can write 

2 2 21 1 1
,         

2 2 2

1 1
     

2 2

n nV k u x u m n k m
m

n

 




     
 

   
 




 

Hence 

1

2
K V E   

 
(c) Thus, both classical and quantum descriptions are identical in describing the conservative 
system. 
 
8.4 (a) The energy eigenequation of 3D harmonic oscillator reads as 

2
2 2 2 21 1 1

( , , ) ( , , )
2 2 2 2x y zk x k y k z u x y z E x y z

m

 
      
 


------ (1) 

and one can look for the solution in the form, 

( , , ) ( ) ( ) ( )u x y z u x u y u z ------ (2) 

Inserting (2) into (1) and dividing both sides by (2) there results 
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2 2 2 2 2 2

2 2 2
2 2 2

( ) ( ) ( )
2 2 21 1 1

( ) 2 ( ) 2 ( ) 2

u x u y u z
m x m y m z

kx ky kz E
u x u y u z

            
                             

     
     
     

  

 

------ (3) 
Clearly (3) naturally separates into x, y, z components as 

2
21

( ) ( ) ( )
2 2 x xu x k x u x E u x

m
  


------ (4a) 

2
21

( ) ( ) ( )
2 2 y yu y k x u y E u y

m
  


------ (4b) 

2
21

( ) ( ) ( )
2 2 z zu z k z u x E u z

m
  


------ (4c) 

where primes denote the respective differentiations and  

                      x y zE E E E    

(b) The equation (4a) –(4c) are identical to 1D harmonic oscillator eigenequation and one can 
therefore write 

2

2

1
( , , ) ( ),           , ,j nj j

j
u x y z N e H j x y z







   ------ (5) 

with  
1 1

4 2

2
, j j

j j j

mk m
j


  

   
     

    
 

1
2

2 !j

j
j n

j

N
n





 
  
 
 

 

and the energy eigenvalues are given by 

, ,

1

2x y zn n n j jE n    
 

 ------ (6) 

 

(c) If x y zk k k k    , then (6) reduces to  

, ,

3
,           

2x y zn n n x y z
kE n n n m       

 
  

The degeneracy of the few excited states is summarized as follows: 

xn  yn  zn  E
  degeneracy  

0 0 0 3/2 none 
1 0 0 5/2 

3 0 1 0 5/2 
0 0 1 5/2 

1 1 0 7/2 6 
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8.5 The effective spring constant can be specified in terms of hydrogen mass as 
2313.8 Hk m     

Hence one can write 
1

2

1
2

34
27

20

20
19

1

313.8

313.8
    1.055 10

1.673 10

    4.57 10

1
    4.57 10

1.6 10

    2.86 10

Hm

J

J

eV
J

J

eV













 
  
 

    
 

  


 

 

 

The frequency of the photon capable of inducing transitions in between vibrational states is 
therefore given by 

1 1
13

15

2.86 10 2.86 10
6.9 10

4.136 10

eV
eV Hz

h eVs


 



 
   


 

 
 

8.6 (a) For two atom system coupled via an effective spring constant, the kinetic energy is given by 

2 2
1 1 2 2

1 1

2 2
K m r m r   ------ (1) 

Introduce the center of mass and relative coordinates: 

1 21 2 1 2

1 2

,           

         

m r m r M R M m m

r r r

   
 

 

Inverting the relation one can express 1r , 2r as 

2
1

m
r R r

M
  ------ (2a) 

1
2

m
r R r

M
  ------ (2b) 

Inserting (2) into (1) one can write 
2 2

2 21 2 2 1
2 2

2 2

1 1

2 2

1 1
   

2 2

m m m m
K M R r

M M

M R r

 
   

 

 

 

 

------ (3a) 

where 

1 0 1 7/2 
0 1 1 7/2 
2 0 0 7/2 

0 2 0 7/2 

0 0 2 7/2 
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 1 2 1 2
2 12

m m m m
m m

M M
    ------ (3b) 

or 

1 2

1 1 1

m m
  ------ (3c) 

Therefore, the Hamiltonian of the system reads as 
 

2 2 2

2 2
2

2 2
2 2 2

1 1 1
   

2 2 2

1
   

2 2 2

1
   

2 2 2R r

H K V

M R r kr

P p
kr

m

kr
M







 

  

  

     

 

 

 

 
(b) The energy eigenequation reads then as 

 

   
2 2

2 2 21
, ,

2 2 2R r kr R r E R r
M

 


 
      
 

 
------ (4) 

 
One can thus look for the solution in the form 

     ,R r u R u r  ------ (5) 

and insert (5) into (4) and divide both sides by (5), obtaining 

 
 

 

 

22
22

2122
2

rR
u ru R

M kr E
u R u r


  

  



------ (6) 

So that  u R ,  u r  naturally separate as, 

   
2

2

2 R CMu K E u R
M

  


------ (7a) 

     
2

2 2
int

1

2 2ru r kr u r E u r


   


------ (7b) 

(7a) is the energy eigenequation for a free particle of of mass M, while (7b) is the standard 
harmonic oscillator eigenfunction, oscillating with the reduced mass,  . 

 
8.7 (a) The Hamilitonian of the internal motion of the molecule reads as 

2
2 21 1 1 1ˆ ,           

2 2 C O

H kx
m m 

     


 

where Cm , Om  denote the mass of carbon and oxygen atoms, respectively. The energy spacing 

between two adjacent vibrational states is given by 
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1c
h h hc

 
    
 

 

Hence, 

8 8 131
3 10 ( / ) 2,170 / 3 10 ( / ) 217,000 / 6.51 10 /c m s cm m s m s


          

And 

 22 2k      

Now, 

 
  

227

260
27

0

12 16 1.673 10
  1.15 10

12 16 1.673 10
C

C

m m
Kg

m m







 
   

  
 

and 

       226 13 31.15 10 2 6.51 10 / 1.92 10 / 19.2 /k N m Newton m Newton cm        

 
(b) The zero point energy is given by 

15 13 1
0

1 1
4.136 10 6.51 10 / 1.35 10

2 2
E h eVs s eV         

 
8.8 

2
2ˆ 1ˆ

2 2

p
H kx

m
  ------ (1a) 

Using (8.60), (8.61) in the text, i.e. 

 
1

21
,           

2

m
x a a




      
 

------ (1b) 

 
2

i
p a a

  


------ (1c) 

 
one can write 

     
2 2

2

1 1ˆ
2 2 2 2

k
H a a a a a a a a

m




         


------ (2) 

    Now,  

                   
2 2 2 1

4 4 4

m

m m

   
  

  

                 

2

2

1

4 4 4

k m

m

 
 

 
 

 

          
 

Hence, Ĥ  can be expressed in terms of the number operator as 
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     

 

 

ˆ
4

   2
4

   1
2

H a a a a a a a a

a a aa

a a







   

 



        

  

 







 

since 1aa a a   . 
 

8.9 (a) Given the function, 

( ) xa a xa aF x e ae
   

its derivative reads as 

 

( )

          

         

         ( )

xa a xa a xa a xa a

xa a xa a

xa a xa a

dF x
e a aae e aa ae

dx

e a a aa ae

e ae

F x

   

 

 

   

  

 

 

 

 
 

------ (1) 

 
where use has been made of 

, 1

xa a xa a

a a aa a a

e a a a ae
 

  

 

     


 

(1) can be recast as 

( )

( )

dF x
dx

F x
   

and upon integrating both sides there results 

0
ln ( )

x
F x x   

or 

( ) (0) xF x F e  

That is, 
xa a xa a xe ae ae

    
 
(b) Let 

( ) xa a xa aG x e a e
    

Then  

 ( )

          

         ( )

xa a xa a

xa a xa a

dG x
e a aa a a a e

dx

e a e

G x

 

 

    

 

 




 

So that one can put 
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( )dG x
dx

dx
  

and upon integrating both sides one can write 

0
ln ( )

x
G x x  

or 

( ) (0) xG x G e  

and 
xa a xa a xe a e a e

     
 

8.10 (a) Inserting the ground state eigenfunction, (8.72) reads as 
21

2
2

1 1
( )

! 2

n

nu x e
n


 

    
         

 

Hence, for n=1 
21

2
2

1

1 1

1! 2
u e

 


  
       

 

Now, 
2 2 2

2 2 2
12 ( )e e H e

  

  


   
    

 

and 
21

2
2

1 1
2 1!

u H e




 
    

------ (1) 

 
Similarly for n=2 

21 2
2

2
2

1 1

2! 2
u e

 


   
         

------ (2) 

Now, 
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 

   

   

 
 

 

2

2

2

2

2

2

2

2
12

2
1 1 12

2
1 12

2
1 1 1 1 1 12

2
22

1 1

2 2

1

2

1

2

1
2

2

1
2 2

2

1

2

e

H e

H H H e

H H e

H H H e

H e













 
 




 













  



    
        

 
   

      

 

  


 

Here the recurrence relation, (8.30), (8.32) have been used. Hence 
21

2

2
2 222! 2

u H e




 
  

  
 

Next, u3 can likewise be constructed using (1), (2) as 
2

2

13
2

2
3

1
2

2

1 1

3! 2 1

1 1 1 1 1 1
   

3 2 2 2 1 2

u e

e






 

  
   





    
         

         
                      

 

2

2

1
2

2
22

1
2

2
22

1 1
   

3 2 2! 2

   
2! 2

H e

H e






 

 






  
        

   
        

 

Here, 3! has been distributed. Now 

 
 

2

2

2

2

2
2

2
2 2

2
3 1 1

2
3

 

2

4 4

H e

H H e

H H H e

H e






















 
  

 

  


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Thus, 
21

2

2
3 333! 2

u H e




 
  

  
------ (3) 

in complete agreement with the results obtained by solving the energy eigenequation. 
 
(b) One can show the validity of (8.72) by induction. For this purpose, (8.72) can be 
decomposed into 

2

2

1
2

2

1
2

2

1 1
( )

! 2

1 1 1 1
        

2 1 2

1 1
                                               

1 2

n

nu x e
n

n n

e






 

 
 


 





    
         

       
                

   
     

 ------ (4) 

In view of (1), (2), (3) one can recast (4) as 

 

 

 

2

2

2

2

1
2

2
11

1
2

2
1 1

1
2

2
1 1 2 2

1
2

2

1 1
( )

2 2 1 !

        2
2 !

        2( 1) 2( 1)
2 !

        
2 !

n nn

n nn

n n nn

nn

u x H e
n n

H H e
n

H n H n H e
n

H e
n










 

 














 



   



  
         

    
 

 
     
 

 
  
 

 

in exact agreement with (8.40) in the text. 
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Chapter 9 
 

9.1 (a) Evaluating 9 vector products, e.g. ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ0,x x y y z z x y z        , etc. is tantamount to 

evaluating the determinant of 3×3 matrix, i.e. 

     

ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

x y z

z y x z y x

l r p

x y z

x y z

p p p

x yp zp y zp xp z xp yp

 



     

 

 

(b) Consider for example the commutation relation between ˆ
xl , ˆ

yl : 

 
   

 

ˆ ˆ, ,

         , ,

         , ,

ˆ         

x y z y x z

z x y z

x z y z

y x z

l l yp zp zp xp

yp zp zp xp

yp p z p x z p

i xp yp l

       
    

 

  

 

where use has been made of  

 , zz p i   

One can likewise prove 

ˆ ˆ ˆ ˆ ˆ ˆ, , ,y z x z x yl l i l l l i l          

 
9.2. This problem requires a straightforward algebra involving the chain rule for differentiation of 

elementary trigonometric functions. Performing the analysis and confirming the results is 
nevertheless important and should be carried out at least once.  
 

9.3 (a) Consider the general case where   is not necessarily confined to 4
 . 

Since  
ˆ ˆ ˆcos sin

ˆ ˆ ˆsin cos

x x y

y x y

 
 

  
   

 

   
2 2

2 2

ˆ ˆ ˆ ˆ ˆ ˆcos sin cos sin

ˆ ˆ ˆ ˆ ˆ ˆ        cos sin 2cos sin

        cos sin 1

x x x y x y

x x y y x y

   

   

 

     

     

  

 

One can similarly show that 
2 2ˆ ˆ sin cos 1y y        

and 

   ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆcos sin sin cos sin cos sin cos 0x y x y x y y x                       

Since 
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ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ0,   0x z y z x z y z          
Hence, ˆ ˆ ˆ, ,x y z   constitute an orthonormal unit vector system 

 
(b) From Table 9.1, 

1
2

0
1

1
2

1
1

1 3
cos

2

1 3
sin

2 2
i

Y

Y e 







 

   
 

   
 



 

Thus, one can write 
0 0

1 1

2 1 2

0 1

|

1 3
,         cos

4
1 3 1

2 2 1
4 3

Y Y

d d

   







  

     

  ------ (1) 

Also, 

 

1 1
1 1

2 1 2 2 2

0 1

|

1 3
1 ,         sin 1

4 2
1 3 2 1 3 4

2 2 2 1
4 2 3 4 2 3

i i

Y Y

d e e d
      



 
 

 

 


    

               
   

  ------ (2) 

 
(b) Consider for instance 

0 1
1 1

1 1
2 2 2 1 2

0 1

|

1 3 3
1 0

4 2
i

Y Y

d e d
   

  

          
     

------ (3) 

One can likewise show that 
0 1 1 1

1 1 1 1| | 0Y Y Y Y   ------ (4) 

 
(c) It is already shown in (1) that 

| 1z zp p   

It also follows from (2), (3), (4) that 

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

|

1
|

2
1

| |
2
1

x xp p

Y Y Y Y

Y Y Y Y

 

 

  

   


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1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

|

1
|

2
1

| |
2
1

y yp p

Y Y Y Y

Y Y Y Y

 

 

  

   



 

Thus, xp , yp  and zp  are normalized. 

Also 

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

|

1
|

2
1

| |
2
0

x yp p

Y Y Y Y

Y Y Y Y

 

 

  

   



 

In view of 0 1
1 1| 0Y Y   , 

| | 0y x z yp p p p   

and therefore xp , yp  and zp  are orthonormal eigenfunctions. 

 

(d)  0 1 1
1 1 1, ,Y Y Y   and  , ,x y zp p p  are analogous to  ˆ ˆ ˆ, ,x y z

 
and  ˆ ˆ ˆ, ,x y z    

 
(e)  

  

2 0 2 0
1 1

2
2 0 0

1 1

2

ˆ ˆ

1 1 1 |

2

z zp l p Y l Y

Y Y



 







 

 

ˆ 0 | 0z z z z zp l p p p   

 

  

2 1 1 2 1 1
1 1 1 1

2
2 1 1 1 1

1 1 1 1

2

1ˆ ˆ
2

1
1 1 1 |

2

2

x xp l p Y Y l Y Y

Y Y Y Y

 

 

  

   






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1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

1ˆ ˆ
2

1
|

2
0

x z x zp l p Y Y l Y Y

Y Y Y Y

 

 

  

  



  

 

  

2 1 1 2 1 1
1 1 1 1

2
2 1 1 1 1

1 1 1 1

2

1ˆ ˆ
2

1
1 1 1 |

2

2

y yp l p Y Y l Y Y

Y Y Y Y

 

 

  

   







 

 

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

1ˆ ˆ
2

1
|

2
0

y z y zp l p Y Y l Y Y

Y Y Y Y

 

 

  

  



  
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Chapter 10 
 
10.1 (a) One can invert the relation, 

 1 1 2 2

1
R m r m r

M
  ------ (1) 

1 2r r r  ------ (2) 

with the operation M (1)+m2 (2), M (1) - m2 (2), obtaining 

2
1

m
r R r

M
  ------ (3) 

1
2

m
r R r

M
  ------ (4) 

Thus, one can write 
2

2 2
1

2
22 2 2

2
2 22 1 1

2

2

2

m
r R r

M

m m
R r R r

M M

m m
r R r R r

M M

   
 

     
 

     
 

 

  

   

 

Hence,  
 

2
2 221 2 2

1 1 1
1

21 1

2 2 2

p m m
m r m R r R r

m M M

          
    ------ (5) 

2
2 222 1 1

2 2 2
2

21 1

2 2 2

p m m
m r m R r R r

m M M

          
    ------ (6) 

and adding (5), (6) there results 

 
2 2

22 2 21 2
1 2 1 22

1 2

22

1 1

2 2 2 2

                 
2 2

p p
MR m m m m r

m m M

pP

M 

   

 

 

------ (7a) 

     where 

1 2,                P M R M m m   ------ (7b) 

1 2

1 2

,                   
m m

p r
m m

  
 


------ (7c) 

One can also write 

1 2

1 1 1

m m
  ------ (7d) 

 
(b) From (7c) or (7d) 



58 
 

1 2 1     for    m m m    

1 2

1
     for    

2
m m m m     

 
10.2 This problem requires a lengthy but straightforward exercise in differentiation, using the 

formulas (9.3) – (9.6). 
But, it is instructive to carry out the actual derivation in view of its extensive utilizations. 
 

10.3 (a) To find 0a  the only modification required is to replace 2 2
0/ 4Me e   by 2

MZe , with Z 

denoting the atomic number, that is, the number of protons in the nucleus. 
Thus, one can write from (10.44) 

2 2 2

0 2 2 2

1 1 1 1 1
1 1e e

B
M M e N M e N N

m m
a a

Ze Z e m m Z e m m Z m
     

           
     

  
 

Hence for 2Z   a0 is one half of the Bohr radius, aB: 

0 2
Baa   

 
(b) The problem corresponds to the case in which Z = 1, me / mN = 1 so that 

0 2 Ba a  

 
(c) Here the Coulomb potential 

2
Me

V
r

   

is replaced by the gravitational potential 

n nm m G
V

r
   

with mn, G denoting the mass of neutron and the gravitational constant, respectively. Thus one 
can write 

22

0 2 2/ 2
e M

B
n N n

m e
a a

m G m m G
  

    
  



 
 

It will be an interesting exercise to actually find out the value of 0a  using the gravitational 

force constant, G. 
 

10.4 (a) The radius, R is found from (10.54) as 

0

2 12 2 2

0 1 0

0.9 ( )

     ,     cos

R

R

nlm nlm

drP r

N d d r dru

   





 


  

 

Thus, for u100, for example, 
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0

0

0

2

2
3 0
0

3
20
0 03

0

2
0 0 0

0

1
0.9 2 2

1
     4 2 ( 2 2)

2

1 2
     1 ( 2 2) ,         

2

r
R ar e dr

a

a
e

a

R
e

a








  


  







  

          

    



 

From this result one can numerically find R. Following the same procedure one can likewise find 
the effective radius for u200, u300. 
 
(b) For the ground state, u100, 

0

0

2 1 2 2
1000 1 0

2

3
3 0
0

2
3 2

43
0 0 0 00

0

0

1
    4

4 2 2 2
    3 6 6

2

3
    

2

r

a

r

a

r d d r drru

drr e
a

e r r r

a a a aa

a


 



















 
  
 

 
                    

              



  



 

Likewise, 

0

2 12 2 2 2
1000 1 0

2

4
3 0
0

2
0

4
    

    3

r

a

r d d r drr u

drr e
a

a


 
















  

  

Hence 

 2 22

2
0

2
0

                 (3 2.25)

                 0.75

r r r r

a

a

  

 



 

so that 

/ 0.6r r   

and the variance w.r.t. <r> is appreciable. The variances, r for other states e.g. 2s, 3s can be 
evaluated in a similar way. 
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10.5 (a)  

   
 

2
211 21 1 211 21 1

2

1 |

 |

 1 1

x x

N u u u u

N

 



  

 

 

Hence  

1
2

N   

Similarly 
21 | 2y y N    

and  

1
2

N   

 
(b) Since  

210 21 1| 0u u  
 

it clearly follows from the definitions of these x-, y-, z-functions that
 

| | 0z x z y   

and 

   211 21 1 211 21 1| | 1 1 0x y u u u u        

 
10.6 (a) For the ground state, u100 the average kinetic energy is given by  

2
2

100 1002
K u u




 


 

Now, 

0

0 0

2 2 2
100 1002 2 2

2
100 2

100 2
0 0

1 1 1 ˆ

1
          

1 2
          

r

a

r r

a a

u r l u
r r r r

N r e
r r r

N e e
a a r



 

       
  

     
 

    
 



 

Hence, 
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0

22 2 1 2
3 20 1 0
0 0 0

2

2
0

22
22

2 2
00

2 2

02
0

1 1
( )

2

     
2

     ,                42

     ,                        
2

r

a

M
M

M

M

M

r
K d d r dr e

a a a

a

e ee
e a

e
a

a e


 

 











 
  

 



 

 

  








 

Also, 

0

0

22
2 1 2

3100 0 1 0
0

2

2
3 0
0

2

0

1
( )

4
          

         

r

aM

r

a
M

M

e
V d d r dr e

a r

e dr re
a

e

a


 












 

  

 

  

  

 
Therefore, 

100 100

1

2
K V   

 
(b) It will be an instructive exercise to carry out similar calculations for <K>, <V> for the states 
u200, u210. One can generally show that 

1

2nlm nlm
K V   

 
10.7 (a) Let us first consider the fraction of electron charge cloud contained within the Bohr radius, a0: 

0

0

0

0

0

2 1
2 2

100

0 0 0

/2
3
0 0

3 2/

3 3
0 0 0 0 0

0

 ,   cos

1
4

4 2 2 2
3 6 6

(2 / )

0.85

a

a
Zr a

a
Zr a

P d d r dr u

r dr e
a

e r r r

a a a a a



   








  

  

                   
         



  


 

1 2r r r  ------ (2) 

Hence the fraction of electron cloud lying outside the Bohr radius 0Ba a
 

is 15%. 

(b) For u200 and u210, one can similarly calculate P within 2a0 and find the fraction lying outside 
2a0. It will be interesting to see whether the fraction increases or decreases as the principle 
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quantum number n increases. 
 

10.8 (a) For H-atom in which Z=1, the transition energy involved is given by 
2

, 2 2
0

1 1

2i f

M
n n

i f

e
E

a n n

 
     

  ,
 

where ni, nf denote the initial and final state quantum numbers and 
2

0

13.6
2

Me
eV

a


.
 

For Lyman series in which nf =1, the shortest and longest wavelengths are therefore given by  
2

2 2
0

1 1

2 1
M

s
s

ec

a



      

 

and 
2

2 2
0

1 1

2 2 1
M

l
l

ec

a



     
  .

 

That is, 

7

7

1
90  & 1.1 10 /

1
122  & 0.82 10 /

s
s

l
l

nm m

nm m











 

 
 

For Balmer series, in which nf =2, one can likewise obtain 

7

7

1
365  & 0.27 10 /

1
652  & 0.15 10 /

s
s

l
l

nm m

nm m











 

 
 

One can similarly find λs, λl for other series. 
 
(b) For positronium, the reduced mass is given by 

0 0

1 1 1


 

m m
 

where m0 is the electron rest mass, so that μ = m0/2. Hence a0 ∝1/ μ increases by a factor of 2 

and the ground state binding energy,  2
0/ 2Me a  decreases by the same factor of 2. Thus, λs 

and λl found for the case of H-atom have to be increased by 2. 
For ionized helium atom, Z=2 and μ is essentially same as in H-atom case. Hence the ground 

state binding energy 2 2
0/ 2MZ e a  increases by 22, leading to shortening of λs, λl  found for H-

atom by the factor of 4. 
 

10.9 (a) The ground state binding energy can be analyzed simply using the binding energy of the H-
atom as the refernce (see (10.43), (10.44) in the text): 
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2 2 2 2

0

2

2 2 1

13.6
1 /

e

N

M M
m

B m

e N

Z e e Z

a a

Z
eV

m m

 





 

where me, mN are the mass of electron and nucleus, respectively. 
The transition from u2lm to u100 corresponds to the longest wavelength in Lyman series or the 

smallest frequency, i.e. 122   nm and 152.46 10 / s   in H-atom. 

For deuterium, Z=1 and 2D Hm m . Hence, its ground state binding energy is given in terms of 

that of H-atom as 

1 /
13.6 13.6 (1.0003)

1 /
e H

e D

m m
eV eV

m m


 


  

This indicates that the upward shift of frequency is about 0.03% from the case of H-atom. 
 
