Chapter 1

1.1.(a) The Lagrangian of the 1D H.O. reads as
L=K—V=Limi —lkxxz
2 2

Hence the Lagrange equation of motion,
d(oL) oL d, . ..
=—| — ——:—(mx)+kxx =mi+k.x
dt\ox) ox dt
is in agreement with Newton’s or Hamilton’s equations of motion, i.e.
mx =—k x

(b) The kinetic and potential energies are given by
2 2

K:lmic2 +lmj/2 =&+&, 4 :lkxx2 +lk,y2
2 2 2m 2m 2 27
and H and L read as
H=K+V,
L=K-V.
Thus the Hamilton’s equations of motion are:
H
i OH _p.
op, m
OH
h =———=—k x
Px ox *
so that
mx =—k x
Likewise,
. OH p,
y = =
op, m
. OH
Py T
and
my =—k,y

One can also write the Lagrange equation of motion as

d(oL) oL ..
=—| — |-—=mX+kx
dt\ox) ox

and

d(JL) oL ..

=—| — |-—=my+ky

dt\ oy ) Oy ’
Thus, Hamilton’s and Lagrange’s equation of motion lead to results, in complete agreement with
each other and also with Newton’s equation of motion.

o2 » _k
X+twx=0, oo = %

(c) From (b) one can write



k
. 2 2 __
j+w;y=0, o= %

For the initial condition given, one can obtain the solution as

r(=x-x@)+y-y@)
with

x(t) = x,cosmpt, y(t) = y, cos ot

It will be interesting to trace and examine r versus / for various ratios of @, / , .

1.2. Consider the x-components of both sides:

VxVxéx
Xy z
04 0A4
:in o 9 =Vx|x o4, % +)3(an—8142]+2 r 04
ox Oy Oz oy 0Oz oz Ox ox 0Oy
A4, A, A,
X y z
_| 2 L g _iiéﬂ_@i_iﬁ%;ééj
ox oy 0z oyl ox oy oz\ 0z Ox
8Az _ aAy a‘Ax _ aAz aAy _ aAX """" (1)
oy 0z 0z oOx Ox Oy,
while
V(V-4) -v’4
aA 2 2 2
:i 8AX+ y+6AZ B 82+82+82 R— 2
ox\ ox oy Oz ox~ oy oz

04, L0404, 04,
ox0y ox0z 0y* 0z

Thus, (1) and (2) are shown identical and one can prove the identities of y and z components in
the same way.

1.3. (a) The center of mass and relative coordinate systems are defined as

(ml +m2)X=m1x1 +myx, ----- 1)
X=X —-X, - 2)
(corrections are due for X definition in the problem)
Expressing x;, x; in terms of X, x one can write with the operation, (1) + m,'(2) and (1) - m;*(2),
m,

x =X+ X 3)
ml+m2

Xy=X——" )
m1+m2



Thus using (3), (4) H can be expressed as

1 ) 1 ) l 2 1 ) l .2 1 2
H=—mx +—mx,"+—k(x,—x,) =—MX"+—ux"+—hkx" ----—-- 5
2’”11 5 "h% 2(1 2) > 2/“ > ()
where
M=m+m, pu= el
m, +m,

The total kinetic energy consists of those of CM (with total mass M) and of relative motion (with
reduced mass u).
One can thus write
p.op 1
H=—+"—+—
2m 2u 2

P=MX, p=ux

]OCZ

(b) The respective Hamilton’s equations of motion are:

yoon_P
oP M
p=_ _
oX
so that
MX =0
Also,
OH
x:—:£
p M
oH
:——:—]QC
P Oox
and
MX =—kx

The CM moves as a free particle while the relative motion executes harmonic oscillation with
reduced mass, u.

(c) Note that

2
1

a)f:/ with p=—"H =—m,

u my +m, 2

Hence,

13)2 1
k:(27r-3><10 ) —m,, =29.7 newton/meter
2

1.4. The thermal speed is from the equipartition theorem given by
1 ) 3
—m<v,” >=—k,T.
20 T 2

At room temperature, 7=300K,
k,T=1.38x107(J/K)-300K =4.14x107'J = 25.86meV .
Thus for electron at 300K



vy, =Bk, T/m)"? =(3-4.14x1071/9.109x107")*[m/s]=1.17x10°[m/ 5]

The rest of thermal speeds can be found from v, with proper scaling of mass and T

I’}’le T 1/2
= 500

E=%ReE e "™ =3:E, cos(wt — kz)

1.5. (a) Given

H can be found from Maxwell’s equation, (1.40):

y z
VxE= — o Q :j/EOksin(a)t—kz):—,uﬁI;I
ox oy Oz ot
E,cos(wt—kz) 0 O
Integrating both sides w.r.t. t one finds,

H=3JE, [—Ej (_—lj cos(wt —kz) = j/i E,cos(wt —kz)=p
u)\ o 7y

1 E, cos(at —kz)
n
where

w=vk, v=1/\Jeu, n=Jule
Thus the Poynting vector is given by

2
E:Ex[j:é(E%jcosz(aﬂ—kz)

(b) Given A=632.8nm

8
£=M;4.75x10“/s
2 632.8x107m

%21.53x106/m:1.53><10_3/nm

In an optical medium with the index of refraction n given by n’*= g, the frequency remains the
same, while

12@2316117;1
n



Chapter 2

2.1 (a) Given a photon of wavelength A the energy and momentum are specified as

C &
e=hv=h 1 p= .

A g (eV) p (meVs/m)
10m (radiowave) 1.24x107 4.13x10™"
1m (microwave) 1.24x10°° 4.13x10™"2
10*nm (infrared) 1.24x10" 4.13x10”
600nm (visible) 2.07x10° 6.90x10°
200nm (UV) 6.21x10° 2.07x107
50nm (EUV) 2.48x10 8.27x107
Inm (X-ray) 1.24x10° 4.13x107

2.2 (a) The total power generated is

3.7x10*°W[J /]

=3.7x10° /(1.602x107"*)[eV / 5]

=2.31x10%[eV /5]
The equivalent number of photons generated per second at 500nm, i.e. at photon energy of /c/A
=2.5eV is 9.24x10*/s. Thus, at the surface of the sun, for instance, the flux of photons per area
and per time is given by

9.24x10%
4zR’

with R, denoting the radius of the sun.

(b) The total number of photons reaching the earth per second is approximately given by
9.24x10%
e R;
4drdg,
where dgz is the average distance between the sun and earth and Ry the radius of the earth.

2.3 (a) The thermal speed of the electron at room temperature is given from the equipartition

theorem by
1 3
Emevi ZEkBT.
That is,
3k T 1/2
sz( K j =1.17x10°m/ s
m@

at 7=300K. Thus the de Broglie wavelength is found to be

h

m, v

A= =6.22x10"° m=6.22nm

The de Broglie wavelengths of other particles with mass m can be found in terms of that of
electron:



e

h h h m)"
AT T (k) m(T)
m( B ) B & B
m

=6.22(m, /m)l/2 nm

with m, denoting the rest mass of electron. Thus for the case of proton, for example,

1/2
[”7 j =2.37x1072
mP

and the corresponding de Broglie wavelength is shorter by the same factor.

(b) Given kinetic energy E the associated velocity of electron is given in non-relativistic limit by

1
—mv* =E,
2

-5

2x200x1.6x107"
V:
9.1x107"

and de Broglie wavelength is given by

A :i: 8.8x107" m = 0.088nm
my

For K.E. larger than 200eV, the electron velocity could enter into the relativistic regime. In this
case K.E. is specified as

so that

Thus for £=200eV

1/2
j =8.3x10°m/s

2
mc ) 1

Y  —mc’=E,|———-1|, E =my,c’
NS | i—/ey o

with my, Ey denoting the rest mass and rest energy of electron, respectively.
Finding v in terms of £ one can write

1/2 1/2
2F FE
5 \"ag
LA N  E,=my’ ~0.5MeV

¢ 1+£

0

E=

Hence for E< Ey, v =(2E/mg)"? as it should and one can incorporate the relativistic effect by
retaining terms proportional to E/E).
Once v is found, de Broglie wavelength is specified by

h
A=
mov/\/l—(v/c)2
Insert the value of v/c found without neglecting terms proportional to E/E, and find the
relativistic corrections in A.

(c) One can find the de Broglie wavelength of proton by replacing the rest mass and rest energy
of electron with those of proton in (b).



(d) Use (2.33), (2.34) in the text, obtaining

KE.=Lm? = -E, = ig
2 n
with Ep= 13.6eV denoting the ionization energy of H-atom.
Thus, forn =1
2E, )" (2x13.6eV x1.6x10" T /er )’
v= 0ol = : — =2.2x10°m/s
m 9.1x10
Hence,
h
A=——=0.33nm
mv

Here, v is in mildly relativistic range and one can incorporate its effect in a manner discussed in
(b). For n =100
2.2x10°
v="2 T —22%10°m s
10
and

A =0.33nmx10* =3.3x10° nm

2.4 The ionization energy of the donor atom can be found from that of H-atom using the scaling
relation,
E, =13.6eV x (50 x
& m,
Hence,
_|87x10%eV  m,/my=0.9
* 19.6x10%eV  m, [m,=0.1

With these values of E, one readily finds de Broglie wavelength in a way discussed in the

problem (2.3).
2.5 Given kinetic energy, £ one can find corresponding v by using the formula derived in problem
(2.3).
1/2 1/2
2E E
5) Fom,
v
A Nl = Y E,=myc’
¢ 1+ —
E,
Thus, for 10KeV electron, Ey=0.5MeV and
22014
c
The relativistic correction as exhibited by
m 1

is then shown to be about 10%.

Likewise for proton, Fy=918MeV and v/c= 1.5x1072, therefore m/my=1.01.

For the ground state electron in H-atom, the K.E. is 13.6 eV (see (2.35) in the text) and v/ c=
7x107, m/imy=1.00



2.6 (a) Given the wavelength, A=300nm, the photon energy is
E:hv:h%:4.l4eV

Hence, the photon is capable of inducing photoelectric effect in Li and Be.
The corresponding stopping power is:

4.14-23=1.8V forLi

4.14-3.9=0.24V for Be
(b) For a photon with A=253.7nm, its energy is

E=h<=49¢V
A
Thus, the observed stopping power of -0.24V in copper indicates that the copper work function;
99, is
49-qp, =0.24,
ie.
qp, =4.66el .
Hence, the longest wavelength of the photon capable of producing photoelectric effect is given
by
h
2~ 4.66eV.
A
that s,
A =266nm .

(c) There are typographical errors:
Stopping power of -2.3V for A=194nm (instead of 200nm) and of -0.9V for A=248nm (instead of
313nm).
From the conservation of energy one can write

hs=qp +23, A=194nm
A
hi =qp +09, A,=248nm

Subtracting the second equation from the first one,

h[i—ij:2.3—0.9
A 4

(23-09)er

(a‘@js

Substituting 4 back into any of the two energy conservation equations, the work function is
obtained:

and

=4.125x10"%eVs

qp, =4.1eV

2.7 (a) Use (2.31) in the text, i.e.
2

r,=ry-n

with rg denoting the Bohr radius of 0.053nm. Thus, on finds



b

3 0.053nm for n=1
] 021nm for n=2

(b) The angular momentum is quantized as

Thus,

n

13.2x10"eVs for n=2

Since r, is perpendicularto p for circular orbit,

-34
b=l /1 = 1.055><10_9 112Js :20x10‘251
0.053x10"n" m n

{6.58x10_16eVs for n=1

Hence,

3 2x107* kgm/s forn=1
Py 1x107™* kgm/s forn=2

(c) The kinetic, potential and total energy associated can be readily found as discussed in the text.