(b) The emitted radiation of frequency, ν and/or energy hν has the momentum given by 

2 2  


      h
p k

c c
 

If the atom emits a photon of momentum p, it recoils back to preserve momentum, so that 

 p P M V  

with P denoting the momentum of the atom. Hence with 
191

4
8

27

13.6 (1 ) 1.6 10 /

3 10 /

5.44 10  /

eV J eVh
p

c m s

kg m s

 



  
 




 

Thus the recoil velocity of H-atom is given by 
27

27

5.44 10 /

1.673 10

3.25 /





 





kg m s
V

kg

m s

 

For deuterium with mass 2 Hm  1.63 /V m s . 

(c) For the H-atom, the transition frequency from u3lm to u100 is given by 

31 2

1
13.6 (1 ),

3
  h eV  

that is 
15

31 2.93 10 / .   s  

For deuterium the frequency is practically same within the error of 0.03%. 
 
10.10 (a) With Z=1, the ionization energy is given from (10.43) by 

4 2
2

2
0

,       
2 4

M
I M

e e
E e




 


 

Thus, EI can be simply analyzed based on the ionization energy of H-atom: 
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2

0 0

0

2

13.6

1
13.6 (1.1)

11.9

0.1

I
r n

m
E eV

m

eV

eV


 
   

    
   

   
 



 

(b) The atomic radius is also conveniently analyzed using radius of the H-atom: 
22

0
0 2 2

4

0.05  

0.6 

r

M

r

a
e e

nm

nm

 
 



 





 

(c) Using the de Broglie relation, 

 
h

p
 

where the momentum is found from  
2

1

1 0.1

2 2 2
  

n

p
E eV

m
 

one can write 
1/2

31 19 1/2

25

(2 0.05 )

(2 9.1 10 1.1 0.05 1.6 10 / )

1.27 10 /

 





      

  

np m eV

eV J eV

kg m s

 

and 

34

25

9

6.626 10

1.27 10 /

5.22 10

5.22 











 


 

 


h

p

J s

kg m s

m

nm
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Chapter 11 
 
11.1 (a) The normalization condition of this composite wavefunction has been built in separately: 

0 0

100 100 100 100

100 100 100 100

(1,2) | (1,2)

(1) (2) | (1) (2)

(1)| (1) (2) | (2) |

1

a a

a a

u u u u

u u u u

 
 

 

 
 
   


 

 

(b) Since 1 2
ˆ ˆ ˆS s s  , one can write using (11.20) – (11.23) 

1 2

1 2

ˆ ˆ ˆ

1 0 1 0

0 1 0 12

z z zS s s 

    
           

  

2

1 2 1 2

2

1 2 1 2

2
2 2
1 2 1 2

2

1 2 1 2 1 2 1 2

ˆ ˆ ˆ ˆ ˆ( ) ( )

( ) ( )
4

( 2 )
4

3 0 3 0 0 1 0 1 0 0 1 0 1 0
2

0 3 0 3 1 0 1 0 0 0 0 1 0 14

S s s s s

i i

i i

   

   

   

   

   

                                                            







    ------ (1) 
 

 

Now 

1 2

1 2 1 2 2 1

1 2 2 1

ˆ ˆ ˆ( ) |

1 0 1 0 1 0 1 01 1

0 1 0 1 0 1 0 12 2

1 0 1 01 1
0

0 1 0 12 2

z a z z aS s s   

              
                                  

        
          

         





 

Hence 
ˆ| | 0a z aS    

Also, using (1) one obtains 
2

2

2

ˆ | (2 3 2 3) |
4

0 |
4

a a

a

S  



     

  




 

Therefore, 
2ˆ| | 0a aS    
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11.2 (a) Because of the orthonormality of ( )nlmu j the symmetrized and antisymmetrized wave 

functions are also orthonormal: 

100 200 100 200 100 200 100 200

1
(1) (2) (2) (1) | (1) (2) (2) (1) 1

2
u u u u u u u u    

and 

100 200 100 200 100 200 100 200

1
(1) (2) (2) (1) | (1) (2) (2) (1) 0

2
u u u u u u u u  

 
Also the singlet and triplet states defined in (11.33),(11.34) are orthonormal : 

| | 1

| 0
s s a a

s a

   
 

  
   

 

(b) In evaluating 2ˆ ˆ, zS S    , the spatial integration involving the symmetrized and 

antisymmetrized wave functions automatically yields unity, and one needs to consider the spin 
operators acting on the triplet and singlet spin functions. 

1 2

2

1 2 1 2

2

ˆ| |

ˆ ˆ| |

0

ˆ| |

ˆ ˆ ˆ ˆ| ( ) ( ) |

3
2

4

s z s

a z z a

s s

a a

S

s s

S

s s s s

 
 

 
 

 
  



 
    

 


 

where use has been made of the results of the previous problems. 
 
Similarly one can write  

1 2

2

1 2 1 2

2

2

ˆ| |

ˆ ˆ| |

, 1,0, 1

ˆ| |

ˆ ˆ ˆ ˆ| ( ) ( ) |

(2 3 2)
4

2

a z a

s z z s

a a

s s

S

s s

m m

S

s s s s

 
 

 
 

 

  

   

 

    

   









 

corresponding to 2( 1) , 1.      
 

11.3 Let  

1 2 3100 1/ 2, 200 1/ 2, 200 1/ 2n n n   
 denote the set of quantum numbers including the spin. Then the 3-electron wave function is 
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represented by the Slater determinant as 
 
1 1 1

2 2 2

3 3 3

100 100 100

200 200 200

200 200 200

(1) (2) (3)
1

(1,2,3) (1) (2) (3)
3!

(1) (2) (3)

(1) (1) (2) (2) (3) (3)
1

(1) (1) (2) (2) (3) (3)
3!

(1) (1) (2) (2) (3) (3)

n n n

n n n

n n n

u u u

u u u

u u u

u u u

u u u

u u u



  
  
  





 

 
The wavefunction (1, 2,3)  consists of a linear superposition of 3 quantum states, for 

instance, 100 200 200(1) (2) (3)u u u . 

 Thus, 

100 200 200

1 2 100 200 200

ˆ (1) (2) (3)

( 2 ) (1) (2) (3)

H u u u

E E u u u   

 
and all other terms in (1, 2,3) yield the same energy eigenvalue. 

 Therefore  

1 2
ˆ(1,2,3) | | (1,2,3) 2H E E     

 
11.4 (a) The Hamiltonian reads as  

3

0
1

ˆ ˆ ˆ
j

j

H H H


   

where 0Ĥ  represents the Hamiltonian of a hydrogenic atom, i.e. 

22 2
2 2

0
0

ˆ ,          
2 4

M
j j M

j

e e
H e

m r 
    


 

and Ĥ   accounts for the Coulomb interactions among 3 electrons : 

2

12 13 23

1 1 1ˆ
MH e

r r r

 
    

 
 

Thus, if Ĥ   is neglected, one can write  
3

1 2 3 0 1 2 3
1

1 2 3 1 2 3

ˆ ˆ(1) (2) (3) (1) (2) (3)

( ) (1) (2) (3)

n n n j n n n
j

n n n n n n

H u u u H u u u

E E E u u u





  


 

(b) Let 

1

2

3

100

100

200 200

a

a

a or



 



  

   denote the set of quantum number, nlms . Then, the 3-electron wave function in lithium  
atom is given by 
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1 1 1

2 2 2

3 3 3

100 100 100

100 100 100

200 200 200

(1) (2) (3)
1

(1,2,3) (1) (2) (3)
3!

(1) (2) (3)

(1) (1) (2) (2) (3) (3)
1

(1) (1) (2) (2) (3) (3)
3!

(1) (1) (2) (2) (3) (3)

a a a

a a a

a a a

u u u

u u u

u u u

u u u

u u u

u u u



  
  
  





 
 

(c) Each term appearing in the wavefunction, (1, 2,3)  yields the same energy eigenvalue 

when acted upon by 01 02 03
ˆ ˆ ˆH H H  . 

For instance 
3

0 100 100 200
1

1 2 100 100 200

ˆ (1) (2) (3)

(2 ) (1) (2) (3)

j
j

H u u u

E E u u u



 


 

 
so that 

3

0
0

1 2

ˆ(1,2,3) | | (1, 2,3)

2

j
j

H

E E

 


 

 


 

 
Similarly, each term yields the same spin eigen value. For example 

 1 2 3ˆ ˆ ˆ (1) (2) (3)

1
(1 1 1) (1) (2) (3)

2
1

(1) (2) (3)
2

z z zs s s   

  

  

 

  







 

Hence 

1ˆ(1, 2,3) | | (1, 2,3)
2zS     

 
11.5 (a) The 11 electrons in Na atom are assigned the following set of quantum numbers: 

100 , 100 , 200 , 200

211 , 211 , 210 , 210

21 1 , 21 1 , 300 or

   
   
    

 

 
(b) Let Zeff represent the effective nuclear charge as acting on the valence electron in u300 state. 
Then its radial component is sealed approximately  

0

exp ,     3.effZ r
n

a n
   

The ionization potential of the valence electron is then given from (10.43) by 
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2 4 2

1 2 2

1
13.6 . 5.14

2 3 9
eff M effZ e Z

IP eV eV


  


 from which one finds 1.84effZ     

Given Zeff, the atomic size is to be roughly estimated 

0 2.3
2 2 0.05 0.16

1.84eff

a n
r nm nm

Z
     

which is in reasonable agreement with measured data of 0.17nm 
 

11.6  (a) Electrons in solids, in particular in metal are generally modeled as free particles with the 
quasi-continuous energy spectrum. Thus, the highest energy level EF is specified by  

30
( )

FE

DN dE g E V   
where N is the number of electrons in volume V and  

3/ 2
1/ 2

3 2 3

2
( )D

m
g E E





 

is the 3D density of states derived in chapter 4. Performing the integration one finds 
3/ 2

3/ 2
2 3

2 2

3 F

N m
E

V 



 

or 
2 /32 3

8F

h N
E

m V
   
 

 

For the electron wavefunction one can use the wavefunction of a free particle confined in 3-
D box, considered in chapter 4. 
 
(b) The total energy per volume is then given by 

0

3/ 2
3/ 2

2 3 0

3/ 2
5 / 2

2 3

( )

2

2 2

5

F

F

E

T

E

F

E dE g E E

m
E dE

m
E





 



 







 

 

(c) To proceed further, FE  has to be found from (a), using the given values of N/V, i.e. 

2 /334 2
2822 6

331

19

(6.626 10 ) 3 1010 ,      
8 9.1 10

2.716 10

1.7

F

Js N
E

mKg V

J

eV










         
 


 

With EF thus found the total energy is to be evaluated to be  

 
 

 
3/ 231

2/319 9
32 34

2 9.1 10 2
2.716 10 1.61 10

51.055 10
TE J








 
   

 
  
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ET in turn can be expressed in terms of the average electron energy <E> times N /V = 1028 / 
meter3, i,e. 

 T
NE EV 

 
so that 

 
9

19

1.61 10 1
1

1.602 10 1

J
E eV

J eV N V




 
   

 
(d) The Fermi energy EF for 2D electron system is specified by  

2
2 2 2/ ( ),         1

F

n

E

D D n DE
n

N V dE g E V L   ------ (1) 

where the 2D density of states are given from (4.30) as 

2 2
( )D

m
g E



  

with En denoting the energy eigenvalues in the quantum well. 
For simplicity, assume quasi-continuous energy spectrum. Then one can recast (1) as 

 2 2 2
0

1
/

2

F

n

E

D F n F
E

m m
N V E E E

 

     
 

 
Hence 

 

2

2

234
18

2 31

19

19

19

2

2 1.055 10
4.6 10

( ) 9.1 10

3.53 10

3.53 10

1.6 10

2.21

F
D

N
E

V m

meter

J

J

V
eV

eV



 









 

     
 










 

The total energy is then given by 

 

 

 

20
0

2
0

2 21

2 0

2

2

19

1 ,            
2

6

0.54 0.34 10

F
F

n

F
F

n
n

E
E

T D n
E

E
E

nE
E

nF

F

F

E dE g E E

m
dE E E

EmE

E

mE

J eV



 








  

  

 





 

 









 

 

Hence the average electron energy is given by 
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19 18

2
2

0.34 10 4.6 10
D

D

N
eV E E

V
       

so that 

2
0.74

D
E eV

 
For 1D electron system EF is found by  

 1 1
1 0

, ,        1/ 1/
F

F

n
n

E
E

D n DED E

N dE g E E V LV


    ------ (2) 

where the 1D density of states is given from (4.31) in the text by 

 
 

1
2

1 1
2

2 1
,D n

n

m
g E E

E E
 


 

Hence, using g1D in the integral one finds 

   
1 1

2 21 1
2 2

1

2 2 2
2

F
F

n
n

EE

D n F nE E

m m
dE g E E E E

 
       

 

Again assuming quasi-continuous energy eigenvalues for this 1D electron system (2) can be 
recast into  

 

 

1
2 1

2

1 0

1 1
2 2 1 1

2

0

1 1
2 2

2 2

2 2
1 ,        

4 2

3

F

n
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F
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d

E

m E



  






 
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











 

Hence 
2

9
1 1

2 21 1

19

19
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3
,            2.15 10

4 2

1.57 10

1.57 10

1.6 10
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F
D DF

N N
E

V Vm E

J

J
J

eV
eV









 
    
 
 












  

The total energy is then, given by 
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 

 

 

 

10

1
2 1

2

0

1
2 3

2

0

31
2 2 1 3

2

0

31
2 2

11

8

2

2 2

3

2 2
1 ,             

3

4 2

15

7 10

4.38 10

F

F
F

n
n

F

n

E

T D n

E
E

nE
E

E

F n
E

nF

F

F

E dE g E E

m
dE E E

m
E E

Em E
d

E

m E

J

eV





  










  

  

 

 









 
















 

 
Thus the average electron energy is given by  

8

1
1

4.38 10
D

D

N
E

V

 
   

   
or 

1

1
2.03 10

D
E eV
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Chapter 12 
 

12.1 Given the wavefunction, 

       1 2 1 2a b b au r u r u r u r    

one has to evaluate 
H    

where Ĥ  consists of 2 hydrogenic Hamiltonians plus additional Coulomb interactions: 

   2 22 2

1 2
1 2 12

ˆ ˆ ˆ M MM M

ab b a

e ee e
H H H

R r r r

 
       

(see (12.26) in the text). 

It is important to first notice that Ĥ  is invariant under 1 2r r .  

Also, there are 4 possible combinations of wavefunctions ,a bu u : 

I.         1 2 1 2a b a bu r u r u r u r  

II.         1 2 1 2a b b au r u r u r u r  

III.         1 2 1 2b a a bu r u r u r u r  

IV.         1 2 1 2b a b au r u r u r u r  

Under interchange of the variables of integrations, 1r and 2r , one can note ⅠⅣ, ⅡⅢ. 

Hence the evaluation of Ĥ  needs to be done with the use of only Ⅰ, Ⅱ and multiply the 

sum of these two results by 2: 

       1 2 1 2
ˆ

a b a bu r u r H u r u r  

2

02 2M
RI

ab

e
E C E

R
    ---------- (1) 

where 

   
2

1 1
1

M
a a

b

e
C u r u r

r


  

   
2

2 2
2

M
b b

a

e
u r u r

r


  

       
2

1 2 1 2
12

M
RI a b a b

e
E u r u r u r u r

r
  

Also, 

       1 2 1 2
ˆ

a b b au r u r H u r u r  
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2
2 2

02 2M
CE

ab

e
E S S DS E

R

 
     

 
---------- (2) 

where 

   1 1a bS u r u r  

   2 2a bu r u r  

   
2

1 1
1

M
b a

b

e
D u r u r

r


  

   
2

2 2
2

M
a b

a

e
u r u r

r


  

       
2

1 2 1 2
12

M
CE b a a b

e
E u r u r u r u r

r
  

Hence, by adding (1), (2) and multiplying the results by 2 one obtains 

Ĥ
E

 
 
 


 

  

 
 

2
2 2

0

2

2 2 (1 ) 1 2 2

2 1

M
RI CE

ab

e
E S S C E DS E

R

S

 
       

 


 

2

0 2 2

22
2

1 1
CEM RI

ab

DS Ee C E
E

R S S


   

 
 

12.2(a) Given the wavefunction, 

   ,a b a br r N u u    

the normalization constant is determined by  

   *1 , ,a b a bd r r r r r     

  2 * *
a b a bN d r u u u u    

2 (1 1 2 )N S    

where the overlap integral is given by 

a b b aS u u u u   

(see (12.8)). Hence 

 
1

2

1

2 1
N

S


  
 

(b) Next consider Ĥ  acting on  ,a br r , 

 ˆ ,a bH r r  
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 
2

2 2 1 1

2 M a b
a b

e N u u
m r r

  
       

  


 

2 2

0 0
M M

a a b b
b a

e e
N E u u E u u

r r

 
    

 
 

 
2 2

0 , M M
a b a b

b a

e e
E r r N u u

r r


 
   

 
 

Thus, 

    , ,a b a br r H r r   

2 2
0

1 1 1 1
M a a a b b a b b

b a b a

E N e u u u u u u u u
r r r r

 
     

 
 

 0

1

1
E C D

S
  


---------- (1) 

where 

2 1
M a a

b

C e u u
r

   

2 1
M b b

a

e u u
r

   

2 1
M a b

a

D e u u
r

   

2 1
M b a

b

e u u
r

   

(see (12.28b),(11.29b)). Clearly (1) is agreement with (12.13) corresponding to the symmetric 

combination of au  and bu . 

 

12.3 Given 130.24 ,  1.1 10e eR nm    /s and 

1 1 1

Na Clm m
   

i.e.  2723.3 10 Kg   one can determine A,   and the bonding energy as follows. First, 

start with (2.32) in the text,  
2

( ) R Me
E R Ae K

R
    ,  

with 2 2
01.49 , / 4MK eV e e   .  

 
eR is determined at the minimum value of ( )E R , i.e. 

e

2

2

( )
0

e

R M

R e

eE R
A e

R R
 

   


 

or    



76 
 

e

2

2
RM

e

e
A e

R
   ---------- (1) 

Also, the effective spring constant, k is specified as  
2 2(2 )e ek      

2

2

( )

eR

E R

R

 



 

e

2
2

3
e

2R Me
A e

R
    ---------- (2) 

Combining (1), (2) one can write 
2 2

2
2 3

e e

2M M
e

e e

R R
   ---------- (3) 

  is thus found from (3) using the known values of eR , 2
e : 

2 2
e

2

2 e

e M

R

R e

    

10 13.6 10  meter  
With   thus found A can be determined from (1) : 

e

2

2
e

1 RMe
A e

R



  

16

3

6.28 10

3.92 10

J

eV



 


 

Finally, with A,   thus determined the bonding energy can be found by evaluating E  at R=

eR : 

e

2

e

( ) 1.49R M
e

e
E R Ae eV

R
     

3.82eV  
12.4 To recast the coupled Hamiltonian of (12.41), 

22 2 2 2
2 2 1 2

1 22 2 3
1 2

21 1ˆ
2 2 2 2

Me x x
H kx kx

m x m x R

 
     

 
 

 

introduce new variables 

1 2

2 1

x x

x x



 
 

 

or by inverting  

 

 

1

2

1

2
1

2

x

x

 

 

 

 
 

Thus one can write 
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1 1 1x x x

 
 

    
 

    
 

 
 

 
 

 

2
1

2
1 1

x

x x


      
          

                 
 

2 2 2

2 2
2

   
  

  
   

 

Similarly 
2 2 2 2

2 2 2
2

2
x    
   

  
    

 

Hence 
2 2 2

2 2
1 22m x x

  
    


 

2 2 2

2 2
2

2m  
  

      


 

Also, 

 2 2
1 2

1

2
k x x  

   2 21 1 1

2 4 4
k          

 

 2 21

4
k    , 

and 
2

1 23

2 Me
x x

R
  

  
2

3

2 1

4
Me

R
        

 
2

2 2
32

Me

R
     

Therefore, 
2 2 2 2

2 2
2 2

1 1ˆ
2 2 2 2

H k k 
     

 
    

 
 

 

where 

1 1 1
,   2

m
m m



    

2

3

1

2
Me

k k
R

   
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12.5 (a) The Hamiltonian consists of two hydrogenic Hamiltonians plus Coulomb interactions 

between two electrons and two protons (see Fig. 12.7) : 

ˆ ˆ ˆ
a bH H H V    

where 
22

2
1

1

ˆ
2

M
a

e
H

m r
   


 

22
2

2
2

ˆ
2

M
b

e
H

m r
   


 

 2

2 112

1 1 1 1
MV e

r R R r r R

 
       

 

Here 1r , 2r  are the displacements of electrons 1 and 2 from proton a, b respectively and 

12 2 1 ,  rb aR R R r r     

with aR , bR  denoting the positions of protons a and b. Thus, 2R r  represents the relative 

distance of electron 2 with respect to proton a and 1r R  is the relative distance of electron 1 

with respect to proton B. 
 

(b) Since 1r , 2r   R  one can write 

   
11 2

2 2 2R r R r R r
        

1
2 2 2

2 22R r R r


       

   

1
2 2

1 2 2
2 2

2
1

rr R
R

R R



  
   

 
 

     

2
21 2

2 2

1
1

2

r R r
R

R R
  

     
 

 

   
11 2

1 11r R r R r R
        

2
1 1 1

2 2

1
1

2

rr R
R

R R
  

     
 

 

where use has been made of 

 1 1   , 1
n

n       

Also 

 
1

12
2 1

1

b a

r
r R r R

 
  

 

2 1

1

r r R


 
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   
1

2
2 1 2 1R r r R r r


         

   2

2 1 2 11
2 2

1
r r R r r

R
R R


   

     
 
 

 

Hence, inserting these expansions into V  expression there results 

      2 2 2
2 1 2 1 1 23

1

2MV e r r r r r r
R

         

2

1 23
Me

r r
R

    

 
2

1 2 1 2 1 23
Me

x x y y z z
R

     

 

(c) If ˆ
aH , ˆ

bH  are replaced by 3D harmonic oscillators, the Hamiltonian reads as 


1 2

ˆ ˆ ˆH H H V    

2
2 21ˆ ,   i=1,2

2 2i i iH kr
m

   


 

Here the perturbing Hamiltonian couples the coordinates of these 3D oscillators: 

  
2

1 2 1 2 1 23
Me

V x x y y z z
R

     

2

1 23
Me

r r
R

    

Next, introduce new variables, 

1 2 r r    

1 2r r     

or inverting the relation one can write 

 1

1

2
r     

 2

1

2
r     

Then the Laplacian operators transform as 

 
2

2 2
1 22m

  


 

2 2 2 2 2 2 2

2 2 2 2 2 2
1 1 1 2 2 22m x y z x y z

         
                   


 

2 2 2 2 2 2 2

2 2 2 2 2 22 x y z x y z      

         
                       


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 
2

2 2

2  
   


 

where 

1 1 1

m m
   

i.e.  

2

m
   

 
Also the potential energy is recast into 

 2 2
1 2

1

2
k r r  

       1 1 1

2 4 4
k                  

 

 2 21
,

4
k     


2

1 23
( )Me

V r r
R

    

   
2

3

1

4
Me

R
         

 
2

2 2
34

Me

R
     

Hence the Hamiltonian reads in terms of ,   as 

   
22 2

2 2 2 2 2 2
3

1ˆ
2 2 2 4

Me
H k

R     
 

        
 

 

2 2
2 2 2 21 1

2 2 2 2
k k  

        
 

 

where 
2

3

1
1

2 2
Me

k k
kR

 
  

 
   

Clearly, H  now consists of two 3D harmonic oscillators, which are uncoupled and oscillating 
at two different frequencies. The energy eigenvalues are therefore given by  

1, 2 1 1 1 2 2 2

3 3

2 2n n x y z x y zE n n n n n n  
             
   

   

1 2, .. 1, 2,x zn n    
The characteristic frequencies are given by 

2 k



 

  

Thus, the ground state energy reads as 
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3
( )

2ooE       

Now, 
1/ 2

2

3

/ 2
1

/ 2 2
Mek

m kR


  
   

  
   

22 2

3 3

1 (1/ 2)( 1/ 2)
1

2 2 2 2
M M

c

e e

kR kR


  
     

   
  

where 

 
1

2/c k m   

Hence 

6

1
3oo cE K

R
  ---------- (1) 

with 
223 1

2 4 2
M

c

e
K

k


 
   

 
  

4

2

3

32
c Me

k





 

The first term in (1) represents the ground state energy of two uncoupled 3D harmonic 

oscillators, while the second term represents Van der Walls attraction proportional to 61/ R . 
 

12.6 (a) Given the Hamiltonian, 

0 cosH H er    

22 2
2 2

0
0

 ,   
2 4

M
M

e e
H e

m r 
    




 

and a trial wavefunction, 

 1 100 2 210c u c u    

with 100u , 210u  denoting the eigenfunctions of hydrogenic Hamiltonian, 0H , one can 

write the energy eigenequation as 

1 1 100 1 100

2 2 210 2 210

cos

cos

H E c u er c u

E c u er c u

 



 

 
 

 1 100 2 210E c u c u   

Here use has been made of  

0 100 1 100H u E u  , 0 210 2 210H u E u  

Rearranging, one caqn write 

   1 1 100 2 2 210cos cos 0E E er c u E E er c u        ---------- (1) 

Taking the inner product of (1) w.r.t. 100 210,  ,u u  there result 
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 1 1 12 2 0E E c m c   ---------- (2a) 

 *
12 1 2 2 0m c E E c   ---------- (2b) 

where 

12 100 210cosm u er u   

*
12 210 100cosm u er u   

In deriving (2a) (2b) the orthonormality of 100u  and 210u  was used, i.e. 

100 100 210 210 1u u u u   and 100 210 0u u   

 

(b) The coupled equations (2a),(2c) would yield trivial solutions, i.e. 1 2 0c c  , hence trivial 

wavefunctions  , unless the secular equation holds true: 

1 12
*

12 2

0
E E m

m E E





 

Or expanding the determinant, 

  22
1 2 1 2 12 0E E E E E E m      

The solution of this quadratic equation for E  yields 

     
1

22 2
1 2 1 2 1 2 12

1
4

2
E E E E E E E m

            
 

   
1

22 2
1 2 2 1 12

1
4

2
E E E E m

           
 

 
1

22 2
1 2 12

1
4

2
E E E m

           
---------- (3) 

with 

2 1E E E    

Inserting (3) into either (2a) or (2b) one finds 1c , 2c . For example, insert E  into (2a), 

obtaining 

 1/ 222
12

2 1

1 12 12

4

2

E E m
c E E

c m m
 





           ---------- (4a) 

Likewise, insert E into (2b) and obtain  

*
2 12

1 2

c m

c E E




  


 

 
*

12
1

22 2
12

2

4

m

E E m

 
 
    
  

---------- (4b) 
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Indeed the right hand sides of (4a), (4b) are seem identical, as they should.  

One can also find 2c  in terms of 1c  by inserting E  in (3) into, say (2b) : 

 
*

2 12
1/ 2221

12

2

4

c m

c E E m




  
      

 

Using (4), (5) one can write 

 1 100 210c u u     

where 1c  can be used for normalizing the wavefunction, if necessary. 

 
(c) Consider first 

    

2

1 100 210 100 200c u u u u      

 2 2

1 1c    

Next, consider 

r r     

2

1 100 210 100 210c u u r u u      

2

1 100 210 . .c u r u c c      

Hence  

100 210
2

. .

1

u r u c c
r














 

The atom – dipole is thus specified as 

ind e r


   

and inasmuch as  ,   ind      as expected. 
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Chapter 13 
 
13.1 The first order level shift and modification in the wave function are given from (13.18),(13.19) as 

1
ˆ| |m mW u H u  ------ (1a) 

(1)
ˆ| |

| k m
m

k m m k

u H u
u

E E




 
  

 ------ (1b) 

Given 3 4
2 3Ĥ k x k x   , the matrix elements   3 4| | , | |k m k mu x u u x u     have to be 

evaluated. In so doing the orthonormality of { }mu  and the recurrence relation, (8.32) can be 

usefully employed. 
 

Repeating the relation (8.32) repeatedly, one can write 

1 1

1

2m m mH H m H     

2
2 2

2 2

1 1 1
( 1) ( 1)

2 2 2

1 1
( ) ( 1)

4 2

m m m m m

m m m

H H m H m H m H

H m H m m H

  

 

              

    
 

  

3
3 1 1 1

1 3

1 1 1 1
( 2) ( )

4 2 2 2

1
( 1) ( 2)

2

m m m m m

m m

H H m H m H mH

m m H m H

    

 

              
      

 

            

2

3 1 1 3

1 3 3 3
( 1)( 2)

8 4 2m m m m

m m
H H H m m m H   


      ------ (2a) 

4 2
4 2

1 1 1
(2 3) (6 6 3)

16 4 4m m m mH H m H m m H         

            

3 2
2 4

1
(4 6 2 ) ( 1)( 2)( 3)

2 m mm m m H m m m m H        ------ (2b) 

Hence (1a) can be evaluated by using (2a),(2b) and the orthonormality of { }mu (see (8.38), 

(8.40)): 
 

2 2

2

* 3 4
1 2 3

1
2 2 2

3 42 3
4 5

2
2 23

5

23
5

( )

,

1
(6 6 3)

4

1
(6 6 3) 2 !

4 2 !

m m

m m
m m m m

m
m

m

m

W dxu k x k x u

N k N k mw
d e H H d e H H

N k
d e H m m

k
m m m

m

 



    
 




 
 





  

 

 



 

     
 

  

 
     

 



 




 



85 
 

23
4

1
(6 6 3)

4

k
m m


    ------ (3) 

 

In evaluating (3), terms   to 2k  simply do not contribute, since 3
mH  does not yield any 

term   to mH . For ground state, where m=0, 4
1 33 / 4W k  , while for the first excited state 

in which 4
1 31, 15 / 4m W k   . 

To find the first order modifications in wave function one has to find and evaluate the non-

vanishing matrix elements, ˆ| |k mu H u   for given | mu  . 

This can be readily done by noticing from (2a) k=m+3, m+1, m-1,m-3 and from (2b) k=m+4, 
m+2 m-2, m-4 and evaluate the corresponding elements in a similar manner. 
For the ground state (m=0), for instance, one can write for k=3 

2

3
3 2 0

23 0
34

1 1

2 2
3

4 3

3

| |

/ 8

1
2 3!

8 2 3!

3

2

u k x u

N N
d e H



  
  



 



 




   
    

   




 

Thus, the modification to the ground state eigenfunction, 0| u   resulting from 3| u   is given  

from (13.19) by  

30
3 33

0 3

ˆ 3 1
| |

2 3

H
u u

E E  


 
 

 

One can likewise find the modifications resulting from other terms. 
 
 

13.2 (a) Without the perturbing term, Ĥ  , Ĥ  simply consists of 2D harmonic oscillator with ,x yk k  

spring constants or ,x y   characteristic frequencies, i.e. 

2 2 2 2
2 2

2 2

1 1ˆ
2 2 2 2x yH k x k y

m x m y

 
    

 
 

 

Hence the energy eigenfunction is given by 

( , ) ( ) ( )nx x ny yx y u u    

with 
2

2

1

2

1

2

( ) ( ),

( ) ( ),

x

y

nx x nx nx x x x

ny y ny ny y y y

u N e H x

u N e H y





   

   





 

 
 

and 
1

22( / ) , / , ,j j j jm k m j x y      
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The eigenenergy reads as 

,

1 1
( ) ( )

2 2nx ny x x y yE n n       

with , 0,1,2,...x yn n   

(b) The level shift due to the first order perturbation analysis, 

1 ( ) ( ) | | ( ) ( )nx x ny y xy nx x ny yW u u C u u     

yields zero, i.e. 1 0W  . This can be seen simply from the parity consideration or from the 

recurrence relation, (8.32). For instance, the right hand side of 

1 1

1
( )

2nx x nx nx x nxxH H H n H       

does not contain nxH , so that 1 0W  . However, there is a level shift resulting from the second 

order perturbation analysis. This shift can be accounted for by the matrix elements considered in 
(8.51) : 

1/ 2

1/ 2

1
, 1

(2 / )

| | , 1
(2 / )

0 ,

x
x x

x

x
nx nx x x

x

n
n n

m

n
u x u n n

m

otherwise





 
  



   








------ (1) 

1/ 2

1/ 2

1
, 1

(2 / )

| | , 1
(2 / )

0 ,

y

y y
y

y

ny ny y y
y

n
n n

m

n
u y u n n

m

otherwise





 
  



   










------ (2) 

Thus, given the state | ,nx nyu u   the level shift specified in (13.24) is obtained as 

(2) (2)

2

,(2)
2

, ,

1 1
( ) ( )

2 2

| |

[ ]

nxny x x y y

nx ny xy nx ny

nx nx nx ny nx ny
ny ny

E n n E

u u C u
E

E E

 

 

  


     

 


 

 

Here (2)E is contributed by 4 combinations of the eigenfunctions 1 1| ,nx nyu u   : 
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2 2

1, 1 , 1, 1 ,(2)

, 1, 1 , 1, 1

2 2

1, 1 , 1, 1 ,

, 1, 1 , 1, 1

| | | |

| | | |

nx ny xy nx ny nx ny xy nx ny

nx ny nx ny nx ny nx ny

nx ny xy nx ny nx ny xy nx ny

nx ny nx ny nx ny nx ny

u C u u C u
E

E E E E

u C u u C u

E E E E

   

   

   

   

  
 

 
 

 

2 2

2 2

11 1

(2 / ) (2 / ) (2 / ) (2 / )

1

(2 / ) (2 / ) (2 / ) (2 / )

y yx x

x y x y

x y y x

y yx x

x y x y

x y x y

n nn n
C C

m m m m

n nn n
C C

m m m m

   
   

   
   

 
 

  
 


 

 
 

   
   

   
   

 

    
2

2

( 1)( 1) ( 1) ( 1)

4
x y x y x y x y

x y x y x y x y

n n n n n n n nC

m        
     

    
    


 

For the ground level in which 0nx ny  there is only one state contributing to (2)E ,i.e. 

1, 1| nx nyu    , so that one can write 

2
(2)

2

1

4 ( )x y x y

C
E

m    
  


 

and up to the second order perturbation analysis 
2

00 2
( )

2 4 ( )x y
x y x y

C
E

m
 

   
  




------ (3) 

(c) Introduce  ,   as 

x y    
x y    

One can invert the relation, obtaining 

1
( )

2
1

( )
2

x

y

 

 

 

 
 

and write as usual 
2 2 2 2 2 2

2 2 2 2
, / 2

2 2
m

m x y


  
      

              

 
------ (4) 

and 

2 2

2 2 2 2 2 2

1 1

2 2
1 1 1 1 1

( 2 ) ( 2 ) ( )
2 4 2 4 4

x y

x y

k x k y Cxy

k k C       

 

       
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2 2 2 21 1 1
( )( ) ( )

2 4 4x yk k C       ------ (5) 

where for simplicity an assumption was made, i.e x yk k , so that 2 ( ) 0x yk k   . 

With the use of (4),(5) the total Hamiltonian reads as 
2 2 2 2

2 2
2 2

1 1ˆ
2 2 2 2x yH k x k y Cxy

m x m y

 
     

 
 

 

    
2 2 2 2

2 2
2 2

1 1

2 2 2 2
k k 

    
 

    
 

 
------ (6a) 

with 

1 1
( )

2 2 x yk k k C
     

------ (6b) 

It is therefore clear from (6) that the two coupled harmonic oscillator system becomes decoupled 

into two independent oscillators with two different effective spring constants, k . 

Hence the energy eigenvalues are given by 

,

1 1
( ) ( )

2 2n nE n n           

where 
1

2

1/ 2

1/ 2

( / )

1 1
( )

2 2

1
( )

2

x y

x y

k

k k C

k k C

m m

 



 

         
 
  

  
  
 
 

 

1/ 2
2 21

( )
2 x y

C

m
      

------ (7) 

Hence the ground state level is given by 

00 ( )
2

E    


------ (8) 

To compare the above two results (3),(8) one may expand (7) as 
1/ 2

2

2

2
2

22 2 2

1

1 1
1 ...

2 4

C

m

C C

m m

 



 



 
  
  
 
    
 
 

 

with 
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2 2
2

2
x y 




  

Hence 
2

2
00 3/ 22 2

1

2 4

C
E

m



 
 

------ (9) 

and, with the identification 

2
x y     

(3) and (9) are in rough agreement, in particular the level shift. 
 
 
13.3 (a) In the presence of external field, E, the electron is subject to force –eE. Thus, the 

corresponding potential energy is given by 

( )V e x e x        

with ( 0) 0V x    

(b) The ground state wave function of the infinite potential well is given from (4.8) by 
1

2

1

2
( ) cos ,

2 2

W W
u x x x

W L

     
 

 

with the energy eigenvalue given from (4.8) by 
2 2

1 22
E

mW





 

Thus, from parity consideration one can write 

0 0| | 0u e x u  , 

That is, there is no first order level shift. 
To obtain the second order level shift one has to consider the matrix element, 

1| |nu e x u  

where | nu   consists of two sets of eigenfunctions,  cos nk x  and  sin nk x  (see (4.7)). 

However, in the light of the parity consideration, only the latter set yields nonzero matrix 
elements. Thus, consider 

1| |nu e x u  

/ 2

/ 2

2 2
cos sin

W

W

x n
e dx x x

W W W

 


        
    ------ (1) 

Now, with the use of the trigonometric identity 

sin( ) sin cos cos sina b x ax bx ax bx    

one can write 

2 1
cos sin sin (1 2 ) sin (1 2 )

2

x n x
n x n x

W W W W

                     
 

and evaluate the integral in (1): 
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/ 2

/ 2

2
cos sin

W

W

x n x
dx x

W W

 


       
     

/ 2

/ 2

1
sin (1 2 )

2

W

W
dx n x x

W






     
   

/ 2

2

/ 2

1
sin (1 2 ) cos (1 2 )

(1 2 )(1 2 )

W

W

x
n x n x

W Wnn WW

 




 
 
                    

  

2

2 2 2

2 2

2 2 2

2 1 1

(1 2 ) (1 2 )

4 1 4

(1 4 )

W

n n

W n

n





 
    






 

Hence, inserting this result into (1) and using (13.27) in the text, 
2 2 2 2

(2)
1 2 2 2

0 0

8 1 4 1

(1 4 )n n

e W n
E E

n E E 

 
   

   

with 
2 2

2
22nE n

mW





 

For the first excited state, 2u there is again no first order level shift, i.e. 

1 2 2| | 0E u e x u    

But, there exists the second order level shift, the analysis of which can be carried out in a way 

similar to the of the ground state, 1| u  . 

13.4 (a) Given | nlmu   and the perturbing Hamiltonian ˆ cosH z     one has to find | n l mu      

such that 

ˆ| | 0nlm n l mu H u      

The evaluation of this matrix element requires both angular ( , )   and radial ( )r  integrations. 

Here, the angular integration determines whether or not the matrix element becomes zero. Thus, 
one has to consider 

2 2 1* *

0 0 0 1
sin cos , coslm l m lm l md d Y Y d d Y Y

  
           

      

Since explmY im  , for the  -integration not to yield zero one should have m m . Since 

1cos P   and is odd in parity, the product l lPP  should also be odd in parity for the  -

integration not to yield zero. This requires 1l l   . 
Hence the selection rule requires 

0

1

m m m

l l l

   
    

 

 
(b) For the perturbing Hamiltonian 
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0

0

ˆ cos

sin cos cos

H ex t

er t


  

  
 

 

the selection rule is determined again by the angular integrations: 

ˆ| |nlm n l mu H u      

2 1 *

0 1
sin cos , coslm l md d Y Y


      

    

The integrand of the  -integral reads as 

 ( ) / 2i m m i ie e e      

( 1) ( 1)i m m i m me e        
and in order for the  -integration not to vanish 

1m m m     . 

Also, since 2sin 1 cos 1       the  -integration does not vanish when the product 

m m
l lP P   possesses an even parity, i.e. 

0,2,...l l l     

 
13.5 (a) In the presence of a harmonic field, 

0 cos t    

the electron is subject to force, 

f q   

and the corresponding potential energy or the perturbing Hamiltonian is given by 

 0

0

ˆ ( )
2

x i t i tq x
H f dx q x e e          ------ (1) 

where the potential at x=0 has been taken zero. 
 

(b) The oscillator initially at the state, say | nu   can therefore be induced to make a transition 

to other state by Ĥ  . The transition rate can be analyzed using (13.50) in the text: 

'
'

ˆ n nti
n n n

i
a H e 

  


------ (2) 

where 

'
ˆ ˆ| |n nH u H u    

is the transition matrix under consideration and 

 '

1
n n n nE E  


 

is the transition frequency between the initial and final states and ( )na t  is the expansion 

coefficient of the final state. 

Next, using (1) for Ĥ   and (8.40) in the text for harmonic oscillator eigenfunctions, ,n nu u  , 

one can write  

' '
ˆ ˆ| | | |n n n nu H u u H u     
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0
'

1/ 2 1/ 2

1/ 2 1/ 20

( )
2

( 1) /(2 / ) , ' 1

( ) /(2 / ) , ' 1
2

0

i t i t
n n

c

i t i t
c

q
e e dx u xu

n m n n
q

e e n m n n

otherwise

 

 












 

   


    







------ (3) 

where use has been made of the matrix element (8.51) with c denoting the characteristic 
frequency of the oscillator.  
Inserting (3) into (2) and performing the time integration, there results 

' '

1/ 2

( ) ( )0

0

'
( ) '

2 2 /
n n n n

t i t i t
n

c

q n
a t dt e e

m
   


  



         
 

 
------ (4) 

where 

' 1n n   
Thus, 

 ' '

2

1

1 1 1
( ' ) ( )

2 2

( ' )

, /

n n n n

c c

c

c c

E E

n n

n n

k m



 



 

 

      
 

 



 
  

depending on whether 1n n    or 1n n   . 
Now consider the resonant interaction between the field and oscillator, in which the oscillator 

frequency, c  and the driving frequency,   are nearly equal to each other. 

Then for 1n n   , c c      and one can neglect the fact oscillating term in (4). By 

the same token, for 1n n   , one can neglect the term, exp ( )ci t   . With this fact in 

mind, one can perform the integration in (4), obtaining 
1/ 2

( )0 ' 1
( ) 1

2 2 / ( )( )
ci t

n
c c

q n
a t e

m i
 

  
 



           
 

[ ( ) / 2 ]
1/ 2

0 sin( )'
2

2 2 / ( )

i tc
c

c c

q tn
e

m

   
  

   
    

 ------ (5) 

Inserting (5) into (4) one finds 

[( ) / 2]

1/ 2

1/ 2

0

1/ 2

1/ 2

( 1)
, ' 1

(2 / )sin( )
( )

( )
, ' 1

(2 / )

i w t cc
n

c

c

n
n n

mq t
a t e

n
n n

m

   
 



 



 
 

        






 

The probability of the oscillator making the transition from n to n’ states at /t    is thus 

obtained by putting /t   , i.e. 
2

( / )na   . For the case of resonant interaction, in which 

0c   , sin[( ) ] /( ) 1c ct t       and one can write 
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2 2 2
2 0

1 , ' 1( / )
( )

, ' 12n
c

n n nq
a t

n n nm

 


  
   

 

 
13.6 Given a circularly polarized light, 

0 ˆ ˆ( cos sin )x t y t      

the electron is subject to force 

f e    

and the corresponding potential energy or Ĥ   is to be found in a manner similar to the problem 
(13.5). One can thus write 

0

0

ˆ ( cos sin )

sin (cos cos sin sin )

H e x t y t

e r t t

 
    

    
   

 

Given Ĥ  one should find ' ' 'n l mu  such that 

0 ' ' '
ˆ 0nl n l mu H u  ------ (1) 

Again the condition (1) is determined by the angular integrations. For the case of the first term of 

Ĥ   one should consider 

0 ' ' 'sin cosnl n l mu u   

2 1 *
00 1

cos sin , cosl l md d Y Y

      

    

Since *
0lY  is independent of   and since cos ( ) / 2i ie e     in order for the  -

integration not to yield zero, ' 1m   . That is  

0 ' 1m m      

Also, since 2 1/2sin (1 )u   , for the  -integration not to vanish, 'l lP P  should have an 

even parity. Hence 

' 0, 2,...l l l      

One can similarly find the selection rule for the second term in Ĥ  , sin sin  . That is, 

0 ' 1

' 0, 2,...

m m

l l l

    
    
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Chapter 14 
 
14.1 (a) Consider for example the matrix element 

32 21 32 21

2 1
*

2 1

0 1

| | | cos |

, cos

m m m m

m m

u z u u r u

d d Y Y




   

 




  

  
 

Thus, for the  -integration to yield non-zero value, 0m m m    , and therefore  

(i) *
20 10Y Y , (ii) *

2 1 1 1Y Y   are the possible contributing combinations. 

For the  -integration to give non-zero value the two spherical harmonics should provide odd 

parity in  . The combinations, (i), (ii) satisfy this condition (see Table 9.1 in the text). 

Hence one can write for the case (i) 

     

0

320 210

3 1 1
2 1 2 32 2 2

320 210 0 1 0
0

3/ 2 7

0
1/ 2 3/ 2 1/ 2

0 0

0

| cos |

(3 1)

61 1 1 1 8
2 6!

15 532 81 6

0.82

r

a

u r u

r
N N d d r dr r e

a

a

a a

a





   


 

   
 



 

 
    

 

        
  



  
 

Also, for the case (ii) 

   

0

32 1 21 1

35
2 1 62 2 2

32 1 21 1 0 1 0
0

3/ 2 3/ 2 7

0
1/ 2 1/ 2

0 0

0

| cos |

(1 )

61 1 1 1 4
2 6!

15 532 81 6

1.78

r

a

u r u

r
N N d d r dr e r

a

a

a a

a





   


 

 



  

 

 
     

 

            
    



  
 

Thus, the average atom dipole moment associated with the transitions from 32| mu   to 

21 '| mu   is given by  

 320 210 321 211 32 1 21 1

0

1
| cos | | cos | | cos |

3
1.46

e u r u u r u u r u

ea

            




------ (1) 

One can evaluate 32 21| |m mu x u   , 32 21| |m mu y u  
 

in a similar manner. 

Based on the result of (1) one can estimate the spontaneous lifetime as follows. The total 
spontaneous transition rate is given from (14.58) by  

3 2 3
0

3
0

16
sp

v
W

hc

 





 

where  
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153 2
0 2 2

13.6 1 1
2.87 10 /

2 3

E E eV
v s

h h

       
   

is the transition frequency. Inserting   and 0v  thus found one can evaluate spW : 

4 9 19 2 9 2 15 3

34 8 3

10

64 8.98 10 (1.6 10 ) (1.46 0.05*10 ) (2.87 10 )

6.626 10 (3 10 )

1 10 /

spW

s

  



    


  

 

 

where the Coulomb constant (=1/ 04 ) has been used. 