2.8 (a) Use (2.22) in the text:
AL =47l sin® (gj

with A, = 4x10"°m. For 6 = n/2
AL =2.5x10""m=2.5x10"nm
(b) The incident X-ray has the wavelength given by
hv =2x10%eV =h~—,
A
so that
A, =6.2x107 nm
Hence the wavelength of scattered X-ray is given by
A, =4 +AL=8.Tx 10~ nm
and
E, = h—=143x10%V
‘ Ay
Thus the recoil energy of electron is given from the conservation of energy as
AE=E —-E, =(20-1.43)x10%e) =1.86x10°eV

2.9 With atomic number Z=2, the energy spectrum of He" is specified from (2.35) by

E = —EOL2:13.6><Z2 x%eV = 54.4XL26V
n n n
where
2 2
| = Ze—Mzm —13.6x 2%V =54.4¢V
2h

and is shown to be larger than that of H-atom by the factor of 4.
The shortest radius corresponding to the ground state is to be obtained by scaling the Bohr radius:



n’ 1 _0.05
= =1y — =——nm=0.025nm
me,, 2 VA 2
It is clear from (2.36) in the text that the wavelengths corresponding to the Balmer series are
shorter than those in H-atom by the factor of Z°, i.e. by the factor of 4.

]"1:

2.10 A charged particle under acceleration, a dissipates power as

2e,’ e’
P==M_0q’ e =——-—- (1)
3¢ M 4zs,
An electron in circular orbit around proton in H-atom is under acceleration given (from (2.30) by
2
v
a=ve=-—------ ()

-

where r is the radius of the circular orbit.

Thus, the power dissipated is specified by
2
2e, (V
p="_M | | _____ (3)
3¢ [ ]
Since the energy of electron in circular orbit of radius 7 is given from (2.34) by

2 2
=@

e
E=-2_ ¢, =

9

4re,
the rate with which » decreases in time due to power dissipation is described by

AE_eldr_ 20}V
dt  2r dt 3¢

B
Or
dr 4 v*
et (6)
dt 3c
For given r, the centrifugal and centripetal Coulomb forces are balanced according to
2 2
mv- e
= (7
r r

Inserting (7) into (6) and rearranging one finds
2
dr__ 4 (e
dt 3¢ mr

4

drr* =— 463’” = dt
3c’m

That is,

Integrating both sides
1/ 3 3\ _ 431\44
U T3

where 7, rr denote respectively the initial and final values of the electron radius. Since 7; is the

Bohr radius, 75 and r¢ is the radius of the nucleus one can put re = 0 and write the time in

which the electron spirals into the nucleus as
3.2
cm _
t=——r, =132x10""s
eM
where the Coulomb constant

10



has been used.

1
4re,

=8.988x10° Nm?*/ C?

11



Chapter 3
3.1 (a) Given the wavefunction,
w(r.0= epo X ﬁ(z')dr'}u@, 0)

One can write by definition

0

_ ,t

att//(z )

_ 1 l//(ﬁ,O) _i AL~ 1 _i L, '
—l}%A—t{exp[ %IO H(t)dt} exp[ %JOH(t)dt}}

_1 !//(170) _i AL~ r_ _i Ly '
= lim 725 {exp[ . j H(t)dt} l}exp[ . '[OH(t)dt}

—%I:I(t)At
= lim Y y(r,t)
i A
= —%H Dy (r,1)

Hence

ihM:gm.w(m
ot
(b) If H )= H o, One can write

w(r=e " y(r,0)=e"™ y(r,0)
where
w,=H,/h

in agreement with the solution entering in the separation of variable technique.

3.2 Given the Hamiltonian,

the fact that V(r) is real ensures that
V(r)=V'(r)
Thus, one can write for arbitrary but well behaving function £, g
[drfvg=[drir)e
indicating that V' is Hermitian.

The x-component of the Laplacian operator, for example, can also be shown to be Hermitian by
performing the integration by parts repeated twice in succession:

12



. 0 .o [ o o .
drf' 2 g=f g - ol =
Jﬁfafg ey j—(axgj(axfj

or|” o> .

g@x . j-Zg(3x2f

Here use has been made of f (ioo) =g (ioo) =0.Hence H is hermitian.

33 () If B is Hermitian adjoint of A ,1.e. B=A" , it satisfies the relation

The relation (1) also specifies the Hermitian operator. That is, if A is Hermitian it should
satisfy

Jdrf g =[dr(4f) g
where f, g are arbitrary but physically well behaving functions. Hermitian operator is therefore its
own Hermitian adjoint:

A= 4"
As a corollary take the complex conjugate of (1), obtaining

[drf (4g) =[dr(Bf)g )

Or equivalently,

Therefore, A is shown the Hermitian adjoint of B , 1.e.
A=B"
and one can thus write

B=A" =(B+)+

(b) From (a) one can write using the definition of the Hermitian adjoint for any A

*

iJ-dff*z:fg = iJ.dL[(;F )+ f} g
=ifdr(4f) g )
= [dr(-idf) g
while
~ifdrf*Ag =i dr(4°f) g
Jarli )
Combining (5), (6)
13



o =i )il vt
i)
<f i —A)g>=<i(,?1+ —A)f‘g>

3.4 (a) Consider

n n h 0"
it =) (5 2= 2 )|
Now,
n n—1 n-2 2
= Oy 9 L0y L0
ox" ox"" Ox ox"? ox®
n—1
BT
ox" ox"

> nr

n
with  C  denoting the combinatorial coefficient, ,C z( j
r

Thus,
n n n-l1
ox
=iln-p"-f
That is,
[x, px”] =ihn- px"‘]
(b) Consider
pxX'f=x"p.f
0 0
:—'h— n _ n _'h_
i ax(xf) X ( i axfj
0 0
=_h n—1 + n ¥ W —h—
l(nx f+x foj x[z 8xfj
=—ihnx"" f
Hence,

[px,x”] =—ifhn-x""

3.5 Using the uncertainty relation,
AxAp. =h, AyAp, =h, AzAp_=h

the minimum K.E. of an electron is to be expressed as



1 X 5 N 1 1 3 1
AE=—/|Ap " +Ap +Ap  |=— + + = —
A O AR e e AN A ) om I
with L representing the length of the cube.

9.15x10J =5.7x10"eV  for L=10nm
AE =:9.15x10%'J =5.7x10"eV  for L =1nm
3.66x107'J =2.28x10" eV for L =0.5nm

3.6(a) For electron, its K.E. in the nucleus with diameter D is to be estimated by
nol
AE =——, D=10"m
2m D
~6.1x10""J =3.8x10%eV
(b) For proton AE is to be found in terms of that of electron and the ratio of rest masses:

AE =3.8x10%eV -« =2 .06x10°eV
m,
The proton can thus be contained within the nucleus, while the electron cannot be confined

therein.

3.7 The atomic transition frequency from the first excited state to the ground is given by
1
hv=FE,-E = 13.6(1—ZjeV
Hence

_10.2¢V 5 47x10% /s

14

The spread in v due to the finite lifetime of electron is to be estimated as

hAV:E
r

That is,

szi:1.6x107/s
T-h

15



Chapter 4

4.1 (a) The electron is free to move along, say x-direction, while spatially confined in y, z direction
Thus, the total energy is given by

k>
n.,n = . +E’1 + E}'l
UM 2m N 'y
where
Wzt o,
E = o n, =1,2,
wrt o,
Envzmny, ny=1,2,
Here, the quantum wire has been modeled by infinite square well potentials in y, z directions.
For L=Inm

2_2
E =17 - 603x10% 7 =3.77x10" eV,
2mL

Thus, the lowest 4 quantized levels are:
E,, =E,(1’+1?)=7.54x10""eV
E, =E,=E,(2°+1’)=1.8%V
E,, =E,(2*+2*)=3.02¢V
E, =E;=E, (3*+1°)=3.77eV
And the frequency of emitted photon,

v=AE/h
when occurring in cascade is given by

1.82x10"/s  for E;; > E,,
v=:2.73x10"/s for E,, > E,,
2.75x10%/s  for E,, > E,,
(b) For quantum well one can write
K} Wk’ nat
L2y
2m 2m  2mL
Thus, the lowest 4 quantized energy level is given by

E=E,4E,,9E, and 16E,
and the frequency of photons when emitted in cascade is given by
6.38x10"/s  for E, — E,
v=14.56x10"/s for E, > E,
2.73x10"/s  for E, > E,

E=

4.2 The energy eigenfunctions satisfying the stationary boundary condition are given from (4.17) by

3
22 . (nx . (m7m | . (nx
u=|—| sin X [sin y |sin z
L L L L

where the quantum numbers satisfy the boundary conditions,

16



kL=nrmx n =12,
kyL =n7x n,=12,--
kL=nm n =12,
Hence the total number of states between k and k+dk is obtained by
(4rk*dk)/8
(z/L)
Here, k_, ky , k_ values should be confined to positive values, hence the spherical shell is

divided by 8.
The number of states per volume is then specified including the spin by
Ark*dk 1 k’dk
gp(K)dk =2 ———5—5=—5~
8(x/L)y L Vd
In term of energy,

(1)’
E=-——
2m
one can therefore write
\/Emz./zEusz
gip(EYdE =—————

243
T°h

in complete agreement with the result derived using the periodic boundary condition.

4.3 The Hamiltonian of the particle in 1D box and/or wire is given by
n h?
H=——V>+V(x,y,2)
2m
where
0 f 0<x<L,
or
V(xﬁyﬁz)z OSySLy

oo otherwise

The energy eigenequation then reads as
hZ
{_Evz +V(x,, z)} @(x,y,2) = Ep(x, p,2) - (1)

The eigenfunction can be found, using the usual separation of variable technique, that is, by
looking for the solution in the form

¢ =u(x)u(yu(z) ------ (2)
Inserting (2) into (1) and singling out x, y, and z components in the usual manner there results
u”(_x) + V(.X')u(_x) = Exu(x)
w'W+Vu(y)=Eu(y) - 3)

W'(2)+ku(z)=0, Kk = Z’ZZE

where primes denote the differentiations w.r.t. the variables involved and

0 0<x<L,
Vi(x)= . (4a)
oo otherwise

17



0 0O0<y<L,
Viy)= . (4b)
oo otherwise
E=FE +E +E_--—-- &)

One can readily solve (3) using the stationary boundary condition, obtaining

nr o\ .
@:Nsin(nzﬁxjsin( }L yje’kz

with N representing the normalization constant and

2_2 2 2 272
E:hﬂ' n, +HL +hk ______ ©)
2m | L L

x y

For L =L =L, E reduces to

hZﬂ_Z 5 X h2k2
E = n-+n’|+——
T oml? (n+n/%) 2m

The ground state energy thus corresponds to the case, where n, =n = 1.