Hence the spontaneous lifetime of 32| mu   state is 1/ 0.1spW ns  

 

(b) For 2, 1, | , | , |x y zn p p p      states are given from (10.55), (10.56) and table 10.1 

in the text as  
1/ 2

21

1/ 2

21

1/ 2

21

3
| sin cos ( )

4

3
| sin sin ( )

4

3
| cos ( )

4

x

y

z

p R r

p R r

p R r

 


 





  
 

  
 

  
 

 

with 

3/ 2 1/ 2
/ 2

21
0 0

1 1 2
( ) ,

24 2

r
R e

a a
            

 

Consider for example | zp   state making a spontaneous transition to the ground state, 

100| :u   

0

100 100

3/ 2 3/ 2 11/ 2 1/ 2 (1 )2 1 22 2

0 1 0
0 0 0

0

| | | cos |

3 1 1 1 1

4 24

0.37 0.019

z z

r

a

p z u p r u

r
d d dr r e r

a a a

a nm





  
 

 



  

                 
        



  


 

The corresponding spontaneous transition rate is given by  
3 2 3

0
3

0

16
sp

u v
W

hc







 

where  

00.37e a   

and  

2 1
0 2

13.6 1
1

2

E E
v eV

h

     
 

 

Inserting these values into spW  one finds 111 10 /spW s  

Hence, the spontaneous lifetime is about 0.01 ns. 
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14.2 (a) The Hamiltonian consists of two terms 

0
ˆ ˆ ˆ ( )H H H t  ------ (1a) 

where the dipole interaction term is given in terms of the electric field with the polarization 

vector ˆ fe and the electron displacement from the nucleus, r : 

ˆ ˆ ˆ( ) ( ), ( )fH t t e e r      ------ (1b) 

The wavefunction is then to be expanded in terms of the two energy eigenstates interacting with 
the field, i.e. 

1 2
1 2( , ) ( ) |1 ( ) | 2i t i tr t a t e a t e       ------ (2), 

The Schrödinger equation reads as 
1 1 2 2

1 2

1 2

1 1 1 2 2 2

0 1 1 2

1 1 2 2

( ) |1 ( ) |1 ( ) | 2 ( ) | 2

ˆ ˆ( ) ( ) |1 ( ) | 2

ˆ ˆ( ) ( ) |1 ( ) ( ) | 2

i t i t i t i t

i t i t

i t i t

i a t e a t e i a t e a t e

H H a t e a t e

E H a t e E H a t e

   

 

 

    

 

 

      

      
      

    

------ (3) 

With the identification, 1 1 2 2,E E     (3) reduces to 

1 2
1 2( ) |1 ( ) | 2i t i ti a t e a t e         

1 2
1 2

ˆ ( ) |1 ( ) | 2i t i tH a t e a t e        ------ (4) 

Perform the inner product on both sides of (4) w.r.t. |1> and |2>, obtaining 
1 2

1 2
ˆ( ) 1| | 2 ( )i t i ti a t e H a t e    ------ (5a) 

2 1
2 1

ˆ( ) 2 | |1 ( )i t i ti a t e H a t e    ------ (5b) 

Here use has been made of 

1 | 2 2 |1 0    

Also one can write 

ˆ ˆ1| | 2 2 | |1

( )

H H

t
   

  
 

where 

1| | 2fe e r      

Thus, (5) can be put into 

0

0

1 2

2 1

( )
( ) ( )

( )
( ) ( )

i t

i t

t
a t i e a t

t
a t i e a t
























------ (6) 

where 

0 2 1     

represents the atomic transition frequency. 
 
(b) In Schrödinger picture, the wave function is represented by 

1 2( , ) ( ) |1 ( ) | 2s sr t a t a t      
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and the Schrödinger equation now reads as 

 
 

1 2

1 1 2 2 1 2

( ) |1 ( ) | 2

ˆ( ) |1 ( ) | 2 ( ) |1 ( ) | 2

s s

s s s s

i a t a t

E a t E a t H a t a t

  

       

 
------ (7) 

Performing the inner product on both sides of (7) w.r.t |1> and |2>, one obtains 

1 1 1 2

2 2 2 1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
s s s

s s s

i a t E a t t a t

i a t E a t t a t




  
  

 
 

 

Or equivalently, 

1 1 1 2

( )
( ) ( ) ( )s s s

t
a t i a t i a t

 
  




------ (8a) 

2 2 2 1

( )
( ) ( ) ( )s s s

t
a t i a t i a t

 
  




------ (8b) 

with / , 1, 2j jE j    

Introduce 

( ) ( ) ji t
js ja t a t e  ------ (9) 

Then 

( ) ( ) ( )j ji t i t
js j j ja t a t e i a t e     ------ (10) 

Inserting (9),(10) into (8) one obtains the coupled equation identical to (6). 
 
 
(c) Note from (9) that 

2 2| ( ) | | ( ) | , 1,2js ja t a t j   

which points to the fact that the probability of finding the system in the j-th state is the same in 
both Schrödinger and interaction pictures. 
Also, the atom dipole moment, e r     is described by 

| |r     

In Schrödinger picture one can write 
* *
1 1 2 2 1 1 2 2

*
1 2

( ) | | ( )

1| | 2 . .

s s s s

s s

r a u a u r a u a u

a a r c c

   

  
------ (11) 

    In interaction picture,  
1 2 1 2

0

* *
1 1 2 2 1 1 2 2

*
1 2

( ) | | ( )

1| | 2 . .

i t i t i t i t

i t

r a e u a e u r a e u a e u

a a e r c c

   



 



   

     (12)

 

                     
and in view of (9), (11) and (12) are identical. 
 

14.3 Given the coupled equations 

1 2
i ta i a e    ------ (1a) 

2 1
i ta i a e    ------ (1b) 

with  
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0
1 2, ( ),

2
i

  
   




 

look for the solution in the form 

1( ) ~ iSta t e ------ (2) 

 
Inserting (2) into (1a) 

2
iSt i tiS e i a e    

Hence 

( )
2 ( ) i S tS

a t e 


------ (3) 

Next inserting (3),(2) into (1b), one can write 

( )( ) i S t iSt i tS
i S e i e     


 

Or 
2 2 0S S   ------ (4) 

This quadratic equation for s can be solved as 

 2 21
4

2
S       ------ (5) 

Therefore, 1( )a t  is found as  

1
iS t iS ta A e A e 

    ------ (6) 

where A  are two constants of integration. 

Hence 
1

2 2 2 2
1 2 1 1 2 1

2 2 2 2
12 12

1 1

1 1
( ) 4 ( ) 4

2 2

1 1
4 4

2 2

t

i i t t i i t t

i i t i i t

a a e

A e A e

A e A e



     

 



                      
 

                  
 



 

 

------ (7) 

with  

12 1 2     

Likewise, one can also find 

2 2 2 2
1 2 1 2

1
2 1 2

( ) ( )

1 1
( ) 4 ( ) 4

2 2

( ) , ( )t

i S t i S t

i i t i i t

a
a t e i

i
A S A S

e e

A S A S
e e

   

 

 



    

                         


     



 
 

 
 



 

Hence 
2

2 2( ) ( ) ta t a t e   

2 2 2 2
12 12

1 1
4 4

2 2
i i t i i tA S A S

e e
                         

 
------ (8) 
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(b) From the initial conditions given, a1(0)= 1, a2(0)= 0, the constants A  are found. 

From (7),(8), 

1

0

A A

S A S A
 

   

 
 

 

so that 

1 1

0

1 1

S S
A

S S

S S

S
A

S S

 


 

 




 

 





 

Or more explicitly, 
2 2

1 2

2 2

( ) 41

24

i
A

 


      
 

  
------ (8a) 

2 2
1 2

2 2

( ) 41

24

i
A

 


      


  
 ------ (8b) 

Inserting (8) into (7) one obtains the complete solution, 

12
1

( ) 2 2 2 21 22
1 2 2

( ) 1 1
( ) sin 4 cos 4

2 24

i t i
a t e i t t

                          
------ (9a) 


2 2 2 2

12
1 1 1

( ) 4 4
2 2 2

2

2 2

2 2

1
( )

1
2 sin 4

24

i t i t i t
a t e A S e A S e

i t

        

   


   

         

------ (9b) 

 

(c) For 1 2     

12 1 2

1 1
( )

2 2
     

  
 

and (9a), (9b) reduces to (14.70a),(14.70b) in the text, as they should. 

For 2 1  , for example, 

12 2

2

1 1

2 2
i

 

   


 

and both a1(t), a2(t) decay at about the same rate, 2 / 2 .  

 

14.4(a) with 1( 0) 1a t   , one can write  
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0
2 0, ,

2
i ta i e

   
      




 

Integrating the equation w.r.t. t, using the initial condition 2 (0) 0a  one finds 

2

/ 2 / 2
/ 2

/ 2

( ) ( 1)

2
2

sin / 2

/ 2

i t

i t i t
i t

i t

a t i e
i

e e
i e

i
t

i e

 

  
 

 

     


 
 


 



 

(b) The probability of the electron making transition from initially given state |1> to the final 

state |2> is given by definition by 
2

2 ( )a t . Because of the finite lifetime, and the distributed 

nature of levels entailed therein one has to sum over the probabilities: 
 

2 2

2 0 0 2

2 0

2
0 0 2

0

( ) ( ) ( )

sin
2

( )

2

a t d a t

t
d

  

 

  
 



 
 
 
 

 
 




------ (1) 

with ( )   denoting the line shape factor. Here, the transition frequency 

0
2, 1| | 2

2
e r

 
    

 


 

is shown to the exactly identical to the matrix elements of the perturbing or interaction 
Hamiltonian, i.e. 

Ĥ e r    

Thus one may note 

12
ˆ /H     

Therefore, (1) is identical to (13.55) in the text. 
 
(c) Integrating (1) with the use of (13.57) one obtains 

 

2 2

122 2

2
( ) ( )a t H t

Rt

  


 ------ (2) 

where the transition rate, 
2

12R H   is commensurate with 
2

0  or equivalently the light 

intensity, vI : 

2 2
0 0

02 2v

c
I cn

n

  
  ------ (3) 

Here, 2 v  , and the permittivity of the medium,  was specified in terms of vacuum 

permittivity 0  and index of refraction, n, i.e. 2
0n  . 
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Inserting (3) into (2), one obtains 

   
2 2

2 0
2 2

2 ( )
( )

4 2 v

n v
R I

c

    



 


 

------ (4) 

where use has been made of  
( ) ( ) 2 ( )d dv v dv         

Hence, given an ensemble of atoms all prepared initially in lower level |1> the incident light is 
attenuated as it traverses through the medium:  

1
( ) ( ) v

v v

I
I z dz I z dz N Rhv dz

z


     


------ (5) 

where 1N  is the density of atoms in lower level, R the transition rate thus derived and v  the 

energy of the photon involved in the transition, i.e. absorption. 
One can generalize (5) to the case, in which the densities of atoms in level |1> and |2> are given 

by 1 2,N N . 

Then (5) is generalized as 

1 2( )v
v

I
N N R hv I

z


   


------ (6) 

Integrating (6) one obtains 

( ) (0) z
v vI z I e   

Hence,   thus introduced is the linear absorption coefficient and is specified from (6), (4) as 
2

1 2 2

( )
( )

2

n v
N N hv

c

 


 



 

 
14.5 (a) Given the coupled equation 

V I
L

z t

 


 
------ (1a) 

I V
C

z t

 


 
------ (1b) 

differentiate (1a) w.r.t. z and use (1b), obtaining the wave equation 
2

2

2

2

( )

V I
L

z t z
V

L C
t t

V
LC

t

  
 

  
 

   
 





 

, 
That is, 

2 2

2 2 2

1
0

V V

z C t

 
 

 
------ (2) 

where the velocity of propagation is defined in terms of the inductance, L and capacitance, C as 

2

1
LC

c
  
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The same wave equation can likewise be derived for I. 
 
(b) The traveling wave representations of the voltage, V and the current, I, 

( ) * ( )
0

i t kz i t kzV V a e a e       ------ (3a) 

( ) * ( )
0

i t kz i t kzI I a e a e       ------ (3b) 

are the solutions of the wave equation provided , k satisfy the dispersion relation, 
2 2 2( / )k c LC    

To find the relationship between 0V , 0I , insert (3a),(3b) into (1a), obtaining 

0

0

0

/

okV LI

kL LC I

L
k I

C



   



 

Hence 

0 0 oV Z I  

with 

0

L
Z

C
  

denoting the line impedance and one may represent 0V  in the form 
1/ 2

0
02

V
Cz

 
  
 


------ (4) 

where 0z is the length of the transmission line. The 0V  representation in (4) will be made clear 

in (c).  
 
(c) The energy residing in the transmission line is given by 

0 2 2

0

1 1

2 2

z n
H dz CV LI

       

where the line length is taken as integer multiple of  . 

One notes from 0 0/V L C I   that 2 2
0 0CV LI . Hence one can write by using (3) 

0 2 * *
00

* *
0

0

* *

( )

( )
2

1
( )

2

z n
H dz CV aa a a

C aa a a z
Cz

aa a a








  

 
   
 

 






------ (5) 

In (5),(4) was used for 0V  and only d.c. components of 2V  contributed to the integral. 

(d) If a and *a  are defined as 
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1
( )

2
a q ip


 


------ (6a) 

* 1
( )

2
a a q ip


  


------ (6b) 

Then  

*

2 2 2 *

1
( )( )

2
1

( )
2

aa q ip q ip

q p a a

 





  

  





 

Hence, (5) reads as 

2 2 21
( )

2
H p q  ------ (7) 

 
(e) Consider the Hamilton’s equation of motion, using (7). One can write 

H
q p

p


 


 ------ (8a) 

2H
p q

q


   


 ------ (8b) 

or equivalently 
2 2p q p      ------ (9a) 

2q p q    ------ (9b) 

Thus, these equations of motion are identical to the equation of motion of the harmonic oscillator. 
Also, (8) explicitly suggests that ,p q  are canonically conjugate variables. 

 
(f) If the commutation relation holds true, i.e. [ , ] ,q p i  one can write  

 

 

 

[ , ]

1
( )( ) ( )( )

2

2

[ , ] [ , ]
2

(2 )
2
1

a a aa a a

q ip q ip q ip q ip

iqp ipq iqp ipq

i q p i p q

   











   

     

    

  














 

Therefore it follows from (5) that  
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1
( )

2
1

(2 1)
2

1
( )

2

H aa a a

a a

a a







 





 

 

 






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Chapter 15 
 
15.1 (a) In interaction picture, in which the expansion coefficient as a function of time splits into two 

parts as  
1 2/ /

1 2( ) ( ) |1 ( ) | 2iE t iE tt a t e a t e        

The coupled equation of motion for 1 2,a a  are given from (14.62) by 

0
1 2( ) i ta i a t e   ------ (1a) 

0
2 1( ) i ta i a t e   ------ (1b) 

where 

( )t
 




 

is the atomic transition frequency and 

2 1
0 2 1

E E  
  


 

is the transition frequency. 
Thus, using (1) one can write 

 
0 0

0 0

*
11 1 1

* *
1 1 1 1

* *
2 1 2 1

21 12

i t i t

i t i t

d
a a

dt

a a a a

i a e a i a e a

i e e

 

 



 







 

   

  



  ------ (2a) 

 0 0

*
22 2 2

21 12
i t i t

d
a a

dt

i e e 



 



  


------ (2b) 

 

0 0

2

0

*
21 1 2

* *
1 2 1 2

* *
2 1 1

11 22

*
12

i t i t

i t

d
a a

dt

a a a a

i a e a i a e a

i e

 





 





 

   

  





 



------ (2c) 

 
(b) The diagonal elements are identical in both pictures, i.e. 

( ) ( ) ( ) ( )
11 11 22 22,s i s i      

On the other hand, the off diagonal elements differ from each other: 

2 1

0

( ) *
21 2 1

*
2 1

( )
21

s
s s

i t i t
i i

i ti

a a

a e a e

e

 

















 



106 
 

Thus, the equation of motion for 21  in Schrödinger picture appearing in (15.20c) in the text, 

 ( ) ( )
21 0 21 11 22

s si i          

can be cast into 

 0 0( )
21 11 22

i t i tsd
e i e

dt
          

in complete agreement with (2c). 
Therefore, the two sets of equations of motion for density matrix are identical. 

 

15.2 (a) With the initial condition 11 22(0) 1, (1) 0,   thus given the equation (15.20) in the text is 

reduced to 

( ) ( )
21 0 21

( )
,s s t

i i
   

     



------ (1) 

Consider a harmonic field, 

0

0

( ) cos

1
( )

2
i t i t

t t

e e 





  

  
 

Inserting this harmonic field into (1) and rearranging the terms there results, 

0 0( )( ) 0
21 2

i t i tsd
e i e

dt
       




------ (2) 

where the term rapidly oscillating in time, 0exp ( )i t   has been deleted. Integrating (2) 

with the initial condition 21( 0) 0,t    one obtains  

0 0( )( ) 0
21

0

1
( ) 1

2 ( )
i t i tse t i e

i
  

 
           




 

or 

 0( ) 0
21

0

1

2
i ts i te e 

 


 





 

Hence, the atom dipole moment is given by 

     

 

 

0

( ) ( )
12 21

2
0

0

2
0

0
0

1
. .

2

1
cos cos

2

s s

i ti te e c c

t t



   


 

  
 



 

     


 



 







------ (3) 

In the short time limit, 

  

0

2 22 2
0

2

0 0

cos cos

1 ... 1 ...
2 2

2

t t

tt

t

 



   



 
      

 

 
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and 
2

20 0

2
t

     


------ (4) 

(c) Using the equation for 21  in interaction picture and the same initial condition one can write 

neglecting the second harmonic component 

  0

0

( ) 0
21

( )0

2

2

i ti i t i t

i t

i e e e

i e

 

 







 


 










 

Integrating with the use of the initial condition, 21(0) 0   

 0( )( ) 0
21

0

1
1

2
i ti e  

 
 

 





------ (5) 

The atom dipole is thus described with the use of (5) by 

      

 
 

 

 

2 1

0

( )
21

( )( )
21

2
0

0

2
0

0
0

. .

. .

1
. .

2

1
cos cos

s

i ti

i ti t

c c

e c c

e e c c

t t

 



  

 


 

  
 

 



 

 


  




 



 








------ (6) 

where 2 1 0    . Eq (6) is in complete agreement with (3), as it should. 

 
15.3 Start from (15.27a), (15.27b) in the text: 

 ( ) ( )
21 0 21

2

1
0r i

T
      ------ (1a) 

   ( ) ( ) 0
0 21 21 11 22

2

1

2
r i

T

     
    




------ (1b) 

Solving ( )
21

r , ( )
21
i  in terms of  11 22  , one can write 

 

      

 
0

0
11 22

2( )
21

0
2

0
2

0
0 11 22

2 2
0 2

0

1
2

1

1

( )( )
2

( ) 1/

r T

T

T

T

 
  


 

 

    

 




 




 


 


 







------ (2) 
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Similarly one obtains 

0
11 222

( ) 2
21 2 2

0 2

( )
2

( ) 1/
i T

T

  


 





 




------ (3) 

Inserting (2), (3) into (15.27c) in the text, one finds 

 
2 2

( ) ( ) 0 2
11 22 11 22 2 2 2

0 2 2

1 ( )

1 ( ) 4

T

T T
      

  
 

  
   

------ (4) 

in agreement with (15.28). Note that  

0

2


 


  

 
is the transition frequency. One can in turn use (4) in (2),(3), and obtain (15.29) and (15.30)  
exactly. 

 

15.4 At steady state, where 22 11 0     the rate equations (15.41), (15.42) are reduced to 

22 11 2
2

1 1
i i

sp

W W  
 
 

     
 

------ (1a) 

22 11 1
1

1 1
i i

sp

W W  
 
   

           
------ (1b) 

and one can find 11 , 22  in terms of 1 , 2 : 

2

1
1

22

2

1

2 1
1

1 2 1 2

1

1 1

1 1

1

1 1 1 1 1

i

i

i i
sp

i i
sp

i i

i
sp

W

W

W W

W W

W W

W








 

 

 


    






  

 
    
 

 
  

 
   

         

 

Also 

1 2
2

11

1 2 1 2

1 1 1

1 1 1 1 1

i i
sp sp

i
sp

W W

W

 
  



    

   
         

   
   

         

 

Hence 
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 

 

 

 

2 1
1 2

1 2
22 11

1 2 1 2

1 2
2 2 1 1 1 2

2
1 2

2 2 1 1

1 2

1

1 1 1 1 1

1

1

sp

i
sp

sp

i
sp

i

W

W

W

   
  

 

    

     


  


  
 

  
 

   
         

  


  


 



 

for 1 2,sp    

 

15.5 (a) Take 0 ˆ// z , so that 

0

0

ˆ cos

cos cos

H e r t

e r t


 

    
 

 

One has to find 3lmu  such that  

100 3
ˆ| | 0lmu H u   

The condition is determined by the angular integration: 
2 1 *

100 3 000 1

ˆ| | lm lmu H u d d Y Y

  


     

It is thus evident from inspection of the integral that 

100 310

100 320

ˆ| | 0

ˆ| | 0

u H u

u H u

 

 
 

 
(b) By the same token one can also find the selection rule as 

310 200

320 210

ˆ| | 0

ˆ| | 0

u H u

u H u

 

 
 

 
(c) In thermodynamic equilibrium, 

3 3 2

2

exp
B

N E E

N k T


   

where 
2

3 0

2
2 0

0

/ 3

/ 2

13.6

E E

E E

E eV

 

 



 

so that  
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3 0

1

5
exp

36 B

N E

N k T
   

 

(d) The pumping rate from 100u  to 3lmu states is proportional to  

1 iN W  

where 1N  is the density of atoms in the ground state and 

2

2

( )

2i v

ng v
W I

c








 

is the transition rate given in terms of light intensity, vI  and the atom dipole moment between 

the two states involved. If the lifetime of electrons in 3lmu  state is 3 , the inversion condition 

to be met is specified by 

1 3 2iN W N   

or 

2 2 1
3

1

expi
B

N E E
W

N k T
 
    

 

15.6(a) Given an input i  its transmitted component t  is given from (15.39) as 

21 2
1 2,

1

ikL
ikLt

i

t t e
s r r e

s




 
 

 

Hence the transmission coefficient is specified as 
2

2 2
1 2

2 2
1 2 1 2

2 2
1 2

2 2
1 2 1 2

(1 )(1 )

1 2 cos 2

t

i

ikL ikL

T

t t

r r e r r e

t t

r r r r kL

 






 


 

 

The maximum and minimum T values are therefore given by 
2 2
1 2

max 2
1 2

2 2
1 2

min 2
1 2

, 2 2 , 1,2,3...
(1 )

, 2 (2 1) , 0,1,2,3...
(1 )

t t
T kL n n

r r

t t
T k n n

r r





  


   



 

and the reflection coefficient is given by 
1R T   

(b) The standing wave condition is given by  

, 1,2,...k L       

or 

2
L

 





  
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that is, 

2
L


    

In terms of frequency, ( )
c

v





 one can write 

1

2
v

L c
   

The frequency spacing between two successive modes is therefore given by the inverse cavity 
round trip time of the wave: 

1

1 1

2 rt

v v v
L c        

 
L 1m 1cm 100m 10m 

v  81.5 10  101.5 10  121.5 10  131.5 10  

 
(c) The analysis of (a), (b) can be done exactly in the same way. The only modification required 

is to replace the velocity of light by /v c n  with n  denoting the background index of 
refraction of the medium. 
Additionally, due to active lasing, interaction between cavity eigenfrequency and the medium, 
there is frequency pulling or pushing phenomena, as discussed. 
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Chapter 16 
 
16.1 (a) The normalization constant is determined via 

 
 2 2 2

3 3
2

1

,   
2

2

x y zv v v

x y z
B

B

dv f v

m
K dv dv dv e

k T

k T
K K

m







     

  



  

            



    

 
Here the formula, (1.20) in the text has been used. 
Hence, 

3
2

2 B

m
K

k T
 

  
 

 

 

(b) The phase volume space of  f v  in Cartesian coordinate frame is   x y zdv dv dv . In 

spherical coordinate frame, the corresponding volume space is given by 2 sinv d d dv   . Thus 

the probability of finding the particle between v and v dv  is described by 

    2 sinx y zf v dv dv dv f v v d d dv    

Hence the reduced probability of the particle having the speed between v and v + dv is given by  

 
2

2

2 2

0 0

3
22 22

0 0

3
2

22

sin

sin
2

4
2

B

B

mv

k T

B

mv

k T

B

d d v dvf v

m
d d v dv e

k T

m
v e

k T

 

 

  

  











 
   

 

 
  

 

 

   

and the number of such particles is found by multiplying this reduced distribution function by the 
density of particles, N: 

 
23/ 2

224
2

B

mv

k T

B

m
N v dv N v e dv

k T




 
  

 
 

 
(c) The most probable speed is therefore found from the condition  

  30 2
m

m m
Bv

N v m
v v

v k T


  


 

i.e. 