The first excited state is doubly degenerate, correspondingto n, =2,n, =1 & n =lLn, =2.
The second excited state with n, =n, =2 is non-degenerate, while the third excited state is
again doubly degenerate with n, =3,n, =1 & n =1,n,=3.

One can specify the degeneracy of higher lying states in a similar manner.

4.4 (a) The energy eigenequation for this quantum well reads as

{_h_zﬁ_z-ﬂ/(x)}u(x):Eu(x) """ (1)

2m ox”
where for the bound state £ < 0 and one may put
E=-|E
Also, V(x) can be put in the form
-V ——dﬁxﬁld,l
V(x)= ?
0 —d<x, I

Thus, (1) can be recast in regions, I, II as

u"(x)+Ku(x)=0, k= h—(V—|E|)

uw'(x)—k*u(x)=0, «’ :h_|E|
The solutions of (2) is readily obtained as
Asinkx+ Bcoskx , 1
u(x) = .
Ce™ , 11

The boundary conditions for u(x) to satisfy are:

u(—%d)zo

18



1 ) : 1
since V(—Ed )=o00 and u# and u should be continuous at x = Ed _Thus,

—Asin (%j + Bcos (%) =0 - (3a)

—xd
Asin (%j + Bcos(%) =Ce? .- (3b)

I{Acos(ﬁj—Bsin(ﬁﬂ:—KCe_;d -+ (3¢)
2 2

From (3a) one finds B in terms of A, i.e.

B =Atan (ﬁ]
2
and insert it into (3b), (3c), obtaining
—Kd
2 Asin (%) —Ce ? =0--—-- (4a)

. o kd

ARSI

Al cos| — |-——L [+—Ce 2 =0 - (4b)
2 (kdj k

COS 7

Note In (4) that the coupled equations for A, C are sourceless, that is, homogeneous and A, C are
therefore trivial, i.e. A= C = 0 unless the secular equation holds true:

—xd
2sin(ﬁ] —e 2
2
2 [ * Sy — 5
Ly sin (2j . 5)
cos| —|————— —e
2 (kd} k
COS| —
2

Since the parameters, k£, K are functions of |E |, the bound state energy eigenvalue is found

from this secular equation, (5). Once |E | is found A, C are in turn to be determined from (4),

leading to the explicit soution of the eigenfunction.

(b) For the case of infinite square well potential of width, d the energy eigenvalues are given
from (4.11Db) as
2_2
E = h—”zn2
2md
It will therefore be interesting and instructive to compare a few energy eigenvalues found from
the secular equation for given depth ¥ and width d with E; or E; in (6) and examine the reasons
for the difference in eigenvalues.

: n=1,2, wenen (6)

4.5 The method for tackling this problem has been detailed in the text and solving the problem
consists of repeating what has been discussed in detail in the text and obtaining concrete values
of the quantities for given V, W, T

4.6 (a) Given
19



V x<—d, I
v _

- é d<x<0, 1
0 0<x<d, i
V d<x, IV

One can readily set up in the usual manner the energy eigenequation and corresponding
eigenfunctions.

(i) for E>V
o p th 2
u, =i e +re™, Sy L _FE-V
m
: » k)’ V
u, = A,e™* + Be ™", L —F——
2m 2
ikyx —ikyx hzk ?
u, = A, + Be ™", 3 =F
2m
ik x
u, =te
(ii) for V>E> V/2
i’
u, = Ae*", =V-E
2m
u, = Azeikzx + Bze_ikzx
u, = A,e™ + Be ™"
u, =Ae™
(iif) for E < V/2
u, =Ae""
. . /S|
u, = A" +B,e ™, —r =—V-E
2m 2

_ ikyx —ikyx
u,, = A,e™" + B.e

_ —KX
u, =A4e

(b) The boundary conditions at x = - d, 0, d for the case V' /2 < E <V, for instance, are specified
by

Ale_Kd = Azeiikzd + Bzeikzd (la)
KAle_"d =ik, [Azefikzd - Bzeikzd} (1b)
A, +B, = 4, +B, (Ic)

ik, (4, - B,) =ik, (4, - B;) (1d)
A4, + Be ™ = 4,7 (Te)

ik, (A3eik3d —Be ™ ) =—kA4,e (1)

(c) There are 6 conditions to be satisfied as specified in, (1), and there are 7 or 6 constants
appearing in eigenfunctions, depending on E considered.
For the case of (i), one can find r, A,, B,, Az, B;, ¢ in terms of iy and obtain the reflection and
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transmission coefficient, in terms of r / g and t / 1,, as was discussed in the text.

For the case of (ii) or (iii) the six coupled equations are homogeneous and eigenfunctions are
therefore trivial unless the secular equation is satisfied.

From the secular equation, the bound state energy eigenvalues are found.

The secular equation for (1) is found as follows.

From (1a), (1b), A,, B, are found in terms of A; as

1 K |
A =—Ade ™| 1+— | e 2a
2 =54 ( .k] (2a)

K,

B, = %Ale"‘d [1 —LJ Pa— (2b)
l

Likewise from (1e), (11),

e

1 . K| o
B3:EA4e d(1+7je“ ------ (3b)

Inserting (2), (3) into (1c¢), (1d),

A T+ e 4| 1= e =g || 1-2 o™ 4] 14— [ | =0 —onme- (4a)
ik, ik, ik, ik,

7N P P U PP NP Y| YL R YL YU U S (4b)
ik, ik, k| ik ik,

Indeed the coupled equations for A;, A4 are homogenous and therefore the 2x2 determinant
involving the coefficients should be zero for the wavefunction not to be trivial and the secular
equation reads as,

1+£ el 4 I—L ok . 1_£ ok _ 1+£ o™
ik, ik, ik, ik,

145 gkt _| 1K | pikd _& 1=K ok _| 14 | ikt
ik, ik, k, ik, ik,
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Chapter 5

5.1 (a)Let a=e ™ y=e W2,
Then (5.25) — (5.28) read as

aA+a B=yij+yr - (1)
adA+aB=yt - (2)
k .
ad—-a B=?°}/i0——°}/r —————— (3)
kO
a A—aBz?yt ------ 4)

Thus, by performing the operation (1) £ (3), (2) + (4), A, B are found in terms of i, 7

A:L(l+&ji0+y—( —&jr ------ (5)
20 k 2o k

and
A=t 1k, (7)
2a k
gt (1 k PR (8)
2a k
Next, equating the right hand sides of (5), (7) and (6), (8), respectively and rearranging the terms
one finds

;/*k+k0t_;/_*k—k0r v k+k, .
T2k a 2k a 2k

« R

—_— i

a 2k o 2% 2k

Thus, one can find r, ¢ in terms of iy by solving (9), (10), the results of which are in agreement
with (5.29), (5.30).

(b) The transmission coefficient is then specified as
2
T ko /m |t

(2k k)’
hky/mliy,|

(2kyk cos(kW)) + (k2 +k*)? sin® kW
1 1

5 a2 Rt
cos® kW + ko +k sin® kW 1+ K=k sin’ kW
2k k 2k k

1

2
sy [P (E+1))
AE(E+V) h

where cos” x+sin” x =1 has been used and &, k, have been spelled out in terms of £, V.

)

One can similarly obtain R given in (5.34)

5.2 (a) The energy eigenequation of the particle reads as
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{—h—za—z + V(x)} u(x) = Eu(x)

2m ox’
where
0 x<0
V)=V, 0<x<d,
v, d <x
Equivalently, the equation is compacted as
u'+a’u=0
with
k, nkl [2m=E
a=1k, Bk [2m=E-V,

k,, Rk /2m=E-V,

The eigenfunction is readily obtained as

ikox —ikyx

e +re

ikyx —ikyx

u=-<Ae"" + Be

ikyx

te

(b) The constants of integration are determined by the boundary conditions, operative at x=0, d;:
iytr=A+B------ (1a)

Clearly, r, t, A, B can be specified in terms of iy, using (1a) ~ (1d).

Perform the operation, (1a) = (1b) / ik, obtaining

A=l%l+&~w]e&- ------ (2a)
2| k, k)]

B=l-%l—&-+rl+&- ------ (2b)
2| k, k)]

Similarly from (1c¢), (1d) one finds

A — le—ikld] +ik,d, 1+£ [ — (3a)
2 k,

B — le[k1d1+ik2dl l—ﬁ [ — (3b)
2 k,

Thus, by equating the right hand sides of (2a), (3a) and (2b), (3b), there result

e kot [1 +£]t —(1 —ﬁ)r = (1 +5j fy === (4a)
kl kl kl
et (1 —k—zjz —(1 +ﬁjr = (1 —ﬁ}o ------ (4b)
kl kl kl

And t, r are found in terms of i, as
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b i 2k K (5a)
i D
kol;kzcos kd, + i[l - klzlgz jsin kd,
il - D (0)
0
with
D zwcoskldl —i(l—l— kolzz ]sin kldl ------ (SC)
3 k
Hence the transmission and reflection coefficients are given by
2 2
_ hk, /m|t _ 4k0k22/k1 (6a)
hk, /m|i, D|
2 2
N T I W O Sy S N I R ot sin? (kd,) |
wky/m i DU K Kk s

(6b)

where

2y (k+k Y Bk ke
D] = =2 | +] 1-=252+=222 Isin® (kd,)
k k
Note from (6a), (6b) that

as it should.

(¢) Since ko, ki, k» are functions of E with Vi, V, , d, as parameters, R for instance is shown
sensitively dependent on these quantities, in particularsink,d,. Evidently it is analogous to

antireflection coating.

5.3 (a) Consider the motion of the particle on x — z plane. The energy eigenequation then reads as

{_%(%+§722] + V(z)}u(X, z)=Fu(x,z)

where

V., z<0
V(z)=
V, z>0

Equivalently one can write

u”(x)+kfu(x)=() ______ (1)
u'(2) +k(z) u(z) =0 === (2)
where primes denote respective differentiations and
2m
k=B e (3a)
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2 K2, kjl=2h—T(Ez—Vl),zso
k2=
g 2m

kzzzs kzzzzﬁ(Ez_Vz)’ z>0
E=E +E - (3¢)

The solutions of (1), (2) can be readily obtained. The particle moves as a free particle along x-

direction, i.e.

while

The boundary conditions for u(z) to satisfy at z=0 are:
Iy +r=t

; _7z2
ly—r= t

k

z1

Hence, r, t can be found in terms of iy:
1 - kzZ /kzl

r=i 5
01+k22/kzl ( a)

t=i 5b
101+k22/kzl ( )

(b) The incident, reflected and transmitted wavefuctions reads then as

u (x,z) ~ ) (6a)

u.(x,y)~ e (6b)

u, (x, y) ~ ) (6¢)
Equivalently, one may introduce £, 6;, 6; such that

k. =kcosO ----- (7a)

k,=ksin@ ------ (7b)

k,=ksin6 ----- (7¢)

and represent incident wavefunction as

ik(cosO,x+sin6,y)
u(x,z)~e

In which case one can write from (6b)

ik(cos 6, x—sin6,y)
u (x,z)~e

so that the incident and reflected angels are shown identical:

0=0 - )

l r

The transmitted wave is likewise to be expressed as
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u,(x,z)~e
and one can write

sing,_kyk_Vp 5P JE-
sinf,  k_,/k 2 E_ -V,
2/ \/hT(EZ_K) \/ 1

(c) The transmission and reflection coefficients are given from (5) by

:@.12{1—1«22/@1}2_ T E-R) |

_hkzl I - I+k., k., - 1+\/(EZ—V2)/(EZ—V1)

st (ko) A(E-T)(E-N)
Pk fiy| (14 (ko k)] [1+\/(EZ—V2)/(EZ—VI)T

and
R+T =1

as it should.

(d) Evidently (8), (9) are analogous with reflection and refraction of light at a dielectric interface.

5.4 (a) The potential is specified as

0 x<x, I
4 X, <x<d+x II
V(x)=40 d+x <x<d+W+x I
V d+W+x, <x<2d+W +x, v
0 2d+W +x,<x \Y%

The energy eigenequations are given by

with

k, =k, = /Zh—T(E—V) =k, ILIV

And one can write eigenfunctions as
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ioeikox +re T, I
Ae™ + Be™, I
u=1<Ce"" + De™™", r ------ (2)
Fe™ + Ge™, v
te™o* \%

(b) The boundary conditions operative at x; between regions I, II are:

. ikexs ko ilox ik
e +re™ = 4™ + Be ™

—ikyx; _ieilcc[ _ie—ikxi

kO kO

- ikox;
e re

One can thus find iy, » in terms of 4, B:

Iy = l e il Al 1+ ﬁ M+ Bl 1= i ok
2 k, k,

r= l eikoxi Al l1- i eikx" + Bl 1+ ﬁ e—ikxl-
2 ko ko

or equivalently

where the 2x2 matrix reads as

e—ikoxi+ikxi 1+£ e—ikox,-—ikx,- l_ﬁ
k, k,

M (ky, k,x) =% ------ (3b)

eikox,--#ikxl- l_i eikoxﬁikxi 1+£
K k

One can likewise apply similar boundary conditions at successive interfaces, obtaining

o Medyx ) € 3
g | = MKk, x4 d)| = (3¢)

C—Mkk dWF 3d
D—(oa:xz’""")G """ ()

F—Mkk Zth 3
G—(aoaxi+ +)0 “““ (3e)

Hence one can correlate r, ¢ with i, using (3a) — (3e):
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where M7 consists of

M, = M(ky, k,x )Mk, ky,x, +d)M(ky, k,x, +d + WM (k,k,,x, +2d + W)

:(mll mlzj """ 6))
My My

(c) Now that the matrix elements of M7 have been specified explicitly, R, T can be found from

e )G

Specifically,
Cnky/m|e| | 1]
ok, Imiy| |y
Tiky/m | r _r/z‘z_mzl2
kgl iy i |my

(d) The matrix element, say my;, is a function of energy, £ of incoming particle with V, d, W as
parameters. Thus finding the condition for 100% transmission amounts to finding £ such that

2
|m1]| =1.

(e) The analysis can be extended to any number of barriers separated by equal distances by
introducing corresponding matrices.
Hint: Try 1 barrier first and add one more barrier and find the pattern emerging.

5.5 This problem can be tackled exactly in the same manner as in (5.4) except that Mrin (5) therein

has to be modified as

M, =M((ky,k,x)M(k,k,,x, +d)M(k0,k',xi +d+W)M'(k',k0,xi +2d+W)
where
2m(E+V)

k'= e
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Chapter 6

6.1 (a) From (4.11(b)) the quantized energy levels are given by
h2 2

En = —72-2 l’lz
2mW

For electrons with rest mass mj

s n=12,...--——-- €))

. (1.055x107)" (3.14)°
L 2:00x107(107) w?
=(0.603/w*)x107"°[J]
= (0.603/w*)x1.6x10™""[eV]

=(0.376/w)[eV]

where the width of the well has been scaled w.r.t nanometer, i.e.
w=10"-w
with w denoting nm.

For m,= 0.2my,

n 2
w n

E :0'37.(ﬂjnz[el/]:(1.86/w2)n2[eV] ------ @)

(b) Specify V(x) as

14 x<0 |
V(x)=<0 0<x<Ww II
Vv W<x I

Then the bound state eigenfunctions can be expressed as

Ae*” x<0
u(x) =< Be™ +Ce™ 0<x<W
De™* W<x

where

k=,—

hz
2m
KZ,/?(V—E), E<V

From the boundary conditions for u(x) to satisfy at x=0, ¥, on finds the non-trivial values of 4, B,

N
?
|

C, D, provided the secular equation is satisfied. From the secular equation quantized energy
levels for bound states are obtained.

It will be interesting and instructive to perform the graphical analysis and compare the results
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with (1). It will also be interesting to compare the resulting ground state energy eigenvalue with
that of the infinite square well potential and examine the reasons for the difference, if any (see

Fig. 4.7 in the text and seek the reasons for difference).

(c) For m= m, for example one can write from (1)

0'3276 eV = kT = émeV
2 2

w

Hence
w=376/12.5~5.5 and W =5.5nm

(d) Consider the case where W=2nm, i.e. w=2. Then from (a)
0.37

E = T-nz[eV] =0.1n*[eV]
Thus, energy levels up to n =4 are given by ~ 0.1, 0.4, 0.9, 1.6 eV, respectively.
For the other limit of W = 200nm , the energy levels are reduced by a factor, 10™.
The density of states is then described by step functions, with each step occurring at every

quantized energy level at a height specified from (4.29) by

g,, =m/ ah’

6.2 (a) The tunneling probability through the square barrier potential is given from (6.5), (6.6) by
1
T=——
I+A

2
A=V inh’d /2—T(V—E)
AE(V —E) h

Thus, T can be found explicitly by inserting the given barrier height /" and thicknesses d;, dr and
the energy eigenvalues of the well, E. It will be interesting to compare the tunneling probability

through the two barriers with different thickness.

(b) The lifetime is to be specified first by the condition,

where N is the average number the electron encounters the barrier for tunneling through. Once N
is found in terms of the tunneling probability, T the lifetime is found by multupling the round trip

time with N:
=W /V)N - ()

Here 2W is the round trip distance and v the velocity of electron given in terms of E as

30



1
—m?*=E
2

Since dr (10nm) << dy, (50nm), 7}, > T, , so that the electron lifetime is practically determined

by the barrier on the right hand side.
Thus using 7x found in (a) and the values of W and energy E of the subband, 7 can be
calculated using (2).

6.3 (a) As discussed in (6.2) the electron lifetime is determined by the tunneling probability through
the potential barrier with thickness, dg (<< dp).
The velocity of electron residing in the ground state energy level of the well is given by
1 hZ 2
—mv’ =E, = —”2
2 2mW
That is,
hr
V=——- 2
o (2)

and depends on the width of the well.
With an external electric field |E| applied, the potential barrier is transformed into either

trapezoidal or triangular shape. The tunneling probability is then given from (6.11), (6.12)
by

where
42m 3 3
W{(V—El)z‘(V‘E1‘4|E|d1e)2} ————— 3(a)
e )
2q|E|h
Thus one can find T for given |E|, W and find the lifetime:
2w 1
=t —————— 4
‘ v T ¥

Note here that the velocity of electron, v as give by (2) can be used, provided v is greater than the
thermal speed, vr. Otherwise, vr should be used instead in (4)

(b) The potential barrier

V(x)=V—ql|E|x, V=3.leV
becomes a triangular barrier to electrons at the ground state, if
W
V—-ql|E\d, <E =
q | | R 1 2m W2

Thus the required electric field can be estimated by putting E, = 0, obtaining

1E|~ vV 3.deV:1.6x10"J/eV
q-d, 1.6x107°C-10x10"m

Consider the case where W = 50nm.

=3.1x10"V /m=31mV / nm
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The ground state energy given from problem 6.1 by

E| :mz 0.15meV
50

is then smaller than the thermal energy at room temperature. Hence for estimating the lifetime the
thermal velocity of electron should be used.
Thus, form (3), (4) one can write

U0
v, T
where
1

Emszz k,T,

and
T = exp— dvam V%, V =3.1eV
3q|E|n

At room temperature, 7=300K and v, = 6.75x10%m/s . Hence, the electric field required for

7=10"%s is found from

-9
L0~ = 2 50><104 exp Wam
6.75x10 3q|E|n
so that
|E|=1.36x10°V /m =136V / nm

6.4 (a) Use the F - N tunneling probability for estimating the electric field and write

T =exp— WN2m V% (1)
3q|E|n

where the work function, V' = 4.5¢V is the barrier the electron encounters when incident from the
metal to the sample. One finds the required electric field, |E| by putting 7'= 10" in (1)

42m V%

3q|E|n

107 = exp—

or
42m v
3gh-4(In10)

With this electric field applied the electron indeed encounters the triangular potential barrier
while tunneling to the sample 1nm distance away, as was assumed.

|E|:exp =7.05x10°V /m="1.05V / nm

(b) Use the direct tunneling probability, put 7= 10", and write
4+/2 3 3
107 = exp— " [VA —(V—q|E|d)q
3q|E|n
Since 0.1 V is applied between the tip and sample, one can put |q E| d = 0.1 eV and d can be
found by inserting given parameters in the equation,
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6.5 (a) Using (6.13), (6.14) and applying the boundary condition,

Uy(z)=U,4(z)
U= Uin(z)
one can write

Ajeikz" +B je_isz =4, +B, e
A" —Be™ = E[Aﬁle_“f —Bjﬂe'(z’} """ (1b)
Solving for 4;, Bj in terms of 4j.1, Bj+; one obtains

—ikz;

—xz, iK xz, iK
A, = 5 [Ajﬂe (1+7j+3ﬁ1e (I_TH ______ (2a)

ikz ;

B =S—|4 | 1-E|1p |1+ (2b)
J 2 J k J k

One can thus introduce the transfer matrix connecting 4;, B; to 4j+1, Bj:1 as

T
Bj a pf B.

J+l
where

B %(1 3 %j R — (3¢)

(b) One can likewise connect Aj:1, Bj+1 to Aji, Bjsz, applying the boundary condition at z; + d to
the wavefunctions, Uj:1(z), Uj+2(2), obtaining

(AJ+1 } (}/ 7/: j (AJ+2 J ------ (4a)
Bj+1 5 5 Bj+2

where
k) itkein)z,+a)
= 1 + — e J
-
S=I|1+ L ei(k+i1()(z/-+d) ______ (40)
(—ix)

Combining (3), (4), one can connect 4j, Bj to 4j:2, Bjs:
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Aj_“ By 7\ 4
Bj B Ot* ,B* 5 5* Bj+2

------ (5a)
[ md) ma(z (4,
le (Zj s d) m22 (d) Bj+2
with
m(d) = ay + 5
2 2
=™ [cosh Kd —i k-« sinh KdJ """ (5b)
2kx
= mzz
my(z;,d)=ay" + p6
' 2, 2
e kisinh kd - (5¢)

2kx

= m;

(c) In the presence of one barrier potential, one can write
4, _ my(d)  my(z;,d) (AjJrz ______ ©6)
B, my (z;,d)  my(d) 0

Here B,,, =0, since there is no reflection beyond the single barrier. The transmission

coefficient can thus be obtained as

2
A.
T:| f1E1 S — )
‘ A./’ ‘ |m11(d)|
where
2 k* - k? ?
|my, (d)|" = cosh® kd + sinh® xd
2kx
2 2)?
=1+sinh*xd + k-« sinh? xd
2kx
k* + K2 ?
=1+( ) sinh? xd

4k K*

2
1+ — inhd /Z—T(V —E)
A(V - E)E h

in complete agreement with (6.5) in the text.