2 2 B
m

k T
v

m
  
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(d)  

 
 

2

2

0

0

3

0

2

0

v

v

vN v dv
v

N v dv

e v dv

e v dv









 

 










 

 
Now, 

2 3

0

2

0

2

,   
2

1
,

2
1 1

2

v

B

x

m
e v dv

k T

e x dx x v









 

 



 





  

 
2 22

0 0

3
2

3
2

1

2

1 1 1

2 2

4

v ve v dv e dv 




 








  
 




  



 



 

 

 
Hence, 

1
2 2

1
2

3
2

1
82 12

4

Bk T
v

m


  


     
 

 

 

(e) The number of particles having xv  and x xv dv  regardless of yv , zv  is given by 
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   2 2 2

2

2

3
2

3
2

1
2

2

2

2

2

x y z

x

x

B

v v v

x x y z
B

v

B

mv

k T

B

m
N v dv N dv dv e

k T

m
N e

k T

m
N e

k T








 



    

 





 
  

 

   
    

  

 
  

 

 

 

16.2 (a) The average energy is given in terms of the density of states and the Fermi distribution  
function as  

   
   

0

0

dE E g E f E
E

dE g E f E





 







 

Now, the density of state for electron is given from (4.27) by 

 
3 1

2 2

3 2 3

2
D

m E
g E





 

while the Fermi occupation factor, f(E) at zero temperature is a step function, i.e. 

 
1,   E E

0,    E>E
F

F

f E


 


 

Hence 
3

2E 3 5/22
F2 30

3
2 3/2E 1

2 F
2 30

2 2
E 35 E

2 52 E
3

F

F

F

m
E dE

E
m

E dE





  








 

 

(b) The evaluation of E  for arbitrary temperature involves the Fermi 1/2 and 3/2 integrals. 

This problem offers a good opportunity to get familiar with these important integrals. 
 

16.3 Using the results of the previous problem, one can find the average energy of electrons by 

3
E 4.23

5 FE eV          (1) 

Now, the thermal energy of electrons is given from the equipartition theorem as  
2 3

2 2
T

B

mv
k T         (2) 

Hence, the equivalent T is obtained by equating (1) and (2) : 

4
5

2 1
4.23 3.27 10

3 8.617 10
T eV K

eV K    


 

The corresponding thermal speed is given by  
2 3

2 2
T

B

mv
k T  
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i.e. 

 
1

23 4 2

31

6

3 1.381 10 3.27 10

9.1 10

1.22 10

T

J K K
v

Kg

m s





    
   
 

 

 
That is, at this temperature the electron velocity is about one third of the percent of velocity of 
light. 
 

 
16.4 For bosons, the distribution function is given from (16.54) by 

  1

1BE k T
f E

e



 

and the average energy of a boson is therefore specified by 

0

0

1
1

1

B

B

E k T

E k T

E
dE

eE
dE

e














 

It will be an interesting exercise to numerically evaluate E  vs. T and compare the behavior of 

bosons with those of Fermions and classical particles 
 

16.5 (a) Using the result of (4.9) in the text one can express the energy levels of infinite potential  
well as 

2 2
2

2
,   1,2,

2n c
n

E E n n
m W


   


          (1) 

Evidently the reference level of the energy is the bottom of the conduction band in this case. The 
corresponding energy levels in a quantum well of finite barrier height is lower than those given in 
(1). This can be easily seen from Fig.4.7 in the text. Here the energy levels are found from the 

projection of the intersection points onto 2kW axis 

For the ground state energy level, for example, 1E  in an infinite potential well is found from 

2 2kW  (See Fig. 7.4)). In a quantum well of finite barrier height, however, the projected 

value of the intersection point is less than 2 , so that the corresponding ground state energy is 

lower.  
With this fact in mind and for simplicity of analysis, the potential barrier is taken infinite. 

Inserting given values of the parameter in (1) one find for 1W nm  

 
 

234 2

2
231 9

2

1.055 10

2 0.98 9.1 10 10

0.38

nE n

n eV



 


 

   



 

 

Evidently for 1W nm , 1E  is reduced following the power law 2W . 
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(b) As a reference first consider the electron concentration, n in bulk intrinsic semiconductor. In 
this case n is given by  

   3 ,
c c

c

E E

DE
n dE g E f E


            (1) 

where 

   
3 1

2 2

3 2 3

2 n c
D

m E E
g E







 

is the 3D electron density of states with effective mass nm in the conduction band (see 4.25) and  

  1

1 exp

F

B

E E

k T

F

B

f E e
E E

k T





 

  
 

  

 
is the Fermi distribution function or equivalently the electron occupation factor in those quantum 

states and cE  is the width of the conduction band.  

The 2D electron concentration in the quantum well is to be obtained in a similar fashion. One can 
put  

     2 2
n

D n D nE
n

n E E dE g E f E


               (2a) 

where 

2 2
n

D

m
g





          (2b) 

is the density of states for 2D electrons (see (4.29)) and  is the heavy side step function, 

 
1          0

0   otherwise

x
x


  


          (2c) 

Also nE  is approximated in this problem by 

2   1, 2,n c onE E E n n      
with 

2 2

22on
n

E
m W





          (2d) 

Inserting (2b)-(2d) into (2a) and carrying out the integral there results 

 

 

2

/ 2

2 2

/
2

1

c F on B

E E k Tc F B
on B

E E E n k Tn B
D

n

E n k Tn B

n

m k T
n e

m k T
e e




 

   


 





 









 

 
(c) For the case of holes one can transcribe the results obtained for electrons. The energy levels of 
holes in the hole quantum well (see Fig.16.9) are given by 
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2 2
2

0 0 2
, ,    1, 2,

2v n p p
p

E E E n E n
m W


    


          (3) 

where pm  is now the effective mass of holes in the valence band and the excited energy levels 

move down the valence band.  
The 2D hole density in the valence band is described by 

     2 2
n

D v n D n pE
n

p E E dE g E E f E


                (4a) 

where 

 2 2

p
D n

m
g E E


 


          (4b) 

and the hole occupancy factor is by definition the probability that the state is not occupied by 
electrons, i.e. 

    1
1 1

1 exp

exp

1 exp

1
exp ,    

1 exp

p n

F

B

F

B

F

B

F
F B

BF

B

f E f E
E E

k T

E E

k T

E E

k T

E E
E E k T

k TE E

k T

   
 

  
 

 
 
 
 

  
 


   

 
  

 



          (4c) 

 
Inserting (4b),(4c),(3) into (4a) one can write 

 

 

2

2/

2 2

/

2
1

F V op B

E E k TF V B
op B

E E E n k Tp B
D

n

E n k Tp B

n

m k T
p e

m k T
e e




 

   


 





 









 

 
16.6 (a) An electron in a quantum wire enjoys one degree of freedom along, say x-direction and is  

confined in y- and z-directions respectively. For simplicity of analysis take the barrier heights 
infinite and the square cross-sectional area, W×W of the wire. Then the energy eigenvalue is 
given from (4.78) as 

2 2

2
x

nm ym zn
n

k
E E E

m
  


 

with the sublevels given by  
2 2

2
2

  1, 2,
2ym c

n

E E m m
m W


   


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2 2
2

2
  1, 2,

2zn c
n

E E n n
m W


   


 

For W = 1nm and nm =0.98 0m  for instance 

2 2

0 2
0.38

2 n

E eV
m W



   

as discussed in (16.5). Hence one can write 
2

0ym cE E E m    

2
0zn cE E E n    

Clearly the sublevels of this wire are degenerate in general, the specific examples of which are to 
be listed as follows: 
 

 m n Enm in W0 unit Degeneracy 

Ground level 1 1 2 1 

1st excited level 
2 1 5 

2 
1 2 5 

2nd excited level 2 2 8 1 

3rd excited level 
2 3 10 

2 
3 2 10 

 
 

(b) For 1D electrons in quantum wire the 1D density is given by  

     1 1
nm

D nm D nE
nm

n E E g E f E dE


              (1a) 

where 

 
2 2

2 2
2

,  ,  
2nm c nm nm on on

n

E E E E E n m E
m W


      


          (1b) 

and the 1D density of states and Fermi occupation factor are specified by (see 4.31) 

 

1
2

1 12
2

2 1n
D

nm

m
g

E E
 


 

  exp F
n

B

E E
f E

k T


  

Hence the evaluation of (1a) necessitates the integrations of the form 

 

1 ( ) /2

1
2

2 nm nm F B

nm

E E E E k T
n

E
nm

m e
I dE

E E

   
 


 

 

To evaluate I introduce a dimensionless variable, 

2nm

B

E E

k T


  

Then one can write 
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 

 

2

1
2 1

2

0

1 1
2 2

( ) /

2
2

2

nm F

B

nm F B

E E

k Tn
B

E E k Tn B

m
I k T e d e

m k T
e






 


 

  







 

 
Inserting (2) into (1a) there results 

1/ 2
( ) /

1 2

2
c F nm BE E E k Tn B

D
nm

m k T
n e


     

 


 

where nmE  represents the sublevels lying on top of cE . 

The 1D density of holes can likewise be specified in a similar way. One can write 

     1 1D nm D p
nm

p E E g E f E dE     

where 

 
 

1
2

1 1
2

2 1p
D

nm

m
g E

E E



 

exp F
p

B

E E
f

k T


  

 
2 2

2 2
2

,  ,  
2nm V nm nm op op

p

E E E E E n m E
m W


      


 

Hence 

 

1
2

1 1
2

1/ 2

( ) /
2

2

2

F nm nm

B

nm

F V nm B

E E E E

k T
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D E
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p B E E E k T
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m e
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e





  




  

 


 
  
 








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Chapter 17 
 

17.1 Consider the acceptor impurity atoms incorporated. For the acceptor level s  and sg quantum 

states associated, the number of distinguishable arrangements of sP  holes are given by  

( )( 2)...( ( 1))

!

( / )!

!( / )!

s s A s A s A s
s

s

ps
A s A

s s A s

g g g g g g g p
P

p

g g g

p g g p

   





 

Here Ag  is the hole degeneracy factor arising from the valence requirement of the acceptor 

atom to be satisfied by one hole only. 
Hence the total number of distinguishable arrangements is given by  

1 2
1

( / )!
( , ,..., ,...)

!( / )!

ps
A s A

S
s

s s A s

g g g
P P P P

p g g p




 


------ (1) 

(see(17.15) for electrons, for comparison) 
 
To find the maximum number of arrangements, constrained by (i) the total number of holes to be 
constant and (ii) the total energy to be conserved, introduce as usual the F function, 

[{ }, , ] ln ({ }) ( )s s s s s s
s s

F p P p p N p E        
        

   
  ------ (2) 

(see (17.16)). Here, the only difference existing between (2) and (17.16) in the text lies in that 

positive s for electrons corresponds to s  for holes. This arises from the fact that with 

increasing energy electrons move up the conduction band, while with increasing energy holes 
move down the valence band. 
 

The maximum value of ({ })sP p is thus found by putting the derivative of F to zero. In so doing 

the Stirling’s formula for factorials, (16.14) are used, obtaining 

 

  

ln ln ! ln( / )!

ln ( ln ) ( / ) ln( / ) ( / )

ln ln ln( / )

( / )
ln

0

s A s s A s s s s
s s

s A s s s s A s s A s s A s s s s
s

A s s A s s

A s A s
s

s

F
p g p g g p p p

p p

p g p p p g g p g g p g g p p p
p

g p g g p

g g g p

p

 

 

 

 

 
     

 


         


     

 
   

 


Hence, one can find 

/

1 (1/ ) s

s A
s

A

g g
p

g e 


------ (3) 

Here the Lagrange undetermined multipliers are to be determined as usual as 
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/

1/
F B

B

E k T

k T






 

Now, the number of quantum states, sg  divided by the degeneracy factor Ag  arising from the 

valence requirement is by definition the number of acceptor atoms incorporated, i.e. 

/s A Ag g N , 

Also, s  appearing in (3) is the ground state energy of acceptor atoms lying above EV by a few 

kBT at room temperature. (see Fig. 17.6) 
Thus by identifying  

,s A s AE p p    

One can recast (3) as 

( ) /1 (1/ ) F A B

A
A E E k T

A

N
p

g e 


 

Once pA is found the ionized acceptor atoms are given by 

( ) /

( ) /1 (1/ )

1

F A B

E E k TA F B

A A A

A
A E E k T

A

A

A

N N p

N
N

g e

N

g e






 

 





 

Thus, (17.22), (17.23) in the text are derived starting from the basic counting statistics. 
 

17.2 (a) At thermal equilibrium the law of mass action holds true, i.e. 
2
inp n ------ (1) 

and for nondegenerate case 

exp F i
i

B

E E
n n

k T


 ------ (2a) 

exp i F
i

B

E E
p p

k T


 ------ (2b) 

where i FiE E  is the intrinsic Fermi level. At room temperature, for instance, in which 

T=300K 
10 31.45 10in cm   in Si. Thus for given p one can find n from (1): 

p 10 102 105 108 cm-3 

n 2.1x1019 2.1x1018 2.1x1015 2.1x1012 cm-3 

 
One can similarly find n versus T using ni(T) (see (17.9)). 
 

(b) To find the corresponding DN and DN   one has to find the Fermi level first. For simplicity 

one may first assume the nondegenerate case and find EF using (2). 
p 10 102 105 108 cm-3 

,F iE E eV 0.53 0.47 0.30 0.12 eV 
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(c) In view of the fact that 0.56C iE E eV   at T=300K nondegenerate statistics holds for 

2C F BE E k T  (see Fig. 17.3). Rvidently, one cannot treat the case of p=10 cm-3 by using 

nondegenerate statistics. In this case one has to use (17.2),(17.6) for n, p, i.e. 

1
2

2
( ), ( ) /C Fn Fn F C Bn N F E E k T 


   ------ (3a) 

1
2

2
( ), ( ) /V Fp Fp V F Bp N F E E k T 


   ------ (3b) 

and find n from (1) using a numerical analysis. 
 
17.3 With T  0, the freeze out effect becomes operative. Specifically, the band to band excitation of 

e-h pairs ceases to occur and this is assured by EF approaching EC in n-type semiconductors. The 
resulting large difference between EF and EV ensures that the valence band is all filled up, by 
electrons, making if difficult for hole excitation to occur. 
Furthermore, the electron emission from the donor level ED to the conduction band ceases to 
occur. This means that the electron should remain bound to the donor impurity atom. This is 
made possible by EF being raised above ED level.  
By the same token, EF in p-type semiconductor is lowered below EA level with T  0. 
 

17.4 (a) With 0.1F CE E eV  , n is given at room temperature by 

1
2

2 0.1
( ), 0.025
0.025C Bn N F k T eV


   

With  
17 34.7 10CN cm   

at 300T K   and 

1/ 2 (4) 6.5115F   

one finds 

                               18 33.45 10n cm   

(b) From (17.21) one may write 

1 exp( ) /
D

D
D F D B

N
n N

g E E k T
 

 
 

By taking 2Dg  , and also 

0

1
13.6 .

11.9

n
C D

r

r

m
E E eV

m 







 

so that  

0.071C DE E eV   

Hence 
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4

1
0.171

1 exp( )
0.025

5.36 10

D

D
D

N

N g










 

 

(c) By the same token one can find p and /A AN N  as follows. First, one can write 

1/ 2

2 0.15
( )
0.025Vp N F


  

At room temperature, 
17 34.7 10VN cm   

and 

1/ 2 (6.0) 11.447F   

Hence 
19 39.04 10p cm   

Also, using the result of problem 17.1, one can write 

1 exp

A
A

A F
A

B

N
p N

E E
g

k T

 



 

By taking 2Ag  , and 

0

1
13.6 .

1
13.6 .0.082

11.9
0.087

p
A V

r

m
E E eV

m

eV

eV


 





 

Hence 

5

1

1 2 exp

7.63 10

A

A V V FA

B

N
E E E EN

k T






  

 

 

 

 

17.5 To plot the hole concentration, p and the ratio, /A AN N  versus 1000/T one has to find EF for 

given NA. In p-type silicon, the charge neutrality condition reads as 

An N p  ------ (1) 

where 
c F

B

E E

k T
Cn N e




 ------ (2a) 
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1/ 2

2
( ), degeg

, deg
F V

B

V F
V

B

E E

k T
V

E E
N F enerate

k Tp

N e non enerate







 



------ (2b) 

1 exp

A
A

A F
A

B

N
N

E E
g

k T

 



------ (2c) 

Given NA and T, it will be interesting to find EF from (1) and to use EF thus found, and plot p, 

/A AN N  versus T. 

 
 

17.6 Choose as an example the n-type silicon for consideration at given temperature, say T=300K and 
doping level, ND. The Fermi level EF is found from 

Dn N p   

That is,  

1/ 2

2
( )

1 exp

F V

B

E E

k TF C D
C V

F DB
D

B

E E N
N F N e

E Ek T g
k T






 



 

With EF thus found for given DN  and T, one readily finds the Fermi potential 

Fn F iq E E    

In p-type silicon one can likewise start from 

Ap N n   

and find EF therein. The Fermi potential is then readily found from FE  thus found, 

Fp i Fq E E   . 

 
17.7 (a) Approximating the quantum well by the infinite potential well, one can write the subbands  

therein as  
2 2

2
2

, 1, 2,3,...
2n

n

E n n
m W


 


 

(see (4.9)). For W=10 nm the ground state energy level is found as 

   
 

2
34 2

1 231 9

21

3

1.055 10 3.14

0.98 9.1 10 10 10

1.231 10

7.7 10

E J

J

eV



 








   

 

 

 

and the first excited subband is given by 

2 7.7 4

31

E meV

meV

 

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(b) The conduction band of the quantum well consists of discrete subbands and the electron 
concentration therein is to be specified in terms of the 2D density of states and Fermi occupation 
factor: 
 

2
1

D s
s

n n




   

where 
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k T k Tn
CE

E E E E

k T k Tn
B

n dE g f E

m
dE

e
m

d E E

e

m
e d E E e

m
e k T e

















  

 
 

 
 

 

   
 



 























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

  



 
 

where one can represent ES as 
2 2

2
0 0 2

, , 1,2,...
2S

n

E E s E s
m W


  


 

For 0 BE k T , 2Dn  electrons reside mainly in the ground state subband. 

For 0 BE k T , on the other hand, one may approximate the discrete summation by an integral : 
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2
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


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Here the complementary error function has been introduced, i.e. 
22 z

z
erfc z e dz


    

2Dn  in this limit is represented by 

0
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It will be interesting to examine 2Dn  as a function of well width, W and temperature, T. 

 

(c) 2Dn  consists of two factors : 
2

0

2 0
1

B

E s

k T
D

s

n n e
 



  ------ (1) 

where the factor 

0 2

C F

B

E E

k Tn Bm k T
n e









 

corresponds to, for the case of intrinsic silicon, 2/3
in . 

At T=300K, and for 0 0,nm m m  being the rest mass of electron 

7 2
0 2 10n cm  

is larger than 
2/3 6 25.9 10in cm  

This suggests that the 2D electron density induced in the conduction band in the well can be 

higher than that corresponding to the bulk value, provided 0 BE k T , i.e. with W large. 

However, with W decreased to nm range, the second factor in (1) could make 2/3
2D in n . 

 
(d) The charge neutrality condition for n type silicon reads as 

DN p n    

each term of which has already been discussed in detail. 

The main result of doping, i.e. DN  is to raise EF toward EC in which case 2Dn  induced in the 

quantum well also increases exponentially, as detailed in (b). 
 

17.8 (a) The electron in a quantum wire enjoys one degree of freedom and the energy eigenequation 
reads as 

2
2 ( , ) ( , , ) ( , , )

2
V x y x y z E x y z

m
 

 
    
 


 

where for simplicity the infinite potential well model is used. 

0 / 2 , / 2
( , )

W x y W
V x y

otherwise

  
 

 

One can solve the equation using the separation of variable technique, that is, by putting 

( , , ) ( ) ( ) ( )x y z u x u y u z   

Using the usual procedure one can find 
1

2

1

2
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m m
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k x k m W m
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k x k m W mW
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

         

         
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( ) ikzu z e  

with the total energy given by 
2 2

2 2
2 2

0 0 2

,
2

( ), , 1,2,...,
2
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n

nm
n

k
E E

m

E E n m n m E
m W



 

   


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Hence the ground and first excited state energy levels are 

1,1 0

1,2 2,1 0

2 15

5 37.5

E E meV

E E E meV

 

  




 

for 0 , 10nm m W nm  . 

 
(b) The 1D electron density in the conduction band is given in terms of the density of states and 
Fermi occupation factor: 

1D nm
nm

n n  ------ (1) 
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To perform the integration introduce a new variable, 
1/ 2
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B

E E
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

 
  
 

 

Then 
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E
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k T d e
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Inserting this result into the expression for n , one obtains from (1) 
2 2

0 ( )1 2

1

2 1 C F

B B

E E E n m

k T k Tn B
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m k T
n e g e



 
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 
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------ (2) 

where 
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2 2
0 ( )

nm F

C

E E

E E n m



  
 

and nmg  denotes the degeneracy for states with n, m quantum numbers. 

It will be interesting to perform similar analysis for different W and T. 
 
(c) The factor appearing in (2), 

1 2
2 1n Bm k T


 
 
  

 

corresponds to the linear density of electrons. i.e. 1/ 3n . A main quantum effect consists of the 
discrete subbands located on top of EC. Because of these subbands the bandgap is in effect 
broadened, the effect of which becomes more prominent with decreasing width of the wire. 
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Chapter 18 
 
18.1 (a) The required electron concentration can be found from 

19 2 3 19

1 1 1 1
10

1.6 10 800 / 1.6 10 800n n

Vs
cm cm

q n C cm Vs ncm n C


           
       

or  

14 3
19

1
7.8 10

1.6 10 800 10nn cm
  

    
and for T = 300K 

2 10 2
5 3

14

(1.45 10 )
2.79 10

7.8 10
i

n
n

n
p cm

n


   


 

 
(b) The photogenerated density of e – h pairs are given by 

21 6 15 310 10 10ph phn p g cm        

and the total conductivity,  

T D ph     

is therefore contributed by the dark component, 
 

       

19 2 14 3

2 1

1.6 10 800 / 7.8 10
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T n p
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  


 

 

 

    

 


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and the photogenerated component  
 

19 15 3 2

1 1

( )

1.6 10 10 (800 400) /

1.92 10

ph n ph p phq n p

cm cm Vs

cm

  
 

 

 

    

  
 

 
(b) The total conductivity is primarily contributed by the photoconductivity and therefore the 
ratio between electron and hole conductivity is given by that of the mobility: 

/ 2n p    

 

18.2 (a) The light intensity is given in terms of the photon density, phn , the quantum of energy, 

hv ,and the photon velocity c  as 

,

ph

ph ph ph

c
I n h c

c
h F F n c





  

   
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with phF  denoting the photon flux. 

Thus, for I = 10Watt/cm2, one can finds 
2 9

19 2
34 8

10 / 500 10
2.52 10 /

6.626 10 3 10ph

J scm m
F cm s

Js m





 
  

  
 

 
(b) The generation rate is given in terms of light intensity and/or photon flux and attenuation 
coefficient as 

20 3( / ) 2.52 10 /g I hv cm s    

Hence, the photogenerated e – p pairs at steady state are to be specified , given the respective 
lifetimes: 

ph nn g  

ph pp g  

(c) Given the rate equation  

0 ; /n n
n L L

p

p p
p g g I hv

t





  


------ (1) 

introduce the excess hole density as  

0n n np p p    

and recast (1) into 

1
L

p

p g
t 

 
     

 

Equivalently, 

 / /p pt t

Le p g e
t

 
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
------ (2) 

A straightforward integration of (2) yields 
/ /( ) (0) (1 )p pt t

p Lp t p e g e        

If initially (0) 0p   , i.e. 

0(0) 0n np p   

it decays away in a few p ’s, while the photogenerated hole density reaches a steady state value, 

L pg   in the same time frame. 