(d) It also follows from (6) that
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2
ﬂ
A,

J

. 2
| my(d)4

j+2

my (z,,d)A4

j+2

2 2
. —ik(2z;+d) k“+x
—ie o Tr

2kx

2 2

™ {cosh Kd—i[k K
kx

1+[

in agreement with (6.7) in the text.

sinh xd

j sinh xd }

2 2\2
K+ j sinh? xd

2kx

K+ x? ?
% j sinh? xd
K

6.6. In the presence of two potential barriers W distance apart, one can put Bj:4 = 0 because of no

reflection after tunneling through the second barrier and write

4, m;,(d) mlz(zj,d) my,(d)
B, ) \my(zd)  my(d) )\my(z,.,.d)

m, (Z_;+2 >

where
Zin :Zj+W+d

Then, as shown in (6.23), (6.24) in the text on can find
A ek A2

4
& (K + k%) sinh xd |

(1a)

Aj [Dl e
where
2 2 . . 2
D, =[ (kK = x*)sinh xd + 2ikx cosh d |

= [(k2 —x?)?sinh® xd + 4k*x* cosh? Kd] e’

=[ 4k + (k” +x°)’ sinh® xd |
with
2kx cosh kd

tan @ = Ic
(k* —x*)sinh xd (1c)

Here D; has been put into a phasor representation and use was made of

cosh? x =1+sinh? x

Since the velocities of incident and transmitted electron are the same,

tunneling probability across two potential barriers as

d) Aj+4
my,(d) 0

|

one can express the
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4 2
T — j+4
2B Aj
_ (4k2K2)2 (2)
|D |2 | 20 (k* + x*)* sinh? /(d|2
1
ol

2
I

. 2
2i(kW-0)
1-e Ry

Here T has been expressed in terms of the tunneling probability through the single barrier, 7'
and the corresponding reflection coefficient, i.e.

4k’ K’
ol
1
_ (K* +«%)’ sinh® kd
RIB =

D)

(2) can be further compacted into a more transparent from by putting the denominator into a
phasor notation:

. 2
1-¢7R,,
= [(l —cos yR )’ +sin’ ¥R’ ] e*
- [1 +R,,> —2cos ;(RIB]eZ["’ ______ )

- [(1 -R, )2 +4R,, sin® %} e’

where
tangp=—0ANB ok — )
I-cos ¥R,
and use has been made of

cos y :1—2sin2%
Inserting (3) into (2) and identifying 75 = 1- Ryp one can write

T, = 1 4)

1+41;‘fsin2(kW—9)

1B

One can clearly notice from (4) that the resonant tunneling occurs, i.e.
Trg =1 for
kW -0=nzx, n=12,--
It will be illuminating to plot T»p versus incident electron energy for various values of the
potential barrier and the quantum well in between the two.
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Chapter 7

7.1 (a) Consider the dispersion relation, (7.22) in the text:
2 2
—K . .
1 sin k,asinh kb = cos kd ------ (1)
K

cosk,acosh kb —
1

In the limit b—0, V—o0, such that the value J'x b is finite, then
f2m

so that
coshxb ~1

sinh kb ~ Zh—’z” Vb
------ @)

k-x" _ 2mVIR \2mVI/R

2k 2k N2mV I B 2k,

d=a+b=a

Hence the second term on the left of (1) reads as
sink,a mVba
R 3)

2
—“Z’zz/fl-\/zmrf/hz-bsmklaﬂ=1) o=t
1 a

ka

Inserting (3) into (1) one can write with the use of (2)
P sink,a

+cosk,a = cos ka ------ (4)
ka

(b) The simplified dispersion relation (4) is a handy equation by which to examine the energy

band as a function of parameters involved such as Vb, a, etc.
It will be interesting and instructive to examine the widths of allowed bands and energy gap as a

function of these parameters and to interpret the results.
7.2 (a) Given the coupled equation (7.41) for x;, x, one can find x; for instance using the Kramer’s
rule:
0 2
b 2
N
2 1-4

Hence it is evident that x; = x, = 0 unless the secular equation holds true, i.e.

=0

X

(b) Evaluating the determinant (1) on can write

(1-2) =4

so that
A, =3,—1-—--- 2)
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Inserting these two roots into any one of two coupled equations in (7.41) one finds

—2x,+2x,=0 for A=3----- (3a)

and

2x,+2x,=0 for A=-1---- (3b)

Hence there exists an infinite number of solutions in the coupled equation, provided x;, x, are
constrained by (3).

(c) Insert A, =3 for instance into the two coupled equations in (7.41), obtaining
—2x,+2x, =0
2x,—2x,=0
Clearly both equations lead to identical constraints.

(d) The two sets of solutions (X, x,)corresponding to A, and A can be represented by

column vectors, 1.e.

and

1
X, =x 1

The length of the column vector is defined as

— 1
XX, =x (1 1)(1] =2x}

— 1
X, X, =x] (1 —1)( J =2x]
Thus if normalization condition is imposed, that is the unit length condition is imposed,
2x} =1
and
1

X =—F

NG

7.3 (a) Starting from (7.14) in the text, perform the operation,

[(7.14a) £+ (7.14b)]/ ik,

A=Lota| | | LI oy [ ZIK D | (1a)
2 k, k.

B:le_ikd e 1=K cve | 145 | D | (1b)
2 i k, k,

Also, perform the operation,

obtaining

[(7.15a) £(7.15b)]/ ik,
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obtaining

L B S WL PSR DL ) (2a)
2 k. k,

B:lefik‘” e 1= lcre | 1+ D | (2b)
2 k, k,

Thus, equating (la), (2a) and (1b), (2b), respectively and rearranging the terms, one can
reproduce (7.19), (7.20) in the text.

(b) Once the matrix elements entering in the 2x2 determinant are specified explicitly it is a
lengthy but straightforward algebra to obtain the dispersion relation given in (7.22) in the text.
Here, recognizing the identity,

e +1=2¢" coskd
is helpful.

(c) It is extremely desirable to carry out the graphical analysis of the dispersion relation,
following the method detailed in the text and using the values of the parameters given in the
problem.

The problem provides a simple but practical example, the numerical analysis of which can
provide a concrete feeling for the subbands. The energy eigenvalues in quantum well or subbands
are used extensively for modeling semiconductor devices.

(d) The physical significance of the dispersion relation (7.22) is to find £ - k pair to render the
wavefunction in (7.11) non-trivial. Specifically, given a pair of £ and k, C can be found in terms
of D from (7.19) and A4, B can in turn be found in terms of D from (7.14) or (7.15).
Constructing a few Bloch wavefunctions in this manner could be rather instructive.

(e) Yes, there is a similarity.

Specifically, finding A,, A in (7.2) corresponds to finding the dispersion relation between E, k
in (7.22).

Also, finding the relation x, = %x, corresponds to finding non-trivial Bloch wavefunction for
given E, k pair.

7.4 The problem consists of graphically analyzing the dispersion relation (7.22) in the text, using
typical barrier height, width and the distance of separation between the barriers, i.e. the width of
the quantum well.

The resulting energy band configuration provides the general features of the typical energy
eigenvalues or subbands in quantum well.

7.5 This problem is the continuation of (7.4), emphasizing the application aspect of the dispersion
relation for designing the energy bands.
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Chapter 8

8.1 (a) Consider the energy eigenequation of the Harmonic oscillator

w0t 1
i

Introduce a variable & as
mk 1/4 mo 1/2
§=ax,a5(—j =(7j ,k=ma)2

hZ
Then the dimension of the constant, & can be found in terms of mass M, length L and time 7

| P
_ 1

M 1V

[a]= v | 7l T
M (j T
T

Hence ¢ represents a dimensionless displacement of the oscillator from the equilibrium

position. Using the chain rule one can perform the differentiation,
9_00_,0
ox 0& ox o0&

o’ , 0
P 2
ox o0&
so that
w0 " 0’ 1 0’
S B A O S
2m o 2m 0&? 2 o0&
Also,
1 h 1
—kx2 f_:_ 2 M e Y 3
M T ma)é 2 i G)
Inserting (2), (3) into (1) one can write
2F
+(A-Eu=0, =—--—-(4
(2-¢) )

(b) If the solution of u is sought in the form

one can perform the differentiation, using the chain rule,

u'= (H' - ggH)e_552 ------ (62)
=| H" =28 +(£ -1)H e

Inserting (6) into (4) there results



H"-2EH'+(A-1)H =0

un >

8.2 (a) Consider the matrix element,

(u,

2
X

& - (1)
‘H EHe 2

Now, using the recurrence relation, (8.32) in the text

n+l

EH = ;H +nH,_

one can write

(¢H,) = iHjH+n2H2 T 0 ; A— 2)

n-1 n+l

Inserting (2) into (1) and performing the ¢ -integration with the use of the orthonormality of

eigenfunctions (see (8.38)), there results

(i, |}
u,x (u,

:%( a j{\/;2"”(n+1)!+\/;2n1n2}
o

Jr2"n! 4

Next, consider the matrix element,
2
(w, | o2 |u,)

=N} (1) idfe_i ‘H

82
0&?
& &

=N; (—hz)a e > Hng(Hne 2 )

o0

g o 4
I dé{g(ezh’)} @

=N e df{%(eiHn):l

Here the integration by parts has been performed. Next, using the recurrence relation (8.30),
(8.32) in the text, one can write
o, 5 N
—(e *H))= ( EH +H, )e 2
¢
{ 2
[—EH,HI -nH, +2an1]e LR %)

{ <
( 2Hn+1 +nH, ]
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Inserting (5) into (4) and performing the integration with the use of orthonormality of
eigenfunctions, there results

(u, | B3 |u,)

b;
& 2
0 £
=N dée > -(—EH +nH, j

n+l

= za(&znn!j[%ﬁfm(li+1)!+n2\/;2”l(n—l)!} —————— (6)

:hzaz(n+%], o =22

h
)
=hom| n+—
2
(b) Consider the variance in x, Ax:

(=) 1)
x —2x<x>+< ) |u

u,)=2{x)(u,
,)=(x)
= (u nlx ,)

un> = <x> =0 from parity consideration.

u

=,
<n
(u,
(u,

>
w, )+ (x) (uy 1)

Since <un|x

Likewise one can evaluate Api as
A2 =(u,|(p,~(p,)) |u,)

=(u,|p”=2p.(p.)+{p.)

=(u,|pi[u,)

P,
Since < D, > = 0. Hence using (5), (6) one can write

b
AxAp, = {i(n +%j . hma)(n +%ﬂ
ma
= h(n +lj
2

(¢) Consider the x-matrix element:

2
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<”1|x|”1'>
© & &
=%J‘wd§e *-H¢Hpe *, S=ax

NN, t» . 1 .
Cllzl J._mdfe : “H, (EH/'+1+IH1'—1J

1 ,
E\/;zl l,!é‘l,l'ﬂ

0
a a 1 ' 1" 11
=(\/22’IJ (\/Zz”z'!)? INZ2 18,

0 otherwise

which leads to (8.51) in the text. Here the recurrence relation (8.32) has been used.

Consider next the matrix element involving p:

0 w £ S &
u,|—|u,)=N,N,| dée * -H,—(H,e ?
AR R RAT

Using (8.30), (8.32) one can write
S & , &
e e )= (H,, _¢H, )e 2

o] , i
(21H1'1_5H1'+1_1 1'1)6 :

1 £
(I'Hl'—l _EHI'H je ?

Hence
<”l | X | ”l'>

© , 1
=NN,[ dée* -H, [zH,,_1 —EH,HJ

=218,

b2 b
a o 1 r
= —| = ['N72' 'S,
(\/72'211!} (\/72'2],[’!} (2j " L

0 otherwise

which leads to (8.52) in the text.

8.3 (a) The classical oscillator with amplitude x, and oscillating in time with @ is described by
X =X,Coswt,
in which case one can write
V=X =—wXx, sin wt.

Thus, the kinetic energy averaged over a period of oscillation is given by



» 1/2m 5, , 127 1 xi&’
W X, sin” ot =- O X; ——— =—mM—"—— -
0 27/ @ 2w 2 2

(M

Also, the average potential energy is given by

2.2
V)= ke IZ/ xécosza)tzlk-x—ozl(ma) XO), ke =mae? - 2)

27l 2
1 IO dv (t) 1/2m sz ,

K)\== -
< > 2m 2wl @ 2w/ o

27/ @Y 27 2 2
Hence it follows from (1), (2) that

(K)=(r)=3(F)

where <E > is the total energy which in this case is time independent. In fact, classically the

total energy is independent of time in a conservative system as in harmonic oscillator.
1 1
E=—mV+—k¢’
2 2
1 . 1
= Ema)zxg sin® wt +5kx§ cos” wt

1
=§mw2x§, k=me

Quantum mechanically, the average kinetic energy is given by

1 a2 ho 1
K)=—/u u,)=——,|\n+—
(€)=l )= 45
where the result obtained in (6) in problem (8.2) has been used. Similarly using (3) therein one
can write
1 1 1
<V>=—k<un x’ un>=—ma)2i n+—|, k=mw’
2 2 mao 2
= 1 ha)(n + lj
2 2
Hence

(c) Thus, both classical and quantum descriptions are identical in describing the conservative
system.

8.4 (a) The energy eigenequation of 3D harmonic oscillator reads as
o, 1 1 1
Vi 4=k X +—k v +—k.z* lu(x,y,z)= E(x,y,2) - 1
{Zm Shx ok Sk ulx, y,2) = E(x, 3, 2) - (1)

and one can look for the solution in the form,
u(x, y,z) = u(x)u(y)u(z) ------ 2
Inserting (2) into (1) and dividing both sides by (2) there results
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(_ w j &*u(x) (_ . j *u(») (_ . ) 0%u(z)
2 2 2
2m ) ox +lkx2 N 2m ) Oy +lky2 N 2m ) Oz +l

u(x) 2 u(y) 2 u(z)

Clearly (3) naturally separates into x, y, z components as
n’ 1
——u"(x)+ =k x’u(x) = E u(x)------ (4a)
2m 2

n 1
——u'(M)+ =k xu(y) = E u(y) —----- 4b
om ») >k (V) =Eu(y) (4b)
RN P
() bk 2 u(x) = Ea(2) e (d0)
2m 2
where primes denote the respective differentiations and
E+E +E =FE

(b) The equation (4a) —(4c) are identical to 1D harmonic oscillator eigenequation and one can
therefore write

&
u(x’y’Z)ZF[INje 2Hnj(§j)9 ]:X,y,Z """ (5)
J=

—g _mk/%_m“’_/%
¢ =a;ja;= Pl

)
No=| L
! [\/Zz”fnjj

and the energy eigenvalues are given by

1
By = 200, (”f +Ej """" ©)

with

(©)If k. =k, =k, =k ,then (6) reduces to

3 X

The degeneracy of the few excited states is summarized as follows:

n, n, n, % o degeneracy
0 0 0 32 none

1 0 0 5/2

0 1 0 5/2 3

0 0 1 52

1 1 0 7/2 6
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1 0 1 7/2
0 1 1 7/2
2 0 0 7/2
0 2 0 7/2
0 0 2 7/2

8.5 The effective spring constant can be specified in terms of hydrogen mass as
k=313.8=m, o’

»
ha):(313.8J .

Hence one can write

my
bl
= LSN 1.055x107*J
1.673x10
=4.57x107"J
:4.57><10’2°J-;191
1.6x107" J
=2.86x10"'elV

The frequency of the photon capable of inducing transitions in between vibrational states is
therefore given by

—1 -1
v=2'86X10 o = 2.86><10715€V —6.9%10" Hz
h 4.136x10 " eVs

8.6 (a) For two atom system coupled via an effective spring constant, the kinetic energy is given by
1 1 )

.2 .
K=5m17’1 +Em2r2 —————— (1)
Introduce the center of mass and relative coordinates:
mr,+m,r, = MR, M =m +m,
rh— r,=1r

Inverting the relation one can express 7,, 7,as

r =B+%z ------ (2a)

m
Iy =R—- 1 (2b)
Inserting (2) into (1) one can write

2 2
K:lMBZJrl(mlmz 4 jf

2 2
2 20 M M) (3a)
1 21
=—MR +—ur
PR 2/“_

where
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=2 (my+my) =2 (31)
or
I 1 1
— =t — - (3¢)
Hoomym,
Therefore, the Hamiltonian of the system reads as
H=K+V
1. -2 1 1
= MR =i+’
2 2 2
p2 2
L SRy
2m 2u 2
2 2
__T S h —V2i4+= krz
2M 2u

(b) The energy eigenequation reads then as

n h?
(_ZMVfQ Zﬂvz+2k ) (Ea£)=E¢(E’K) ______ (4)

One can thus look for the solution in the form

o(R,r)=u(R)u(r)-——(5)
and insert (5) into (4) and divide both sides by (5), obtaining

2
_vau (B) ——Vru(r)
2M + +—kr? =F ——--- (6)
u(R) u(r)
So that u (E ) U (5 ) naturally separate as,
hZ

Y Viu(K)=Equ(R)---- (7a)

K 1
Vz 1,02 I
2,u ( )+2kr u( ) mtu( ) (7b)

(7a) is the energy eigenequation for a free particle of of mass M, while (7b) is the standard
harmonic oscillator eigenfunction, oscillating with the reduced mass, 2 .

8.7 (a) The Hamilitonian of the internal motion of the molecule reads as
~ R 1 1 1 1
H=——V>+=k’, —_—=—t—
2u 2 Ho m.  mg,
where m., m, denote the mass of carbon and oxygen atoms, respectively. The energy spacing
between two adjacent vibrational states is given by
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hv:hﬁzhc-(lj
A A

V=c%23x108(m/s)-2,170/cm:3><108(m/s)-217,000/m:6.51><1013/s

Hence,

And
k = uw* = y(27zv)2
Now,
memy 12-16(1.673x107")’ I
me+m,  (12+16)(1.673x10™)
and

k=1.15x107% (27[-6.51x1013)2[N/m]:1.92><103[Newton/m]:19.2[Newt0n/cm]

(b) The zero point energy is given by

E, :%hv :%4.136><1015eVs6.51><1013 /s=135x10"eV

8.8

Using (8.60), (8.61) in the text, i.e.

b2
x:\/%a(ajtcf), a:(m?wj g (1b)
h )
pz%(cz —a) ------ (1c)

one can write

Now,
o> Wmo 1
= =—hw
4dm dmh 4
kK mo* h 1
> = =—hw
4o 4 mo 4

A

Hence, H can be expressed in terms of the number operator as
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H Z%[—(a+ —a)(a+ —a)+(a+ +a)(a+ +a)]

since aa® =ata+1.

8.9 (a) Given the function,
F(x) — ex(faae—an'a

its derivative reads as

dF X + et + et
( ) — exa aa+aae xXa a _exa uaa+ae xa a
dx
_ xa‘a + + —xa*a
=e aa—aa )ae . (1)
— _e—xa aae—xa a
=—F(x)

where use has been made of
[a,a*] =l=aa"—-a"a

xa+a +

e ata=aae™”
(1) can be recast as
dF(x) _

—dx
F(x)
and upon integrating both sides there results
In F(x)[, =—x
or
F(x)=F(0)e™
That is,
eanraaefanra — aefx
(b) Let
G(.x) — exa+aa+efxa+a
Then
%:emm (a’aa” ~a*a’a)e ™
— exa+aa+e—xa+a
=G(x)

So that one can put



dG(x) _

dx
dx

and upon integrating both sides one can write

InG(x)[; =x
or

G(x)=G(0)e*
and
exa+aa+e—xa+a — a+ex

8.10 (a) Inserting the ground state eigenfunction, (8.72) reads as
n 1 2
u (x)_L L(Qz_i] [ijé e%
I [ V27 8¢ )] \(Vr

Hence, for n=1

Now,

and

Similarly for n=2

Now,
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%{5 Qw(*@) :

(2) (5__5] et

£
:ﬁ[cfﬂ —(—51711 +H1')}e 2
-2
_ (\é)z (25111 —Hl')e 2
=(\;) ~(H,, +2H, 2H1_1)e_§2
2
e
(\/5)2 2

Here the recurrence relation, (8.30), (8.32) have been used. Hence

o e
u, = @ He?
2
’ (\/ﬂ-2!~22J

Next, u; can likewise be constructed using (1), (2) as

e (&)

el

Q

ﬂmﬂg aaﬁjHef

Here, 3! has been distributed. Now

=&

=(H,+4H,—4H,)e *
-
=Hpe?
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Thus,

v
U, = % zHe% ------ 3)
P o\Jrard )

in complete agreement with the results obtained by solving the energy eigenequation.

(b) One can show the validity of (8.72) by induction. For this purpose, (8.72) can be
decomposed into

- golal-ie (8)

il

In view of (1), (2), (3) one can recast (4) as

O i a){ﬁr

o »
_ N (2¢H, ,—H)_))e
% -

| = | [Hyn +200-DH, , =2(1=DH, e >

\/;2,,”' n—1+1

(04 % ﬁ

= He?
Jr2"n!

in exact agreement with (8.40) in the text.

|
I\)‘d‘“
¥
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Chapter 9

9.1 (a) Evaluating 9 vector products, e.g. Xxx=pxy=2zxz=0,xxy =z, etc. is tantamount to
evaluating the determinant of 3%3 matrix, i.e.

l=rxp
209

=lx y z
p‘[ py pZ

:fc(ypz —Zpy)-l-)A/(pr —xpz)-l-f(XPy_ypx)

A ~

(b) Consider for example the commutation relation between [/ _, [ .