If ( 0) 0p t   , then 
/

0( ) (1 )pt

n n p Lp t p g e      

 
(d) If light is turned off after pn(t) has reached the steady state value, 

0n n p Lp p g   

the rate equation, (2) reduces to 

 / 0pte p
t


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
 

and a straightforward integration yields  
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/( ) (0) ptp t p e     

i.e. 
/

0 0( ) ( ) pt

n n p L np t p g e p     

Thus, pn(t) relaxes back to pn0 after a few p ’s. 

18.3 (a) For n p     the net recombination rate U in (18.69) reduces to  

21

exp exp

n n i

t i i tp
n i n i

B B

p n n
U

E E E E
n n p n

k T k T


 
 

 
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with  

1
T t

p

v N


  

denoting the hole lifetime as the minority carrier in n – type semiconductor. For nn, pn << ni in 
the depletion region and for Et at the midgap, i.e. Et – Ei = 0, U further simplifies as 

2
i

p

n
U g


   

 
and describes generation rate, g . 

To evaluate p , Tv  has to be found, which can be done from the equipartition theorem. 

For a free electron with rest mass m0, one can write 

2
0

1 3

2 2T Bm v k T  

so that at room temperature 
1

23 2
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For holes with effective mass mp, one can write 
1

2

0 1.49Tp T T
p

m
v v v

m

 
   
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Therefore the hole lifetime is to be estimated as 
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and the generation rate is given by 
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(b) If Et = EC  ̶ 0.25eV, Et is above the midgap by 

0.56 0.25

0.31
t i

i

E E

E eV

  
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In this case 
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


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For 0.25t VE E eV  , so that Et = Ei  ̶ 0.56 + 0.25 = Ei  ̶ 0.31eV. 

Hence the generation rate is the same as the case already considered above. 
 

18.4 (a) At steady state, in which 0np   , the rate equation reads as 

0 0n n
p n L

p

p p
D p g


     

where primes denote differentiation w.r.t x. Dividing the equation by Dp, one can write 

2
n L

n
p p

p g
P

L D

    ------ (1) 

wheere 

0

2

,n n n

p p p

p p p

L D 

  


 

The homogeneous solution of (1) has two branches, exp ̶ x/Lp and exp + x/Lp, the latter of which 
has to be discarded out of physical considerations. The particular solution is given by 

2
p

n L L p
p

L
p g g

D
     

Therefore the solution is given by 

0

/

( )
p

n n n

x L

L p

p p x p

Ae g 

  

 
------ (2) 

The constant A is determined from the boundary condition, 

 0(0) (0)p n R n nD p v p p   ------ (3) 

Inserting (2) to (3) 
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p R L p

p

D A v A g
L


 
    
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Hence 

/
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1 /
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R p p

R p p
L p

R p p

v
A g

v L

v L
g

v L









  



  

 

------ (4) 

When A is inserted into (2) there results  
 

/

0

/
( )

1 /
px LR p p

n n L p L p
R p p

v L
p x p g g e

v L


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


   
 

 

 
(b) It will be instructive to plot pn(x) for different values of gL, τp, Lp and see the roles of these 
parameters on pn(x). 
 

18.5 (a) The recombination rate of minority carriers is given from (18.73) or (18.74) by 

0n n

p

p p
U




 ------ (1) 

Also, the photogenerated hole density which constitutes the excess hole density is given by 
18 6 11 310 10 10 10ph n pp p g cm        ------ (2) 

On the other hand, the background concentration, pn0 is to be found from the given resistivity: 

0
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
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so that one can find using μn = 800cm2/Vs 

0 19
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1

1.6 10 800 0.6
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




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Therefore 0np  at room temperature is given by 

2 10 2
4 3

0 16
0

(1.45 10 )
1.62 10

1.3 10
i

n
n

n
p cm

n

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

------ (3) 

Inserting (2), (3) into (1), the recombination rate is found as  
11

16 3
5

10
10 /

10
U cm s   

 
(b) To estimate the total recombination near the surface, recall the recombination velocity which 
is given by 
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R T t s

s

p

v v N t

t








 

with ts denoting the effective surface layer. Thus, ts is found from 

6

3

100 / 10 10

10

s R pt v

cm s s

cm






 

  



 

Therefore, the total number of recombination near the surface is given by 
13 210T sU U t cm    

 

18.6 (a) With the simplification, n p     the recombination rate for the case of single level 

traps at the level jE is given from (18.69) as 
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E E
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For multilevel traps one can generalize the recombination rates as  
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 
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One can in general represent the trap profile in terms of a distribution function, 

( ) ( )t j tN E f E  

and express U in terms of distributed traps: 
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where E is taken zero at the midgap. 
For a flat trap level profile, 

( )t ssf E D  

U reduces to 
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where  
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
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(b) In the depletion depth, for instance, where n, p << ni, U is turned into a generation rate as  

2
i
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n
g U


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Here the effective lifetime is represented by 
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Now, 
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Here use was made of the fact that 2G BE k T and / 21tan ( ) / 2G BE k Te   . 

Hence, the effective lifetime 

1
( / 4)T ss B

eff

V D k T 


    

is approximately determined by DsskBT traps located near the midgap. 
 
(c) For the trap distribution 

 2

2
( ) exp

2
tc

t

E E
f E N




   

one can insert the distribution function in (1) and (2) and carry out a similar analysis. 
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Chapter 19 
 
19.1 (a) The operational principle of the junction diode is to raise or lower the junction band bending 

by applying biases and to utilize the restoring force of the junction to reach the equilibrium 
configuration. To examine the carrier fluxes one has to consider the profile of carrier 
concentrations, which for the case of n(x), for example, is given by (see Fig. (19.3)) 

 

0

( )

0

0

,

( ) ,

,

B

n n

q x

k T
n n p

p p

n x x

n x n e x x x

n x x






   
  


 

 

The concentration decreases exponentially in the junction depletion depth from non  in the n 

bulk to pon  in the p bulk. Thus, the diffusion flux in the junction depletion depth is given by 

,

( )

0

,

( )

( )

( )
( )

( )

B

n diff n

q x

k T
n n

B

n
B

n

n drift

n x
F D

x

q x
D n e

k T x

q x
D n x

k T x

n x

F

 








 


 

     
          

  
 

------ (1) 

Here the Einstein relation 

n B nqD k T   

has been used, and the space charge field is expressed in term of the space charge potential, 

/ x    . Clearly, (1) states that the electron diffusion flux from right to left in Fig.19.3, for 

example, in equilibrium is balanced by the drift flux from left to right. By the same token the 
hole diffusion flux from left to right in the same figure is balanced by the drift flux from right to 
left: 

,

,

( )

( )

p diff p

p

p drift

p x
F D

x
p x

F




 


  

 

 

Under bias, however, the junction barrier potential decreases or increases depending on whether 
the junction is forward biased or reverse biased: 

bi bi V   ------ (1) 

and the junction depletion depth changes accordingly, i.e. 
1/ 2

( ) ( 0) 1
bi

V
W V W V


 

    
 

------ (2)
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where 
1/ 2

0

2 ( )A D
bi

A D

N N
W

qN N

 
 

  
   

denotes the equilibrium depletion depth. Therefore, under bias the detailed balancing between 

the drift and diffusion fluxes for both electrons and holes are broken. This can be generally seen 

as follows. 

 

(b) Consider the hole diffusion from left to fight in Fig. 19.3, which can be roughly expressed as 

         

0 0
,

0

1/ 2
0

( )

(1 )

n p
p diff p

p
p

bi

p p
F D

W V

p
D

W V









------ (3)

 

Thus, under forward bias, V > 0 W(V) < W0, and Fp,diff increases from its equilibrium value. 

On the other hand, the hole drift flux from right to left can be roughly represented  

, 0

0 1/ 2
0 (1 / )

p drift n p

bi
n p

bi

F p

V
p

W V















  

         

1/ 2
0

0

1
(1 / )n p bi bip V

W
      ------ (4)

 

and is shown to decrease from the equilibrium value. In this manner the diffusion flux becomes 

larger than the drift flux and there ensues a net hole flux from left to right under a forward bias. 

Under reverse bias, in which V < 0, the opposite situation prevails, i.e. drift flux from right to 

left becomes larger than the diffusion flux from left to right and there is a net flux from right to 

left. 

The same kind of analysis can be made to the case of diffusion and drift fluxes of electrons. In 

this case there ensues a net electron flux from right to left under forward bias and from left to 

right under reverse bias. 

 
19.2 In completely depleted approximation, the space charge field is linear in x, i.e.

 
( ), 0

( )

( ), 0

D
n n

s

A
p p

s

qN
x x x x

x
qN

x x x x





     
    


------ (1)
 

(See (19.2) and Fig. 19.3).  
The space charge potential, ( )x  can be obtained by integrating ( )x :  
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( ) ( ) , 0

( )

p

p

x

px

x
A

px
s

x dx x x x

qN
x x dx









     

 



  

2( )
2

A
p

s

qN
x x


  ------ (2)

 

where ( )x  has been taken zero at px x   and ( )x  is quadratic in x , as expected.
  

Continuing on in the range 0 ,nx x  one can write 

 

2

0

2 2

( ) ( )
2

1

2 2

x
A D

p n
s s

A D
p n

s s

qN qN
x x dx x x

qN qN
x x x x


 

 

 
    

 
    
 


------ (3)

 

To examine the behavior of ( )x , near edge of the junction on n-side, xn, introduce a variable 

nx x x  
 

and express ( )x  in terms of x : 

2 2 2

2

( )
2 2 2

2

A D D
p n

s s s

D
bi

s

qN qN qN
x x x x

qN
x


  




   

  
------ (4)

 

Note here that the intrinsic band bending is given by definition by  

2 2

2 2
A D

bi p n
s s

qN qN
x x

 
 

 
Thus, near the edge of the junction depletion region, nx x , the electron concentration 

decreases exponentially as the junction edge is approached from the n bulk (see Fig. (19.2) and 
(19.6) and one can write from (4)  

2

2 2

0

1/ 22

0

( ) exp
2

,
2

D
n

s B

D
n

s B

q N x
n x n

k T

q N
n e x

k T










 

 
   

 

------ (5
 

Thus, the validity of the completely depleted approximation depends on how fast n(x) reduces to 

become negligible, compared with ND near the edge of the depletion region:  
2

0[ ( )] [ ]D D n

D

g N n x g N n e

gN

  


 

To be specific, take  =2 at which 2
0 0exp 0.018nn n   is to be neglected, compared with 

ND, The condition defines the spatial width in which the electron concentration is reduced from 
nn0 to the nearly depleted level: 
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2

2

2
D

n
s B

q N
x

k T







 
 

That is 
2

2 /
2

D
n

s B

q N
x

k T
  ------ (6) 

To assess (6) more explicitly, consider the p - n junction doped with 17 310AN cm  and 

16 310DN cm , respectively. Then one finds  
1
2

1
2 19 2 16 6 9 2

23

7

(1.6 10 ) 10 4 8.988 10

2 2 11.9 1.381 10 300

1.71 10 /

1.71 10 /

D

s B

q N

k T

m

m






 



     
        







------ (7) 

where the Coulomb constant, 

9 2 2

0

1
8.988 10 /

4
Nm C


   

was used, together with 11.9r  , and 300T K . 

Hence, one finds 

2

2
0.12

2

n

D

s B

x m
q N

k T





    

One can likewise find near px  

2

2
0.04

2

p

A

S B

x m
q N

k T





    

For NA, ND thus given  

2
ln 0.525B A D

bi
i

k T N N
V

q n
    

while the depletion depth is given by 
1

22 ( )

11

s A D
bi

A D

N N
W

qN N

m

 



 
  
 



 

(see (19.9),(19.8)). Using (19.7) one can in turn split W into nx , px  as 

/ (1 / ) 10n D Ax W N N m    

/ (1 / ) 1p A Dx W N N m    

Hence 
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/ 0.01

/ 0.035
n n

p p

x x

x x

 

 


  

and therefore the completely depleted approximation for specifying the space charge is shown 
accurate in most of the depletion region, W. 
 

19.3 (a) Given the linearly graded space charge 

( ) , / 2 / 2

0 ,
A Dq N N ax W x W

otherwise


    
 


 

one can find the space charge field from the poisson’s equation: 

s

a
x

x 


 


 

Integrating, there results 

2( )
2 s

a
x x A


     

The constant of integration is determined by the boundary condition 

2

( / 2) 0

( / 2)
2 s

W

a
W A



  

  
 

so that one can write  
2

2( )
2 2s

a W
x x



       
   

------ (1) 

Once the electric field is known, the space charge potential can be readily found using 

( )
( )

x
x

x


  


 

Integrating both sides with the use of (1) 
2

31

2 2 3s

a W
x x B



       
   

 

Here, the constant of integration is determined from the boundary condition, 

2 3

( / 2) 0

1

2 2 2 3 2s

W

a W W W
B





 

                 
       

 

Hence 
3 2

3

3
3

2 1
( )

3 2 2 2 2 3

1 2
,

2 2 3 3 / 2

s s

s

a W a W
x x x

a W x

W


 

  


           
     

            

 

(b) The built-in potential, ( / 2) ( / 2)bi W W     , is specified in terms of the doping level 
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in the two bulk regions. Since ( / 2)W   was taken zero in this case, one can write 

3

2

( / 2)

2
, ( ) 0

2

ln

bi

A D
s

B A D

i

W

a W
a q N N

k T N N

q n

 





      
 

 
  

 

 

Given AN , DN , bi  and W are determined in a manner similar to the p-n step junction, together 

with space charge field and potential. The I - V behavior can then be modeled in steps identical 
to the case of the step junction diode. 
 

19.4 Under bias the system is pushed away from equilibrium into nonequilibrium and current flows. 
The current is generally specified in terms of quasi-Fermi levels as 

n n Fn

d
J n E

dx


 
------ (1a) 

p p Fp

d
J p E

dx
 ------ (1b) 

(see (18.51) in the text) Also, the forward current in the p - n junction is specified from (19.27), 
(19.28) by 

0 / ,Bn p qV k T
n p

n

qD n
J e x x

L
  ------ (2a) 

0 / ,Bp n qV k T
p n

p

qD p
J e x x

L
 ------ (2a) 

By inserting (2) into (1) one can specify the slope of the quasi-Fermi levels in W :  
/

0

0

( / ) BqV k T
n p nFn

n n

qD n L edE

dx n
 ------ (3a) 

/

0

( / ) BqV k T
Fp p p

p p

dE qD L e

dx p
 ------ (3b) 

Note in (3) that n, p appearing in (1) should be identified to 0nn , 0pp  when applied to the 

junction depletion region. Take a specific case in which the p-n junction is doped with 
17 310AN cm , 16 310DN cm , respectively and consider the slope of FnE  in W. Using the 

Einstein relation one can write from (3a) 

        

/
0

0

2
/

0 0

B

B

qV k T
B n pFn

n n n

qV k TiB

n p n

k T n edE

dx L n

nk T
e

L p n








------ (4) 

Now, with the use of 2800 /n cm V s    and lifetime n  of 0.1 s in Si, for example, one 

can estimate the diffusion length: 
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 
1

2

1

2

1
23 4 7 2

19

5

1.381 10 300 800 10 10

1.6 10

1.46 10

14.6

n n n

B n n

L D

k T

q

m

m



 



  







 
  
 

    
   





 

Using this estimation of nL  in (4), together with 17 3 16 3
0 010 , 10p np cm n cm    one can 

estimate the slope of FnE  at 300K: 

23 10 2
/

5 17 16

/29

/16

1.381 10 300 (1.45 10 )

1.46 10 10 10

6 10 /

3.7 10 /

B

B

B

qV k TFn

qV k T

qV k T

dE
e

dx

e J m

e eV m









  
 




 

  

Thus, for the forward voltage, V = 0.6V, for example, 

101.2 10B

qV

k Te   
and 

64.8 10 /FndE
eV m

dx
  

Hence, in the junction depletion depth corresponding to 17 3 16 310 , 10A DN cm N cm   , and  

11W m  the total change of FnE  therein is less than 5~ 5 10 eV . 

This means that the quasi equilibrium approximation of taking FnE  flat in W is indeed a good 

approximation. However, with the forward voltage further increasing, the approximation ceases 
to be valid. For the case of reverse bias, 

0 0n p B n p
n

n n

qD n k T n
J

L L


  

and therefore the approximation is valid in general for any reverse bias. 

One can examine the validity of flat FpE  in W in a similar fashion. 

 
19.5 (a) The junction band bending is determined by the sum of two Fermi levels operative in n- and 

p-bulks, i.e. 

bi Fn Fp     

Hence, if FnE  is located above CE  in n-bulk and FpE below VE  in p- bulk, bi  can be 

larger than /GE q . 

 

(b) The condition bi Gq E   can be achieved, if F CE E  and F VE E  in n-and p-bulks, 

for example. In this case one can write 
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( ) /

1
2

1

2
(0),

F D B

D
D E E k T

D

C C F

N
n N

g e

N F E E



 



 
------ (1) 

Also 

      
( ) /

1
2

1

2
(0),

A F B

A
A E E k T

A

V V F

N
p N

g e

N F E E



 



 
------ (2) 

Inserting the values of CN , VN  and the ionization energies, ,C D A FE E E E   in (1), (2) for 

Si, Ge, AN , DN  can be estimated.
  

 

19.6 (a) The overlap between conduction and valence bands by 0.2eV can be realized by raising FE  

above CE  by 0.1eV, for example, and lowering FE  below VE  by 0.1eV, respectively. Thus 

one can write 
 
 

( ) /

1 2

1

2

F D B

D

D
E E k T

D

F c
c

B

n N

N

g e

E E
N F

k T










 
  

 

------ (1) 

with 
0.1F CE E eV   

Also, 

Ap N   

( ) /1 A F B

A
E E k T

A

N

g e 


 

1 2

2 V F
V

B

E E
N F

k T
 

  
 

------ (2) 

with 
0.1V FE E eV   

Inserting the respective values of CN , VN  in (1),(2) at say 300K one can find the required 

doping levels, DN , AN  in Si , GaAs . 

 
(b) The flux of electrons under a forward bias is given from(19.28) by  
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0 /

2
/

0

B

B

n n

n p qV k T

p

qV k TB n i

p p

F J q

D n
e

L

k T n
e

q L p








 



------ (3a) 

where under this degeneration case 

0 1 2

2 0.1

( )p V
B

p N F
k T eV

 
  

 
------ (3b) 

Likewise one can express the hole flux as 

p pF J q  

0 / Bp n qV k T

p

D p
e

L
  

   

2
/

0

BB p qV k Ti

p n

k T n
e

q L n


 


------ (4a) 

where 

0 1 2

2 0.1

( )n C
B

n N F
k T eV

 
  

 
------ (4b) 

Inserting the respective values of CN , VN  from Si , GaAs , together with the respective typical 

values of n , p , one can readily estimate the fluxes in the degenerate semiconductor systems. 

 
19.7 (a) Recall from (19.6) – (19.9) that  

2
lnB A D

bi
i

k T N N

q n


 
  

 
 

2

2
A D

s A D

N Nq
W

N N
  


 

max

1

2
E W ------ (1) 

Also, 

 1n D Ax W N N   

 1p A Dx W N N   

Thus for given doping level, AN , DN , the junction parameters, bi , maxE , W , nx , px  

can be readily evaluated. 
 
(b) The application of reverse bias, - RV  induces the following changes or modifications : 

bi bi RV    

     
1

22 s A D
R bi R

A D

N N
W V V

q N N




 
   

 

(see(19.14)). Hence, from (1) 
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 
   

max 1
2

2

2

bi R

s A D
bi R

A D

V

N N
V

q N N







 

 
  

 

 
 

1
2

1
2

2

2

bi R

s A D

A D

V

N N

q N N








 
  

------ (2) 

Hence one can find the breakdown voltage BRV  from (2) for given breakdown field, 
5

max 3 10 /E V cm   . It is important to note that BRV  depends sensitively on the doping levels, 

AN , DN . For example, at 18 32 10AN cm  , 15 310DN cm , 0.78bi V   and 17BRV V . 

At the same AN  but for 17 32 10DN cm  , the built in potential is about the same, i.e. 

0.9bi V   but the breakdown voltage is reduced by a factor of about 10, i.e. 1.2BRV V . 

 
19.8 The Zener breakdown is mainly dictated by the tunneling probability, in particular the Fowler- 

Nordheim tunneling, which is given from (6.12) by  

 
1

2 3
2

4 2
exp (1)

3
n

G

m
T E

q

 
 
 
 




 

Here GE  is the bandgap and   the electric field operative in the junction. Under a reverse bias, 

- RV    is enhanced, the maximum value of which is given by  

 
 

1
2

max 1
2

2
(2)

2

bi R

s A D

A D

V
E

N N

q N N







 
  

  

as discussed in problem (19.7). 
The critical electric field for the onset of Zener breakdown is determined by the fact that the 
critical electric field provides a triangular potential barrier for valence band electrons in the p 
region to undergo F-N tunneling into the conduction band in the n region, as shown in Fig.19.12 

in the text. The thickness, d  of the barrier as determined by the condition  

Gq d E   

i.e. 

Gd E q   

is the critical factor of the F-N tunneling probability as clear from (1). This means that the 
bandgap, GE  is a key parameter dictating the onset of Zener breakdown. The larger the bandgap, 

the larger critical field is required. 

Once   exceeds the critical value any farther increase of RV  enhances T exponentially, 

giving rise to exponential increase of junction reverse current. 
In addition to the tunneling probability the incident flux of valence band electrons on the 
triangular potential barrier is an important parameter as well. The flux is commensurate with 
electron density therein and the thermal speed : 

n V TF N v  
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3 5
2 2

n n nm m m    

Hence the effective mass of electrons constitutes another key parameter affecting the breakdown 
current. 
 

19.9 (a) The diffusion equation of excess holes in the quasi-neutral region on the n-side is given by 

0
2

0n n
n

n

p p
p

L

   ------ (1) 

Since the distance, d between the edge of the depletion region nx  and metal contact (see 

Fig.19.8) is shorter than nL , the second term in (1) is to be neglected. In this case the excess 

holes depend linearly on x , i.e.  

         n n np x A x x B x x    ------ (2) 

Here, the two constants of integration are determined from the boundary conditions,  

  / BqV k T
n n nop x x p e  ------ (3a) 

 n n nop x x d p   ------ (3b) 

Inserting (2) into (3), one can write 
/ BqV k T

noB p e  

noA d B p    

and by inserting A, B thus determined in (2) one can write 

   / 1 /BqV k T
n no nop x p p e x d   ------ (4a) 

 
(b) Therefore the hole diffusion current is given in this case by 

 / 1B

n
p p

p no qV k T

p
J qD

x

qD p
e

d

    

 

 

while nJ  is to be obtained in the same way as was done in the text. 

 
19.10 (a) Consider the diffusion equation for excess holes, 


0

2
0n n D

n
p p

p p g
p

L D

    ------ (1) 

with built in boundary conditions 

  0n np x  ------ (2a) 

  
n no pDp x p g    ------ (2b) 

(1) is a standard inhomogeneous linear differential equation, 


'' 0

2 2
n n D

n
p p p

p p g
p

L L D

 
     

 
 

The homogeneous solution is first obtained by putting the right hand side zero, in which case one 
finds  

 n px x L

np Ae   
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Here the term,  exp n px x L  is not included out of physical considerations. The particular 

solution is readily obtained from inspection as 


0n no pp p g   , 

where 
2

p p pL D   

Hence the solution reads  

    n px x L
n no pDp x Ae p g     ------ (3) 

Using (3) in (2a), one determines the constant of integration,  

 no pDA p g     

Thus the complete solution reads as  

      1 n px x L

n no pDp x p g e      

in agreement with (19.51) and the solution automatically satisfies the boundary condition (2b). 
 
(b) The load voltage and current are given by  

L L sV V I R  ------ (1) 

 / 1BqV k T
L l sI I I e   ------ (2) 

Inverting (2) one can write 
 

ln 1l LB

s

I Ik T
V

q I

  
   

  
 

Therefore the load power is given by 

L L LP V I  

1B

qV

k T
L l sV I I e
  

       
 ------ (3) 

where for simplicity the series resistance sR  has been neglected and LV  is taken same as V . 