[l | =[op. = 2,020~ . |
=20 ]+ 21, 2p. |
= [p..z]+ p,x[zp.]
= ih(xpy —ypx) = l;

where use has been made of

[z.p.]=in

(1.0 ) =ind, [1.0 =i

9.2. This problem requires a straightforward algebra involving the chain rule for differentiation of
elementary trigonometric functions. Performing the analysis and confirming the results is
nevertheless important and should be carried out at least once.

One can likewise prove

9.3 (a) Consider the general case where € is not necessarily confined to % .
Since
x'=cosOx+sindy
y'=—sin@x+cosbfy
XX =(cos@x +sin 07)-(cos O +sin 65)
=cos’ 0%-X+sin’ @3- J+2cosPsin O% -
=cos’@+sin’ 0 =1
One can similarly show that
-9 =sin*@+cos’ O =1
and
X'-3' =(cosOx+siny)-(—sin O +cos @) =—sinfcos §+sinfcos @ =0=j'- &'

Since
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$2=92=0, #2=32=0

Hence, x',-J',Z constitute an orthonormal unit vector system

(b) From Table 9.1,

Thus, one can write

(015
_1 3 p2r 1 ) _
—Z-;L dcofldﬂﬂ, 4 =cosf - (1)
13, 15
4

Also,

(b) Consider for instance

(17

(¢) It is already shown in (1) that
(p.|p.)=1
It also follows from (2), (3), (4) that

(p.1p,)

)

=) (rn)]

=1
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<py Ipy>

g )

()]

Thus, | px> , ‘ py> and | pz> are normalized.
Also

In view of <Y10 | Yli1> =0,

(p,1p.)=(p.1p,)=0

and therefore | px> , ‘ py> and | pz> are orthonormal eigenfunctions.

(d) (Ylo,Yll,Yl_l) and (|px>,‘py>,|pz>) are analogous to (%, 7,Z) and (X',',2")

(©)

l‘z Y10 iz

(o )= )
= (i) ()

=2h*
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Chapter 10

10.1 (a) One can invert the relation,

r=p—r ()

Thus, one can write

M M
Hence,
2
L mIE%{??]2+”%Bz: - (5)
2m, 2 - M M
2
2L, naﬁﬂ{ﬁﬂf—zﬂﬁz ©)
2m, 2 M M
and adding (5), (6) there results
2 2
R - 1 R* + 2(m1m22+m12m2)£2
2m, 2m, 2
P p
[ +—_
2M 2u
where
P=MR, M =m +m,------ (7b)
m, -m,
p=ur, = - (7¢)
m, +m,
One can also write
1 1
— =t — (7d)
Hom 2

(b) From (7c¢) or (7d)
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u=m  for m,>m,
1
,u:Em for m =m,=m
10.2 This problem requires a lengthy but straightforward exercise in differentiation, using the

formulas (9.3) — (9.6).
But, it is instructive to carry out the actual derivation in view of its extensive utilizations.

10.3 (a) To find a, the only modification required is to replace ejl =¢’/ 4re, by Zejl , with Z

denoting the atomic number, that is, the number of protons in the nucleus.
Thus, one can write from (10.44)

/S U /o B 1w m, | 1 m,
Gy=—5=——F| —+— |==—5—| 1+ =—a,| 1+
uze, Ze,\m, my) Ze,m, my ) Z my
Hence for Z =2 ayis one half of the Bohr radius, ag:

a,=%

(b) The problem corresponds to the case in which Z = 1, m,/ my=1 so that

a,=2a,
(c) Here the Coulomb potential
2
y—_u
r
is replaced by the gravitational potential
mm G
V —_ n n
r

with m,, G denoting the mass of neutron and the gravitational constant, respectively. Thus one

n m, e,
ao = 3 — aB >
um G my /2 )\ mG

It will be an interesting exercise to actually find out the value of a, using the gravitational

can write

force constant, G.

10.4 (a) The radius, R is found from (10.54) as
R
0.9= jo drP(r)

=N, J.:” d(pJ._lld,uJ.OR r’dru.,,, p=cos6

Thus, for u,q, for example,
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_2r

1

R o a
0.9= 3272'-2-_[ r'e “dr
a, 0
1 a, Y
=——Ar| 2| |2-(0] +2p,+2)e "
-~ (J[ (05 +2p,+2)e ™ |
1 2R
=1-—(p; +2p, +2)e ", Po=—
2 a,

From this result one can numerically find R. Following the same procedure one can likewise find
the effective radius for w500, #4300

(b) For the ground state, 1o,
<r> = Jjﬁ dgoj._ll d,uJ.Ow ridrru;,

2r

1 ® 3 a

=| —— |47 drr’e ©
ay 0

3
= an
Likewise,
<r2> - J':” d(pJ‘—zdﬂJ.:FZdrrzulzoo
4 (o, 4 ’%
:EIO drr’e
=3a;
Hence
2
(=) )= )=y
=a;(3-2.25)
=0.75a;
so that
Ar/(ry=0.6

and the variance w.r.t. <r> is appreciable. The variances, Ar for other states e.g. 2s, 35 can be
evaluated in a similar way.
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10.5 (a)

1:<x|x>
=N <(”211 Fuy ) | (”211 thi )>
=N>(1+1)

Hence
N=1
)
Similarly
1:<y|y>:N2-2
and
N= /
V2
(b) Since

<”210 | ”21i1> =0

it clearly follows from the definitions of these x-, y-, z-functions that

(z1%)=(z1)=0

<x|y>oc<(”211 ity )| (4 _”2171)>=1—1=0

and

10.6 (a) For the ground state, u;¢, the average kinetic energy is given by

—K? 5
<K>: Ugo Z_V Uyno
Now,
1 0 o 11~
vzulooz( 25’"25_1,_2?12)”100
16 ,0
=N, ——r i
100 [rz or Or ]
1 — 2 -
=Nloo'[_2€ - OJ
a, a,r
Hence,
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(K)=—" - [Tdo[ a j‘”rzdr(i—i)ez
aym\ 2u )70 YL a; a,
hZ
- 2ua;
_ e & :e7
uel, 2a;’ M/ A,
2 2
_ ey ’ h2 _a,
2a, e
Also,
V)= [ dof ], S
100_a37z-0 (p71'u0 r
2r
dr 5 o .
=———-ey,| drre®
ar M Io
e
a4y
Therefore,

<K>1oo - _1<V>100

2

(b) It will be an instructive exercise to carry out similar calculations for <K>, <J> for the states
Us00, Un19. One can generally show that

(K}, ==V,

2

10.7 (a) Let us first consider the fraction of electron charge cloud contained within the Bohr radius, a:

PETd(pj[dy]Qrzdrufoo , H=cosf
0 0 0

]
—Zr/
-47[_[ rdr-e 7%
0

72'613
—Zr/ay 3 2 “
:i3 _8—3 2 +3 2 +6 2 +6
a, | (2/a,)" |\ g a )
0
=0.85
r=ri=y e (2)

Hence the fraction of electron cloud lying outside the Bohr radius a, = a, is 15%.

(b) For usg9 and w19, one can similarly calculate P within 2a, and find the fraction lying outside
2ao. It will be interesting to see whether the fraction increases or decreases as the principle
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quantum number # increases.

10.8 (a) For H-atom in which Z=1, the transition energy involved is given by

where n;, nydenote the initial and final state quantum numbers and
2
e
M =13.6eV

a,

For Lyman series in which n,=1, the shortest and longest wavelengths are therefore given by
and

That is,

A, =90nm & %zl.lx107/m

N

A, =122nm & /7%:0'82“07 /m

1
For Balmer series, in which n,=2, one can likewise obtain

A, =365nm & %=0.27x107/m

S

A, =652nm & %:0.15x107/m

1
One can similarly find 4, 4; for other series.

(b) For positronium, the reduced mass is given by

I 1 1

Moy m,
where my is the electron rest mass, so that 4 = my/2. Hence ay o 1/ u increases by a factor of 2
and the ground state binding energy, oc ejl /2a, decreases by the same factor of 2. Thus, 4,

and 4, found for the case of H-atom have to be increased by 2.
For ionized helium atom, Z=2 and u is essentially same as in H-atom case. Hence the ground

state binding energy oc Z Zefl /2a, increases by 22, leading to shortening of 4,, 4, found for H-

atom by the factor of 4.

10.9 (a) The ground state binding energy can be analyzed simply using the binding energy of the H-
atom as the refernce (see (10.43), (10.44) in the text):
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2.2 2 2
Ze _e 72

e

2a, 2a, 1+

ny

72
=13.6———e¢V
1+m,/m,
where m,, my are the mass of electron and nucleus, respectively.
The transition from uy;, to ujg corresponds to the longest wavelength in Lyman series or the
smallest frequency, i.e. 4 =122 nmand v=2.46x10" /s in H-atom.
For deuterium, Z=1 and m, = 2m,, . Hence, its ground state binding energy is given in terms of
that of H-atom as

1+m,/m,

13.6eV - =13.6el-(1.0003)

1+m,/m,

This indicates that the upward shift of frequency is about 0.03% from the case of H-atom.

(b) The emitted radiation of frequency, v and/or energy /v has the momentum given by
2r  ,2nv  hv

p=hk=h—=h——=—
A c c
If the atom emits a photon of momentum p, it recoils back to preserve momentum, so that
|p|=[Pl=M]7]

with P denoting the momentum of the atom. Hence with

L 13.6eV (1-1)x1.6x107°J / eV

c 3x10%m/ s
=5.44x10" kg m/s
Thus the recoil velocity of H-atom is given by
V|- 5.44x107kg-m/s
1.673x107 kg
=325m/s

For deuterium with mass 2xm,, |V| =1.63m/s.

(c) For the H-atom, the transition frequency from w3, to u;q is given by
1
hv,, =13.6eV (1 —3—2),
that is

v, =2.93x10" /.

For deuterium the frequency is practically same within the error of 0.03%.

10.10 (a) With Z=1, the ionization energy is given from (10.43) by

4 2
_ Hey, 2 e

= , e, =
tooon M 4ne,

Thus, E; can be simply analyzed based on the ionization energy of H-atom:
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2
E,:13.6eV[ij [ﬂj
&, ) \m,
1 2
~13.6) — | L.V
(11.9)( )

=0.leV

(b) The atomic radius is also conveniently analyzed using radius of the H-atom:

P Rdnee,

a, =

pey e’
=0.05¢, nm
=0.6 nm

(c) Using the de Broglie relation,

h

A=—
p

where the momentum is found from
2
P\ _Lp o1,
2mn 2 2

p=(2m 0.05eV)"*

one can write

=(2-9.1x107"-1.1-0.05eV -1.6x107"° J / eV)"?