Hence the maximum power is obtained from 

 / /

/

0

1

1

Lm

Lm B Lm B

Lm B

L

L V

qV k T qV k T
l s L s

B

qV k T Lm
l s s

B

P

V

q
I I e V I e

k T

qV
I I I e

k T





    

 
    

 

 

That is, 

/

1

Lm BqV k T l s

Lm
s

B

I I
e

qV
I

k T




 
 

 
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1

1
l s

Lm B

I I

qV k T





 

Equivalently 

ln 1 ln 1l LmB B
Lm

s B

I qVk T k T
V

q I q k T

   
      

  
 

in which the first term is identical to OCV  which was derived in (19.57a). 

Also, one can find the load current at which the maximum power is attained as follows. 

 / 1

1

1

1

Lm BqV k T
Lm l s

l s
l s

Lm B

l B
l l

Lm B Lm

I I I e

I I
I I

qV k T

I k T
I I

qV k T qV

  


 



 
   

 


 

 
19.11 (a) It will be interesting to include the effect of series resistance sR  in the power expression, 

L L LP V I  

    / 1L L s Bq V I R k T
L s l sV I R I I e       ------ (4) 

and analyze the maximum LP  in (4) by means of perturbation or numerical scheme. 

 
(b) For extracting the maximum power one has to consider two key factors, i.e. the open circuit 
voltage, OCV  and the short circuit current sc lI I  . Evidently maximizing these two quantities 

are the key issues. These two parameters are interrelated with each other by 

ln lB
OC

S

Ik T
V

q I

 
  

 
------ (1) 

(see 19.57a) and OCV is shown to increase with increasing lI . Also, the photocurrent, lI  is 

critically dependent on the linear cell attenuation coefficient  : 

lI g  

I  
where 

 1/ 2*
GA E    

is critically dependent on the bandgap of the material (see(19.47)). 

Naturally, enhancing lI  is a most important factor for the maximum power extraction. This in 

turn requires large linear attenuation coefficient,   or equivalently small cell bandgap, GE , so 

that larger fraction of solar radiation can be absorbed and utilized. 

Increased lI  also increases OCV , as pointed out but OCV is also increased via reducing the 

saturation current sI , as clear from (1). However, since  

2
s iI n  

(see(19.26b)), the reduction of sI  necessitates smaller intrinsic concentration, in  and since 

exp 2i G Bn E k T   it requires large bandgap. 
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In view of these an optimal compromise is needed for the maximum power extraction. 
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Chapter 20 
 
20.1 Refer to Fig. 20.2 in the text.

  The band bending in pnp transistor provides quantum well for electrons in conduction band in the 

base region. When an electron approaches the base edges the potential hill near the edges pushes 

it back torward the bulk base. 

When a hole approaches the edge, however, it rolls up the potential hill of the valence band to be 

pushed out of the base region. A potential hill pushing back electron should obviously push a 

hole upward the hill.  

Thus, an electron rolls down the hill, while a hole roll up the hill pushed by corresponding forces. 

It is therefore obvious that the quantum well for holes in the valance band in npn transistor 

confines holes while electrons are pushed out of potential plateau in the conduction band near the 

base edges. 

 
20. 2 (a) To derive the linking current in pnp transistor, note that electrons are confined by the 

quantum well in the base and there is no electron current: 

E 0n n n

dn
J q n qD

dx
    

Hence E is given with the use of Einstein relation by 

1
E

1

n

n

B

D dn

n dx

k T dn

q n dx


 

 
------ (1) 

Inserting (1) into the expression for hole current density one can write 

 

E

1

1

1

p p p

B
p p

p

p

dp
J q p qD

dx

k T dn dp
q p D

q n dx dx

dn dp
qD p n

n dx dx

d
qD pn

n dx





 

  
    

  
    
 



------ (2) 

p

P

J n
i.e. ( )

qD

d
pn

dx
   

where the Einstein relation 

p B pqD k T    

has again been used. 
Integrating (2) w.r.t. x over the base region one obtains from the left band side 
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2 20

( ) 1BWp p
B

p p

J Jqn x
dx Q

q D q D
   ------ (3a) 

where pJ  is taken out of the integral since it should be constant, pD  is the effective hole 

diffusion constant which is again taken out of the integral via the mean value theorem and  

0 0
( )  N ( )

B BW W

B n DBQ q dx n x q dx x    

is the Gummel number. 
The right hand side yields 

 
00

/ /
0 0 0

( )
B B

CB B EB B

W W

qV k T qV k T
p n n

d np np

p n e n e



 


------ (3b) 

where VCB, VEB are the voltages applied at the p-type collector and p-type emitter, respectively 
w.r.t. the n-type base. Note that the bias is always referred to the voltage applied to the p side 
w.r.t. the n side, so that if the voltage is positive it is automatically taken as forward bias. 
Equating (3a), (3b) one finds the linking current in pnp transistor: 

/ /( )CB B EB BqV k T qV k T
p SI I e e   ------ (4a) 

where  
2 2

0E n E i
S

B DB B

A q p A qn
I

Q N W
  ------ (4b) 

is given in terms of cross-sectional area, AE and base donor doping level. 
 
(b) Under a forward active bias, VEB > 0, VCB < 0 and pn(x=0) = pn0 exp(qVEB/kBT) while pn(W) = 
pn0exp(-qVCB/kBT)   0. 
The diffusion equation for excess holes in the base region is given by  

20
2

0,        n n
n p p p

p

p p
p L D

L
     

Since WB < Lp, one may neglect the second term, in which case ( )np x is linear in x, i.e. 

//
0 0( ) 1

qV k TCB B
EB BqV k T

n n n
B B

x x
p x p e p e

W W

 
   

 
------ (5) 

Note that ( )np x satisfies the boundary conditions at x = 0, x = WB, respectively.  

With ( )np x  thus found the collector current is specified as  

//( )CB BEB B qV k TqV k Tn
C E p S

dp
I A qD I e e

dx
     
 

------ (6) 

with  
2 2

0,       E p i i
S n

DB B DB

A qD n n
I p

N W N
   

(6) is in agreement with the expression of the linking current, (4a) as it should. 
 
(c) The recombination of pn as occurs in the base is to be described by  
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0

0

BW
n

rB E
p

p p
I qA dx




  ------ (7) 

Using (5) in (7) and performing the integration one finds 
2

/

2
EB BqV k TE i B

rB
DB p

qA n W
I e

N 
 ------ (8) 

Hence the base transport factor reads as 

2

2
1 1

2
pE rBC rB B

T
pBpE pE pE

I II I W

LI I I



      ------ (9) 

where  
2

/ /( 1) ,     EB B EB B E pB iqV k T qV k T
pE pE pE pE

DB B

A qD n
I I e I e I

N W
     ------ (10) 

The hole current, pEI  injected from the emitter to base under a forward bias is accompanied by 

the electron current injected in the opposite direction from base to emitter: 
2

/ ,     EB BqV k T E nE i
nE nE nE

AE nE

A qD n
I I e I

N l
  

  

with nEl  denoting the lesser of the emitter width WE and the electron diffusion length, Ln. 

Hence the emitter injection efficiency is given by 

1 1

1 1

pE

nE B nEpE nE

pE E pB

I

I GN DI I
I GN D

   
  

 

where GN denotes the respective Gummel numbers. 
The net current gain is therefore  

pEc c
F T

E pE nE pE

II I

I I I I
    


 

and the amplification factor is given from the Kirchhoff’s law by 

1
C F

F
B F

I

I




 


 

(see (20.18)) 
 

20.3 The collector current is contributed by the diffusing minority carriers in the base. In the npn 
transistor IC is due to the diffusion flux of electrons in the p-type case, while in pnp transistor IC 
is due to the diffusion flux of holes in n – type base. In either case the injected minority carriers 
are described by exp(qVBE/kBT) or exp(qVEB/kBT). The resulting diffusion currents are always 

accompanied by the respective recombination currents exp( / 2 )BE BqV k T or exp(qVEB/2kBT). 

However, the latter current is not connected to the output collector terminal as clear from Fig. 
20.5 and IC is therefore solely contributed by the diffusion fluxes of carriers and is therefore 
characterized by IC   exp(qVBE/kBT) or exp(qVEB/kBT). 
 

20.4 To set up the Ebers Moll equations in pnp transistor recall that the emitter current is contributed 
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by holes in the base and electrons in the emitter: 
// /( ) ( 1)CB BEB B EB BqV k TqV k T qV k T

E S nEI I e e I e    ------ (1) 

where  
2 2

,     E p i E nE i
S nE

DB B AE nE

A qD n A qD n
I I

N W N l
 

  

with  

nE E nl W or L

 
denoting the lesser of WE, Ln. It is important to note in (1) that the current flow is taken positive 
when it flows into the device through the terminal in this case the emitter, as clearly sketched in 
Fig. 20.5 The voltage applied to the collector VCB also induces the electron current in the 
collector and is given by 

2
/( 1),      CB BqV k T C nC i

nC nC nC

AC nC

qA D n
I I e I

N l
    

 ------ (2) 

with  

nC C nl W or L  

again denoting the lesser of the two. Note in (2) that the current flowing into the device through 
the collector terminal is taken positive. 
The emitter and collector currents can be reexpressed from (1), (2) by regrouping the terms as 

//( 1) ( 1)CB BEB B qV k TqV k T
E ES R CSI I e I e    ------ (3) 

/ /( 1) ( 1)CB B EB BqV k T qV k T
C CS F ESI I e I e    ------ (4) 

where  

,

,

ES S nE CS S nE

S S
R F

S nC S nE

I I I I I I

I I

I I I I
 

   

 
 

 

 
 

(3), (4) are the Bbers-Moll equations for pnp transistor. These equations can be cast into the 
forward active and reverse active currents as 

E F R R

C R F F

I I I

I I I




 
 

 

where 
/

/

( 1)

( 1)

EB B

CB B

qV k T
F ES

qV k T
R CS

I I e

I I e

 

 
 

and from Kirchhoff’s law the base current can be expressed in terms of the collector and emitter 
currents, i.e. 

B C EI I I    

The equivalent circuit of pnp transistor is identical to that of npn transistor shown in Fig. 20.6 in 
the text. The only modification required is, IF, IR are directed in the opposite directions from the 
case of npn transistor. 
 

20.5 (a) To model IE, IC in terms of the time constants involved, consider first the excess hole charge 
in the base as the minority carrier in pnp transistor. One can write 
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00
( ( ) )

BW

B E n nQ qA p x p dx  ------ (1) 

Under a forward active bias, 

//
0 0

/
0

( ) (1 )

(1 )

CB BEB B

EB B

qV k TqV k T
n n n

B B

qV k T
n

B

x x
p x p e p e

W W

x
p e

W

  


------ (2) 

Inserting (2) into (1) and performing the integration one finds 

/
0

/
0

1
( 1)

2
1

2

EB B

EB B

qV k T
pB E n B

qV k T
E n B

Q A q p e W

A q p e W

 


 

Hence the base transit time of holes is given by definition by 
2

2
pB B

trB
C P

Q W

I D
    

since under forward active bias the collector current is given by  
2

/EB BE p i qV k T
C

DB B

A qD n
I e

N W
  

In addition, the hole injection into the base pBQ  is accompanied by the electron injection into 

the emitter nEQ , both of which are proportional to the diode factor: 

/
0 ( 1)EB B

F pB nE

qV k T
F

Q Q Q

Q e

 

 
 

Thus given QF, IC, IB are to be expressed in terms of the time constants: 

F
C

F

Q
I




 F
B

BF

Q
I


  

Since QF is primarily contributed by QpB one can write   

2

,     
2

F
C

F

pB B
trB

trB p

Q
I

Q W

D









 

Hence  

F trB   

Also, BF is well approximated by the recombination time of holes in the base, ,   p BF p   . 

 
(b) Therefore, the gain factor is to be represented by the time constants as 



155 
 

2

2 2

2

/ 2
p p pC

F
B trB B p B

LI

I W D W

 



    

Clearly the smaller base width, the larger the gain. 
(c) The terminal currents can thus be expressed in terms of charges stored and time constants 
involved. The base current is given under forward active bias by 

VE VCF F
B

BF

dQ dQQ dQ
I

dt dt dt
     

where the first two terms represent the steady state and transient contribution of QF, while the 
remaining two terms account for the transient change of IB due to decreased uncompensated 
dopant charge in the base emitter junction and increased uncompensated dopant charge at the 
base collector junction, respectively. Naturally this is associated with the reduction or extension 
of the junction depletion depth under bias. Likewise one can write  

VCF
C

F

E B C

dQQ
I

dt

I I I


 

  
 

 

20.6 Compare first n p n    transistor with npn transistor. The amplitudes of IE, IC and base 

recombination currents are dependent on NAB in the base as 
2

2

E n i
E C S

AB B

E i B
rB

AB n

A qD n
I I I

N W

qA n W
I

N 

  


 

and the emitter injection efficiency is specified by 

1

1 B AB pE

E DE nB

W N D

W N D




  

Thus, disregarding the degenerate statistics of carrier concentrations for now, IE, IC are shown to 
decrease with increasing doping level NAB.  

IrB also decreases with NAB but the minority carrier lifetime, in this case, n  could also decrease 

to off-set the decrease of IrB. Clearly, the emitter injection efficiency could approach unity for 
NDE >> NAB. It would be interesting to examine the effect of degenerate statistics, replacing NAB, 
NDE by pp0, nn0, respectively and examine the currents involved. 
It should also be noted that with p+ doping in the base, the base width WB can be shortened to 

enhance the current gain,   while preserving the neutral base. 

Comparing p n p    transistor with the usual pnp transistor is to be carried out in similar 

fashion. The only modification required in this case is to interchange the roles of electron and 

holes and NAB  NDE, NDE  NAE . 
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Chapter 21 
 
21. 1 (a) The problem consists of replacing the role of electrons with that of holes. 

In n - substrate for PMOS the charge is generally specified by 

( ) [ ( ) ( )]D n nx q N n x p x    ------ (1) 

Also, the charge neutrality in the n – bulk reads as 

0 0D n nN p n   ------ (2) 

The surface band bending involved in this analysis is to be constructed as the mirror image of Fig. 
21.4 in the text. Here one should introduce the Fermi potential for electrons above iE , Fnq  

and the band bends up as the surface is approached from the bulk for hole inversion.  
Drawing the energy band diagram will be an interesting exercise. 
If the space charge potential, ( )x  increases as the surface is approached from the bulk, i.e. 

( ) 0x  , the electron potential energy, ( )q x  bends down, the spacing between CE  

and FE  reduces. Consequently ( )nn x  increases: 
( )

0( ) ,       /x
n n Bn x n e q k T   ------ (3) 

By the same token, ( )np x  decreases as 
( )

0( ) x
n np x p e  ------ (4) 

If ( )x  decreases on the other hand, the opposite situation prevails, i.e. ( )np x  increases 

while ( )nn x  decreasing. 

Combining (1) – (4) the Poisson equation reads as 
2

2

0 0

0 0

0

( )

( 1) ( 1) ,        /

( 1) ( 1)

S

n n B
S

n n

S n

d
x

dx

q
n e p e q k T

qn p
e e

n

 

 













 

      

 
    

 

------ (5) 

The first integration of (5) can be carried out by multiplying both sides with d  , as detailed in 
the text: 

2

20 0

E

0

2

( E) ( E)

1
E

2

d

dx
d d

d d d
dx dx

d

   



   
 

  



 

  

while 

0 0

0
0

0 0

0

[( 1) ( 1)]

[( 1) ( 1)]

n n

S n

n n

S n

qn p
d e e

n

qn p
e e

n

  

 




 
 





  

     


 

where one can put 
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2

0
2

1n B

S D

qn k T

q L 
 

  
 

 

with the Debye screening distance specified by 
1/ 2

2
0

SB
D

n

k T
L

q n

 
  
 

 

Hence, equating both sides there results 

0

0

E( )

2 ( , )nB
s

D n

d
x

dx
pk T

F
qL n





 

 
------ (6) 

where  
1/ 2

0 0

0 0

( , ) ( 1) ( 1) (7)n n
s

n n

p p
F e e

n n
    

      
 

 

Now that the space charge field has been expressed in terms of the potential one can specify the 
surface charge density with the well known identity: 

0

0

,

2 ( , )

S S S

nB
s

D n

Q

pk T
F

qL n





  

 
------ (8) 

with  
E( 0)

( 0)
S

s

x

x 
  

 
 

denoting the surface field and potential, respectively. Note that (8) for PMOS is similar in 
contents with (21.14) for NMOS. The obvious differences between the two consist of 

0 0

0 0

s s

p n

p n

p n

n p

  




 

 
(b) This differences imply in turn that the electron accumulation ensues for ( ) 0x   and hole 

inversion occurs for ( ) 0x   in PMOS. Also the surface depletion occurs for 0 ( ) 2 Fnx   . 

 
(c) As discussed in the text, the capacitor consists of Cox and Cs connected in series: 

1 1 1

OX SC C C
   

where 
/OX OX OXC t  

is the oxide capacitance per unit area and 

S
S

s

Q
C

d


  

accounts for the changes in the surface charge w.r.t. s . 

With the use of (8), one can write 
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0

0

0

0

1 ( 1)

2 ( , )

s sn

nS
S

nD
s

n

p
e e

n
C

pL F
n

 





  
 ------ (9) 

(9) is identical with (21.20) in context except for the polarity of s . 

In accumulation for ( ) 0x  , 

/ 2 ,
2

sS
S

BD

q
C e

k TL
     

while in inversion for ( ) 0x   and 2s Fn  , 

/ 20

02
sS n

S
nD

p
C e

nL
   

In the depletion region in which 0 2S Fn    

1

2
S S

S
DD s

C
WL

 


  

 
(d) With the channel inversion well specified via s , one can use the variable depletion 

approximation and derive I – V curve in the same way as detailed in the text. 
The main difference consists of the polarity of GV , TV and DV . 

1
( )

2D p OX G T D D

W
I C V V V V

L
    

 
21.2 As already discussed, 

( )D OX G TI C V V   

in NMOS and 

( )D OX G TI C V V   

in PMOS. In these devices, the quantum well is induced by applying GV  and mobile charge 

carriers are capacitively coupled into the well for conduction. 
In contrast in bipolar junction transistor, the output collector current 

exp( / )C BE BI qV k T  

in npn transistor and 
exp( / )C EB BI qV k T  

in pnp transistor and these currents are driven by the diffusive spilling in of charge carriers across 
the lowered junction potential barriers. Thus, the difference consists of capacitive coupling of 
charges and diffusive exponential spilling in of charge carriers across the lowered potential 
barrier. 
 

21.3 (i) Consider first the n+ polygate NMOS. As clear from Fig. 21.2 the n+ polygate has the 
workfunction of 4.05polyq eV  . To find the work function of the p substrate on has to find 

0pp . This can be done from the given resistivity data: 

0

1
1

p p

cm
q p




    
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or 

                    
0 19 2

16 3

1

1.6 10 400 / 1

1.56 10

pp
C cm Vs cm

cm






 

 

 

 
Hence from (17.30) 

0

16

10

ln

1.56 10
25.8 ln

1.45 10

0.36

pB
Fp

i

pk T

q n

mV

V


 

   
 

 
    


 

Hence the work function of the p substrate is given by 
/ 2

(4.05 0.56 0.36)

4.97

sc G Fpq q E q

eV

eV

    

  


 

Hence the flat band voltage is given by  

0.92

FB poly scV

V

  

 
 

 
(ii) For p+ polygate and n substrate PMOS, one find n from the data 

1
1

n

cm
q n




    

so that  
15 3

0 7.8 10nn cm   

and 

0ln 0.34nB
Fn

i

nk T
V

q n


 
   

 
 

Hence, 

(4.05 1.12) [4.05 (0.56 0.34)]

0.9

FB poly scV

V

  

    


 

Therefore, for the case of NMOS the band bends down by 0.92eV as the surface is 
approached form the p bulk(see Figs. 21.2 and 21.3). For the case of PMOS the band 
bends up by 0.9eV. To flatten out the band bending the flat band voltages are required. 
It will be instructive to sketch these energy levels, together with the flat band 
configuration. 
 

21.4 (a) To find the inverted electron density, introduce the variable resistor associated with 
NMOS: 
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1
( )

2D OX n G T D D

D

W
I C V V V V

L
V

R

  


 

where the GV  controlled channel resistor is given by 

1 1
( )

2
1

OX n G T D

ch

ch
n

W
C V V V

R L

L
W t

W t
q n

L







  









------ (1) 

 
where   is the resistivity and cht  the effective thickness of the inverted channel.  

Thus, chW t  represent the effective cross-sectional area of the channel. Also, use has 

been made of  
1/ 1/ nq n     

Now, consider the case where 
5R K   

for example. Then for W/L = 5 one can write from (1) 
3

19 2

1 1
5 10

5 1.6 10 600 / 1 chC cm Vs cm n t   
     

 

from which one finds  
11 26.7 10chn t cm    

For the channel thickness of about 10nm, 
17 36.7 10n cm  

 
(b) The gate voltage required is found from (1) as 

1
( )

2OX G T D chC V V V q n t      

or 
11 2 15 2

9

6.7 10 6.7 10

( 0.05)
50 10

ch

OX
G T

q n t q cm q m

V V
m



 



       

  


 

Hence 
19 15 9 91.6 10 6.7 10 50 10 4 8.988 10

3.9
1.6

G TV V

V

        




  

Here the Coulomb constant 
9 2 2

0

1
8.988 10 /

4
Nm C


   

was used together with the oxide dielectric constant of 3.9r  . 



161 
 

One can carry out similar analyses for other resistor values. 
 

21.5 (a) Given the device I – V curve 

1
( ) ,

2D OX n G T D D DSAT G T

W
I C V V V V V V V

L
     ------ (1) 

one can formally express the same DI  in terms of the channel voltage V(y) at y distance 

from the source, i.e. 
1

( ) ( )
2D OX n G T

W
I C V V V y V y

y
      

------ (2) 

Equating (1), (2) one can write 
1 1 1 1

( ) ( ) ( )
2 2G D D GV V V V V y V y

L y
      

 

with  

G G TV V V    

or after rearranging the terms one can write 
2 2 1

( ) 2 ( ) ( ) 0
2G G D D

y
V y V V y V V V

L
      

One can thus solve this quadratic equation for the channel voltage as a function of y, 
obtaining 

1/ 2
2 2 1

( ) ( )
2G G G D D

y
V y V V V V V

L
        

------ (3) 

Since by definition 
( 0) 0V y    

the solution is given by the negative branch of (3). 
 
(b) Next, the longitudinal channel field is given in terms of ( )V y as  

1/ 2
2

1/ 2

( )
E( )

1
( )

2
2 1

( )
2

1

( )

G D D

G G D D

D

V y
y

y

V V V

y
L V V V V

L

V
yL
L

 


 



 
 

     

  


------ (4a) 

where 
2

21
( )

2

G

G D

V

V V





 
------ (4b) 
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2
1
2

D

G D

V

V V
 

 
------ (4c) 

Note that in device saturation, i.e. for D GV V  , 4  , 4  , so that the channel field 

E diverges at y L , as expected 
 
(c) With the use of (4), the electron transit time form source to drain is specified as, 

0

0

1/ 2

0

1/ 2

0

2
3/ 2 3/ 2

E( )

( )

2
( )

3

2
( )

3

L

tr
d

L

n

L

n D

L

n D

n D

dy

v

dy

y

L y
dy

V L

L L y

V L

L

V





 


 
 

  
 





 

    
 

    





 ------ (5) 

(5) represents the general expression of the transit time of electrons as a function of GV , 

DV . Note that the transit time, tr  is given in essence by 
2

( / )n D n D d

L L L

V V L v 
   

as it should be. In device saturation where DSAT GV V  , 4   , so that 
24

3tr
n DSAT

L

V



  

 
21.6 (a) Consider first NMOS with n+ polygate and substrate doping 17 310AN cm . The 

threshold voltage is given form (21.37) in terms of flat band voltage, Fermi potential and 
body effect coefficient as  

1/ 22 ( )T FB Fp Fp BV V V      ------ (1) 

The Fermi potential in p substrate is given from (17.30) at 300K by 

ln

0.41

B A
Fp

i

k T N

q n

V


 

  
 



 

Hence the flat band voltage is given in terms of the work function difference between n+ 
ploy gate and p substrate as 

4.05 (4.05 0.56 )

0.97

FB FpV

V

   

 
 

The oxide capacitance at 10OXt nm  is 
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9 9

3 2 3

1 3.9

10 10 4 8.988 10

3.5 10 /

OX
ox

OX

C
t

C Nm









 
  

 

 

Hence, the body effect coefficient at 17 310AN cm  is given by 
1/ 2

1/ 219 17 6

9

1/ 2

(2 )

1 2 11.9 1.6 10 10

4 8.988 10

0.53

S A

OX

OX

qN

C

C

V





 



    
    


 

Therefore at zero bulk bias, 0BV   
1/ 20.97 2 0.41 0.53(2 0.41)

0.33
TV

V

    


 

Likewise, for PMOS with p+ poly gate and n substrate doping, 17 310DN cm , 
1/ 20.97 2 0.41 0.53(2 0.41)

0.33
TV

V

    
 

 

One can carry out similar analyses for other substrate doping levels. 
 
(b) If a positive charge sheet Qf is present at the interface between oxide and substrate, a 
negative charge sheet, - Qf is required at the interface between the polygate electrode and 
oxide to achieve the flat band configuration.  
The resulting voltage developed across the oxide is by definition the additional flat band 
voltage required. Thus, one can write 

11 2,      10FB OX f fV C Q Q q cm       

and 

19 11 4 2

3

1.6 10 10 /

3.5 10 /
0.05

f
FB

OX

Q
V

C

C m

C V
V

 



  

 
 


 

 

Here, OXC  obtained in (a) has been used. With the use of this new flat band voltage, TV

analysis can be carried out in the same way as in (a). 
 

21.7 (a) The lifetime of electrons in the quantum well is determined by the condition, 
1NT  ------ (1) 

where T is the tunneling probability and N the total average number the electron 
encounters the barrier before tunneling out of the well.  
The barrier potential on the left of the well has the width thicker than that of the potential 
barrier on the right. Hence one needs to consider T across the barrier on the right hand 
side, which is given from (6.5), (6.6) by 
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1

1
T 

 
------ (1a) 

2
2

2

2
sinh ( )

4 ( )

V m
d V E

E V E
  

 
------ (1b) 

where 3.1V eV  is the barrier height, E is the kinetic energy of electrons and d = 8nm 
is the barrier width. For well width W > 80nm the ground state energy of the quantum 
well is much smaller than thermal energy, / 2 25.8Bk T meV  at 300K. 

Hence we have to put / 2BE k T V  . 

Thus, (1b) simplifies as 
1/ 2

2

1 2
exp 2

2 4B

V m
d V

k T
    
 

 

Hence, inserting given values of the parameter, one can write 
3.1

2 (0.0258)
e  


 

where 
1/ 231 19

9
34 2

2 9.1 10 3.1 1.6 10
2 8 10

(1.055 10 )

144


 




     
     


 

so that 
1 641.93 10T      

Thus to satisfy the condition (1) N should be specified by 
631

5.2 10N
T

   

Now, the thermal speed of electron is given from the equipartition theorem as 
21 1

2 2T Bmv k T  

so that at 300K, 
46.8 10 /Tv m s  

Therefore the lifetime of electron is given for W = 80nm, for example, by the round trap 
time of electron times N, i.e. 

9
63

4

52

2 80 10
5.2 10

6.8 10

1.2 10


 

  



 

and is shown nearly infinite. Naturally the lifetime increases with increasing well width, 
W. 
 

(b) Evidently, reducing the lifetime to 1μs necessitates enhancing tunneling probability to 

a sufficient extent. This can be done by applying electric field,  , so that the barrier 
potential on the right with smaller thickness d (= 8nm) transforms into a triangular shape. 
The resulting F – N tunneling is given from (6.12) by 
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3/ 2

3/ 2

4 2
exp ( )

3 E

4 2
exp ,      3.1

3 E

m
T V E

q

m
V V eV

q

 

 







 

where the kinetic energy of electron is much smaller than barrier height and is neglected. 
As discussed in (a), the lifetime is thus given by the product of the round trip time times 

( 1/ )N T , i.e. 

9 3/ 2

4

2 1

2 80 10 4 2
exp

6.8 10 3 E

T

W

v T

mV

q







 
  

 

 

Hence, by putting 610 s  , the required E is found as 
3/ 2

6

31 1/ 2 19 3/ 2

19 34

9

4 2 1
E

3 ln 10 (6.8 /1.6)

4 (2 9.1 10 ) (3.1 1.6 10 )

3 1.6 10 1.055 10 17.6

2.1 10 /

2.1 /

mV

q

V m

V nm

 

 


  

    


    
 




 

 
(c) The ground state energy of the quantum well is approximately given from (4.9) by 

2 2

1 22
E

mW





 

and represents the 1D kinetic energy of electron, i.e. 
2 2

2
2

1

2 2zmv
mW





 

Next, scale W in terms of nm, 
910 ,      1, 2,W n n     

Then zv  as a function of W is given by 

9

34

31 9

5

1
( )

10

1.055 10 3.14 1
( )

9.1 10 10
1

3.6 10 /

zv
m n

n

m s
n






 



 
 

 

  



 

 
(d) Hence, the width of the well in which zv  is equal to the thermal speed of free 1D 

electron is given by 
4 5 1

6.8 10 3.6 10
n

     

i.e. 
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36
5.3

6.8
n    

That is, the well width is  
5.3W nm  

 
(e) For W ranging from 10 to 100nm the electron kinetic energy in the ground state is less 
than the thermal energy at room temperature. This suggests that for this range of W, the 
electron in the well can be viewed as classical particle moving with thermal speed, and 
the lifetime analysis carried out in (a) needs no modification resulting from discrete 
quantized energy level. 
 

21.8 The excess electrons present in the floating gate screen the gate field lines applied to 
invert the channel. As a result the threshold voltage in the programmed cell is larger than 
that of the erased cell, as clearly illustrated in Fig. 21.18: 

FG
TCGP TCGE

ONO

Q
V V

C
   

Here FGQ  is the excess electron charge stored in the floating gate and ONOC  is the 

oxide capacitance between floating and control gates. 
Thus, at the oxide thickness of 15nm, 

0

9 9

3 2

3.9

15 10 4 8.988 10

2.3 10 /

OX r
ONO

OX OX

C
t t

C Vm

  






 


   

 

 

Thus, the threshold shift, for example, of 5V, 
5TCGP TCGEV V V   

is caused by FGQ  which is given by 

5 ONO FGC Q

q N

 

 
 

with N denoting the number of excess electrons. Hence one finds 
3

19

16 2

12 2

5 2.3 10

1.9 10

6 10 /

6 10 /

N

m

cm





 



 

 

 

For the floating gate with 100×100nm cross-sectional area for instance 
600N   
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Chapter 22 
 
22.1 In the bulk MOSFET the channel inversion is formed in the quantum well, which is induced by 

GV . In the quantum wire FET on the other hand the channel is built in during the device 

fabrication. Thus there is no need for the voltage induced channel. In addition, in the quantum 
wire FET the possible leakage path through the substrate is minimized, e.g. the punch through, 
hot hole induced forward biasing of the source junction, etc. Thus, the quantum wire devices are 
compatible with the downscaling the device dimensions. Furthermore, the vertical wire structure 
holds up the promise of higher degree of device integration. 
However, the fabrication steps of the quantum wire devices are complicated, compared with bulk 
MOSFETs. Also, because of the scattering of charge carriers with rough oxide interface, the 
mobility in quantum wire FET could be lower than in bulk MOSFETs.  
 

22.2 (a) The energy eigenequation of an electron in the quantum wire is given by  
2 2 2 2

2 2 2
( , , ) ( , , )

2 n

x y z E x y z
m x y z

 
   

       


------ (1) 

Here the electron is confined in x, y directions, while it moves along the z – direction as a free 
particle. For simplicity of analysis, the potential barrier confining the electron is taken infinite. 
Then (1) readily reduces to two infinite potential well problems in x, y directions and the free 
particle motion in the z – direction. Thus one can write the wavefunction from chapter 4 as 

( , , ) ( ) ( ) ikz
n mx y z u x u y e  ------ (2a) 

where 
1/ 2 cos (2 1) /   0,1,2

( )
sin 2 /           1,2,

n n
n

n n

k x k n W n
u x

k x k n W nW




         




------ (2b) 

1/ 2 cos (2 1) /   0,1,2
( )

sin 2 /           1,2,
m n

m
m n

k y k m W n
u y

k y k m W nW




         




------ (2c) 

The corresponding energy eigenvalues are given by 
2 2

2nm
n

k
E E

m
 


------ (3a) 

2 2
2 2

0 0 2
( ),       

2nmE W n m W
mW


  


------ (3b) 

(see (4.9)). The ground state and a few excited states are listed as follows, together with the 
degree of degeneracy. 

 m n Enm in W0 unit Degeneracy 

Ground level 1 1 2 1 

1st excited level 
2 1 5 

2 
1 2 5 

2nd excited level 2 2 8 1 

3rd excited level 
2 3 10 

2 
3 2 10 
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(b) The density of 1D electrons in the wire can be obtained in a way similar to what has been 
discussed in problem 16.6. The density is given by 

     1 1
nm

D nm D nE
nm

n E E g E f E dE


    ------ (4a) 

where   is the heavy side step function, and  

 
 

1/ 2

1 1/ 22

2 1n
D

nm

m
g E

E E



------ (4b) 

is the 1D density of state (see (4.31)) and 

  ( ) /F BE E k T
nf E e   

is the Fermi cccupation factor (see (17.1c)) 
 
Next, consider the integral 

 

1/ 2 ( ) /

1/ 2

2 nm nm F B

nm

E E E E k T
n

E
nm

m e
I dE

E E

   


 
------ (5) 

where the sublevels in the quantum wire are defined w.r.t. EC, i.e. 
2 2

0 ( )nm CE E W n m    

Introduce a dimensionless variable of integration, 

2 nm

B

E E

k T
 

  

Then I transforms as 

2
1/ 2

1/ 2

0

1/ 2 1/ 2

2 2
( )

2 ( )

nm F

B

C F nm

B

E E

k Tn
B

E E E

k Tn B

m
I k T e d e

m k T
e







  

 










------ (6a) 

where the formula (1.24) in the text has been used and  
2 2

0 ( )nmE W n m   ------ (6b) 

Inserting (6) into (4a) there results 
1/ 2

1 2

2 c F nm

B B

E E E

k T k Tn B
D

nm

m k T
n e e



 
    

 


 

 
(c) This problem remains an open ended question. In view of the channel formed physically in 
device fabrication the accumulation, depletion and inversion regions of capacitive coupling of 
electrons could be different from those of bulk MOSFET. 
 
(d) In view of the lack of precise formulation of channel inversion the comparison between 
classical and quantum mechanical descriptions cannot be clearly made. However, one can point 
out a few general features distinguishing the two descriptions. 
The first concerns with the issue of surface versus bulk channel inversion. Classically, the 
concentration profile of inverted electrons is sharply peaked at the oxide interface, as clearly 
shown in Fig. 21.10. Quantum mechanically, however, the profile is pushed away from the 
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interface due to the wave nature of electrons. This has a significant bearing on the C – V 
characteristics, as shown in Fig. 21.10. 
The second concerns with the discrete energy levels operative in quantum description. This effect 

is clearly exhibited in (6) in terms of nmE . The effect will be insignificant if nm BE k T   for 

large W. However, with decreasing W nmE  could be larger than Bk T , which could lead to 

exponential reduction of inverted electrons. 
 

22.3 Fig. 22.12 provides a convenient platform on which to analyze the problem. The Schottky barrier 

is defined as the difference between the energy level of VE  and FmE in this case: 

4.05 1.12 4.75

0.42

Bp G mq q E q

eV

    

  


 

The built in barrier potential is determined as usual by the difference between two Fermi levels, 
i.e. 

bi Fs Fm

G p m

q E E

q E qV q


 

 

   
 

Now, for 18 310AN cm  for example 

18

10

/ 2

/ 2 ln

10
0.56 0.0258 ln

1.45 10

0.09

p G Fp

A
G B

i

qV E q

N
E k T

n

eV

 

 
   

 
 

     


 

Hence 

4.05 1.12 0.09 4.75

0.33
biq

eV

    


 

 

(b) Fig. 22.12 provides a typical band bending for p-type semiconductor in which Fm FsE E , in 

the absence of surface states. 
One can readily introduce the surface states and surface layer in a manner similar to Fig. 
22.13.The only difference consists of bending down of energy levels rather than bending up as 
the interface is approached from the semiconductor bulk. 
Consider for simplicity a uniform distribution of surface state with density DS. Prior to contacting 

the metal, surface states lying below FE  is occupied by electrons and as a result the band bends 

up at the surface as in Fig. 22.13. 
When a contact is made with Au, however, electrons are transferred from metal to semiconductor, 

since Fm FsE E  in this case. Consequently, the space charge similar to Fig. 22.12 is formed 

and band bends down as shown in the figure. 
As a result of which, some of the electrons trapped at the surface states prior to contact is 
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released. 

Now the difference between two Fermi levels, Fm FsE E  or the corresponding work functions 

is partitioned between the built in potential and the surface layer potential, i.e. 

( )G p m sl biq E qV q q q        ------ (1) 

Also, the positive charge sheet, mQ  on the metal surface is balanced by the surface charge of 

trapped electrons and space charge of dopant ions: 

m ss scQ Q Q  ------ (2) 

where  

1/ 2(2 )

sc

S A bi

Q qW

q N 




------ (3) 

and  

( )ss s p biQ qD qV q  ------ (4) 

Here the depletion depth W in (3) corresponds to the case where D AN N  in (19.8b) and ssQ

in (4) is provided by electrons trapped in states below FsE  in Fig. 22.12.  

Finally, sl  is specified by definition as 

m
sl

i

Q 


 ------ (5) 

with i  denoting the permittivity in the surface layer and   its thickness. 

Inserting (2) – (5) into (1) one can write 

1/ 2( ) (2 )bi S p bi S A bi
i

qD qV q q N
   

       ------ (6a) 

where 

/G p mE q V      ------ (6b) 

Regrouping the terms I (6a), one can write 
1/ 2 0bi bia b c    ------ (7) 

where 
2

1 S

i

q D
a




   

1/ 2(2 )S A

i

q N
b

 


  

2
S p

i

q D V
c




   

The quadratic equation for 1/ 2
bi  can be readily solved, but in the limit of small   one can 

disregard the second term in (7) and obtain 
2

2

/

1 /
S p i

bi
S i

q D V

q D

 


 
 




------ (8) 
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Eq. (8) is the counterpart of (22-18), as applied to the p – substrate interfaced with Au. In the 

limit of no surface states, 0SD  , the built in potential is strictly determined by  , that is, the 

difference between two Fermi levels (see (6b)). 

In the other limit of large surface state, i.e. SD   it follows from (8) that 

bi pV   ------ (9) 

This specifically points to Fermi level pinning by surface states. As discussed earlier, when the 

surface state near VE  are filled with electrons the band bends up in a manner similar to Fig. 

22.13. However, if VE  at the interface is raised up by an amount pV , it hits the large interface 

density SD  and the band bending is pinned, regardless of Au contacting the substrate. 

 
22.4 The I – V behavior of the Schottky diode made up of Au contacted silicon p substrate can be 

derived, following steps detailed in the text for the case of n-substrate. Evidently, the only 
modification required is to replace the role of electrons with that of holes. For this purpose one 
should sketch band bending corresponding to Fig. 22.14. In the present case the band bends 

down with FsE  located on top of VE . 

To derive I-V curve due to the thermionic emission theory on should first consider the emission 

of holes from semiconductor to metal at thermodynamic equilibrium, i.e. at 0V  : 

3( 0) ( )[1 ( )]
B

sm D xE
J V q dEg E f E v


   ------ (1) 

(see (22.19) in the text). Here 
3/ 2

3 2 3

2
( )p

D v

m
g E E


 


------ (2a) 

is the 3D density of states for holes and the kinetic energy of holes is given by 

21

2v pE E m v  ------ (2b) 

Also,  
1 ( )f E   

is the probability that the state is not occupied by the electron or hole occupation factor with 
( )f E  denoting Fermi distribution function. Thus one can write 

/

/

( ) /

( ) /

1
1 ( ) 1

1
1

1

F B

F B

F B

V p B

E E k T

E E k T

E E k T

E qV E k T

f E
e

e

e

e





 

  

  









------ (2c) 

 

since FE E . Inserting (2a) – (2c) into (1) one can write 

2 22
3

2 3
( 0)       ,

4 2

p

y xB z

B

qV

vp pvk T v
sm y z x xv

B

qm m
J V e dv e dv e dv e v

k T
  




   

 
    

------ (3) 
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where  Bv  represents the minimum hole velocity for overcoming the barrier, 

21

2 p B bim v q  

One can readily evaluate (3), using (1.24) in the text, obtaining 

* 2

2
* 2 *

2 3

( 0)       

,
2

p bi

B B

Bp

B

qV q

k T k T
sm p

q

p Bk T
p p

J V A T e e

qm k
A T e A







 



 

 


------ (4) 

where  

Bp bi pV   ------ (5) 

denotes the Schottky barrier given in terms of bi  and p Fs VqV E E   (see Fig. 22.12). At 

equilibrium detailed balancing prevails, so that  

( 0) ( 0)sm msJ V J V   ------ (6) 

Under bias, FsE , FmE  split to accommodate the voltage applied, while the Schottky barrier 

remains the same, since Bp  is determined solely by the difference between the two work 

functions involved. Therefore, with V  applied at the semiconductor, ( )bi V  should increase 

or decrease such that 

( )

Bp bi p

bi p

q q qV

qV q V qV

 



 

  
------ (7) 

remains fixed, regardless of V . 
Therefore 

( )bi Bp p

bi

q V q qV qV

q qV

 



  

 
------ (8) 

Inserting (8) into (4) one finds 
( )

* 2

[ ]

* 2

* 2

( )
p bi

B B

p bi

B B

Bp

B B

qV q V

k T k T
sm p

qV q qV

k T k T
p

q qV

k T k T
p

J V A T e e

A T e e

A T e e







 

  









 

Hence under bias the detailed balancing is destroyed and current flows from the semiconductor 

to metal, i.e. pJ , 

/ /* 2

( ) ( 0)

( 1)Bp B B

p sm sm

q k T qV k T
p

J J V J V

A T e e

   

 
------ (9) 

Note in (9) that V  is applied at semiconductor w.r.t. metal (see (7)). (9) indicates therefore that 
the forward current flows when a negative bias is applied at the metal. 
Next, to derive I-V curves due to the drift diffusion theory, one has to start with 
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Ep p p

p
J qp qD

x
 

 


------ (10) 

(see (22.58)) and the well known relationship, 

/ /p p BD k T q  ------ (11a) 

E=
x





------ (11b) 

Inserting (11) into (10) pJ  can be recast into 

( ) ( ) ( )x x
p pJ e qD e p x

x
      

------ (12) 

with / Bq k T  . Integrating both sides of (12) there results 

( )

0

( )

0

( )
Wx

p

p W x

qD e p x
J

dxe




 


------ (13) 

To evaluate pJ  one has to consider the space charge field E( )x  and potential, ( )x . E( )x  

in this case is identical to that in n++ – p junction, as can be clearly seen from Fig. 22.12. Thus, 
one can write 

max max

( )
E( ) E ( )[1 ],       E

( )
A

S

qN W Vx
x V

W V 
    

and  
2

max( ) E ( )[ ]
2 ( ) Bp

x
x V x

W V
     ------ (14) 

Note in (14) that at the interface (0)  should account for the Schottky barrier, i.e. 

(0) Bpq q     

With the use of (14) one can evaluate the numerator in (13): 
(0)

(0)(0) ,       
F V
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p e N e e
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F V
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E E W
V Vk TW

V

V
V

p W e N e e

N e
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



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where as clearly shown in Fig.22.12 

(0)

( )

F V Bp

F V p

E E q

E E W qV

 

 
 

Hence  

( )

0
( ) ( 1)

Wx V
p p VqD e p x qD N e   ------ (15) 

Also, using (14) the denominator of (13) can be evaluated: 
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 
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 
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 
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
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
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------ (16) 

where the function,  
2 2 1/ 2 1/ 2

0
( ) ,   ( / 2 ) ( ), ( / 2 ) [ ( ) ]s

A S A SD e dse qN W V s qN W V x
          

thus introduced is called the Dawson integral (see (22.34b). In the asymptotic limit 
( ) 1/ 2D    

Hence inserting (15), (16) into (13) one can derive the drift diffusion expression of the current of 
Schottky diode consisting of Au contacted p type silicon substrate. 

( 1),      /Bp V
p SD BJ J e e q k T       

where 
2

1/ 22

( )

2 ( )
     ,

         ( ) ( 0)
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B S
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




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
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 
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Note holes are transferred from semiconductor to the metal so that the polarity of current density 
should be negative.  
 

22.5 Given the Cu work function, 4.5mq eV  , the silicon band near the interface bends up or 

down depending on doping conditions. 

(a) For n –type Si, the work function for FsE  is given by 
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    

 
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Hence if ln( / ) 4.61 4.5Fn B D iq k T N n eV   
 

m sq q 
 

and bands bends up, providing 
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potential barrier to electrons, as clearly shown in Fig. 22.11. The effect of ssQ  on band bending 

can be seen clearly form Fig. 22.13.  

 If 4.61 4.5Fnq eV   , on the other hand the band bends down and resulting consequences 

can be discussed together with the case of p type silicon. For p type Si, the work function for 

FsE  is given by 

/ 2

4.05 0.56 ln

s G Fp

A
B

i

q q E q

N
k T

n

    
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Therefore 

( 4.5 )s mq q eV  
 regardless of doping level of AN  and the band bends down, creating barriers for holes (see Fig. 

22.12). The effect of ssQ  on band bending has been discussed in problem 22.3 

 
(b) If band bends up as in n-type Si (Fig. 22.11), photogenerated electrons roll down the potential 
hill from the interface toward Si bulk. On the other hand photogenerated holes roll up the hill. 
The resulting direction of photocurrent is opposite to the forward current of Schottky diode. 
If the band bends down as in the case of p – type Si (see Fig. 22.12) photogenerated electons roll 
down the hill toward the interface, while holes in the valence band roll up the hill toward the 
silicon bulk. 
The resulting direction of the photocurrent is again opposite to the forward current of Schottky 
diode. 
 
(c) In both case one can write 

( 1) ,      /V
S l BI I e I q k T     ------ (1) 

where 
/* 2

/* 2

 for n - type

 for p - type
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A T e
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A T e
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


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and lI  is the photogenerated current.  

Hence the open circuit voltage is found by putting I  in (1) zero:  

ln l
OC

B S

Iq
V

k T I

 
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22.6 (a) The work function of intrinsic Si is given by 

/ 2

4.05 0.56

4.61

Si Gq q E

eV

  
 


 

Thus, if the work function of metal is less than 4.61eV, i.e. 

4.61mq eV   
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the band bends down in the interface and electron concentration at the surface becomes larger 

than in  in the bulk and Schottky Ohmic contact for electrons can be realized. 

If  

4.61mq eV   

on the other hand, band bends up and surface hole concentration becomes larger than in  in the 

bulk. Thus Schottky Ohmic contact for holes results. 
 
(b) The Debye length of electrons is given from (22.44b) by 

1/ 2

2
S B
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where the surface electron concentration 

,      / ,S
s i B S Si mn n e q k T q q q         

is given in terms of the difference in work functions involved. 

Thus, for DL  of 10nm for example the corresponding S  is found at 300K from 

23
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or 
/ 2 33.4 10Se    

Hence, 
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and therefore the metal work function required is 

0.42

4.61 0.42

4.19

m Siq q

eV

  
 


 

By the same token the metal work function required for 10DL nm  for holes at 300K is 

4.61 0.42

5.03
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eV

  


 