=127x10%kg-m/s
and

A==
p

_6.626x107J -5
- 1.27x10 kg -m/ s
=522x10"m
=522 nm
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Chapter 11
11.1 (a) The normalization condition of this composite wavefunction has been built in separately:
<9y(1,2)| 9, (1,2) >
=<ty (D 1t100 (2) 2, | 11100 (D 1110(2) 2, >
=<0 ()] 1410 (1) ><14,09(2) [ 14309 (2) >< 1, | X, >
=1

(b) Since S = S, +8, , one can write using (11.20) — (11.23)

A

Sz:§lz+§22
Aal(l 0 1 0
== +
2/lo -1} Lo -1),
§ =(8,+8,)-G, +5,)
hZ

:_(0_1 +0,)(o,+0,)

hZ
=T(0'12 +022 +20,-0,)

s R T R [ [ S e Y R [

0
I lI0Rt0)

<2181 2. >=0

Also, using (1) one obtains
2

§ 17, 5= 12323 1, >

2

i
=— 0|y >
2 | X,

Therefore,
<z, 18y, >=0
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11.2 (a) Because of the orthonormality of u , (j)the symmetrized and antisymmetrized wave

nlm

functions are also orthonormal:

%<u100 (D) 2500 (2) F 14,6 (2) 100 (1) | 14309 (1) 10 (2) £ 21109 (2) 13 (1)> =1

and

%<”100 (D) 1130 (2) + 1410 (2) 11500 (1) [ 24300 (1) 2300 (2) =49 (2) 5 (1)> =0

Also the singlet and triplet states defined in (11.33),(11.34) are orthonormal :
<X N> A 2 >=1
<X\ x.>=0

(b) In evaluating < S>>, < S_ >, the spatial integration involving the symmetrized and

antisymmetrized wave functions automatically yields unity, and one needs to consider the spin
operators acting on the triplet and singlet spin functions.

A

=<2, 18, +5. | x, >

=0

AR

=< o 15 +8,)(5,+5,) | x, >
3n°

=2.20
4

where use has been made of the results of the previous problems.

Similarly one can write

<¢,S. o, >

:<Zs |§12+§22 |Z€ >

=fh-m, m=1,0,-1
<018 g, >

=< X, |(§1+§2)'(§1 +§2)|Zs >

hZ
L2342
1 ( )

=2 i?

corresponding to (¢ +1)i*, (=1.

11.3 Let
n =1001/2, n, =2001/2, n, =200 —1/2

denote the set of quantum numbers including the spin. Then the 3-electron wave function is
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represented by the Slater determinant as
P |t @ u,2) u,3)
¢(1,2,3) = —=1u,,() u,,(2) u,(3)
\/ﬁ un?a (1) un3 (2) un3 (3)
1 g (a(l)  u(2)a(2)  u(3)a3)
= ﬁ Uy (Da(l) 1,00 (2) 2(2) 1 (3) (3)
s (DB 1400(2) B(2)  14,00(3) BB3)

The wavefunction ¢(1,2,3) consists of a linear superposition of 3 quantum states, for
instance, ;5 (1) 1550 (2) t0(3) -
Thus,

H t10(1) 30 (2) 1430 (3)

=(Ey +2E,) tt109(1) t40(2) 14394 (3)

and all other terms in (1,2, 3) yield the same energy eigenvalue.

Therefore

<o(1,2,3)| H | 9(1,2,3) >=E, +2E,

11.4 (a) The Hamiltonian reads as
3
H=YH, +H'
j=1

where H, represents the Hamiltonian of a hydrogenic atom, i.e.

R h> , e 2 , e
HOj:__Vj+_M , eM =
2m 7, dre,

and H' accounts for the Coulomb interactions among 3 electrons :
~ I 1 1
H'=e;, [— +—t—
ha  hs I
Thus, if H' is neglected, one can write

H u,,(Du,,(2)u,;(3) = 23: I:Io_; u,, (Du,,(2)u,;(3)

j=1
:(Enl + EnZ + En3)un1(1)un2(2)un3 (3)
(b) Let
a, =100
a, =10043
a, =200« or 2004

denote the set of quantum number, nlms . Then, the 3-electron wave function in lithium
atom is given by
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1 u, (D u, (2 u,3)
0(1,2,3) =—=u,, (1) u,,(2) u,(3)
V3! us() u,(2) u,;0)

1 (D a(l) uy(2)a(2) uy,3)a(3)

NG U (D BA)  u09(2) B(2)  14(3) B(O3)

g (1) 1y (2) (2) 10 (3) (3)

(c) Each term appearing in the wavefunction, ¢(1,2,3) yields the same energy eigenvalue

when acted upon by H ot H 0wt H 03 -

For instance
3
z H 0j Y00 (1) 1,00 (2) 154 (3)
=1

; (2E, + E,) 1,45 (1) t469(2) 1,04 (3)

so that

3 ~
<o(1,2,3)| ) H,,; | (1,2,3) >

Jj=0

—2F, +E,

Similarly, each term yields the same spin eigen value. For example

(§lz +§22 +§3z) a()p2)a(3)

=%h(l—1+l) a()f2)a(3)

=%h a(B2)a(3)

Hence

<p(,2.3)[5.1p(1,23) >=

11.5 (a) The 11 electrons in Na atom are assigned the following set of quantum numbers:

100a, 10083, 200z, 2003
211a, 2118, 210a, 21083
21-1a, 21-18, 300a or fB

(b) Let Z.¢ represent the effective nuclear charge as acting on the valence electron in u3, state.
Then its radial component is sealed approximately

r
exp——2L—, n=3.

a,n
The ionization potential of the valence electron is then given from (10.43) by
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Z2e 1 7>

Ko © _13.6er. 20 =5.14e
2h 3 9

from which one finds Zeﬁ, =~1.84

IP =

1

Given Z,; the atomic size is to be roughly estimated

2.3
2<r>~2-ﬂ~ x0.05nm = 0.16nm
g 1.84
which is in reasonable agreement with measured data of 0.17nm

11.6 (a) Electrons in solids, in particular in metal are generally modeled as free particles with the
quasi-continuous energy spectrum. Thus, the highest energy level Ef is specified by

Eg
N= jo dE- g, (EW

where N is the number of electrons in volume V and

\/§m3/2

g3D (E) = ﬂ'zh3
is the 3D density of states derived in chapter 4. Performing the integration one finds

E: \/577’13/2 %Es/z
N & A

2 2/3
PRTE
8m\ 7V

For the electron wavefunction one can use the wavefunction of a free particle confined in 3-
D box, considered in chapter 4.

1/2
E

or

(b) The total energy per volume is then given by
Ep
E, = jo dE - g(E)E

\/Emm Ee s
= [ EVdE
:\/Emm_%Es/z

~r 5"

(c) To proceed further, £, has to be found from (a), using the given values of N/V, i.e.

e _(6.626x10'34Js)2'(i -102“6}2/3 N _1073
m

b

T 8x9.1x107'Kg \x Vo
=2.716x107"J
=1.7eV

With Ef thus found the total energy is to be evaluated to be

. 31\3/2
= \?((9'”10 34)3 %(2.716x10‘l9)2/3 ~1.61x10°J
7 -(1.055%10

69



Er in turn can be expressed in terms of the average electron energy <E> times N /V = 10* /

= (%))

(E)= L61x10°J 1
1.602x107"°J -1eV (N/V)

3 .
meter’, 1,e.

so that

=leV

(d) The Fermi energy Er for 2D electron system is specified by
_N [ _1/72
N/V,p _ZJEn dE- g,,(E,), Vap _l/L """ (1)
where the 2D density of states are given from (4.30) as

m
gp(E) =
2P h’
with E, denoting the energy eigenvalues in the quantum well.
For simplicity, assume quasi-continuous energy spectrum. Then one can recast (1) as

o om m 1
NIV, =Y —(E,—E )= —E
2D E;)ﬂ_hz( F n) 7Z'h2 2 F
Hence
2
EF:i-zﬂh
Vip  m
46x10" 27(1.055x10°*)
{ (meter)z] 91x10""
=3.53x107"J
_3.53x107"°J
C1.6x107°Y
o
=22leV

The total energy is then given by
Er ok,
E; = Z _[0 dE- g, (E_En)
E,=0

Er m Ep
N

mEF2 ! ? _ n
2k -9 “TE
_ mE,’
6rh’
=0.54J =0.34x10" eV
Hence the average electron energy is given by
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0.34-10"eV =—-(E),, =4.6x10" -(E)

N
Van
so that

(E),, =0.74eV

For 1D electron system Ef is found by

where the 1D density of states is given from (4.31) in the text by

\/Em% 1
&ip (E’En) = ) A
h (E _ En) 2
Hence, using g;p in the integral one finds
] ]
E o ylE 22m” Y
jE” dE-g,, —7-2(E—En) T (E,.~E,)

Again assuming quasi-continuous energy eigenvalues for this 1D electron system (2) can be
recast into

2\/§m% & !
N _LNem E. —E 7
%/10 h Ez_o( F ")
E

_2\/§m%EF% 1 Y _E,
_Tjoa—g) dé, g_E—F
4amE,

- 3zh

Hence

VlD 4\/§m%EF% 1D
=1.57x107"°J
~1.57x10°J

N -19J
1.6x10 AV
—0.98¢V

The total energy is then, given by

2
EF=[N 37h ] , l:2.15x109
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Ep
E; :J. dE'ng(E_En)

_ZIEFdE V'

EF\/_m/2 A
EZO zh 3(E E)

(E-E,)"

2\/7m/E .
TI (1-¢)*de, &=

4«/§m%EF%
157h
=7x107"J

=4.38x10%V

Thus the average electron energy is given by

4.38x10° = [%J(E)w

1D

or

E) =2.03x10"eV
< >1D
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Chapter 12

12.1 Given the wavefunction,

o) =, ()1 (1) £, (1), (1))

<¢i|ﬁ|(/’t>

where H consists of 2 hydrogenic Hamiltonians plus additional Coulomb interactions:

one has to evaluate

+

2 —p 2 —p 2 2
et () () e
H=H +H,+* + +-H

R, 8 ) Ut

(see (12.26) in the text).

It is important to first notice that H is invariant under L.

Also, there are 4 possible combinations of wavefunctions u_,u, :

() () (1) ()
e, (n)uy (1 )y (1), (1)
0L +u, (ﬁ)u (g)u (ﬁ)“b (”_2)
V. u, (ﬁ)u (r_z)ub (ﬁ)” (”_2)

Under interchange of the variables of integrations, 7 and r,,onecannote [ =IV, II =1L

Hence the evaluation of <I:I > needs to be done with the use of only I, II and multiply the

sum of these two results by 2:

(w1 ) (1) [, (1) (1))

=2E0+%+2C+ER, ---------- (1)

where

Also,
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2
€y

:J_{ZEOS2 +-M 52 +2DS+ECE} ---------- 2)

ab
where

2
Eep = {u, (1), (1) |2, (1) (1)
12
Hence, by adding (1), (2) and multiplying the results by 2 one obtains
£ - {p.|H|p.)
(o:]0.)

2
2[2E0(1iS2)+2’(1iS2)+2C+ER[iZDSiECE}

ab

2(1iS2)
e, L2C+Ey  2DS+E,
R, 1§’ 1+S8?

a

=2E,+

12.2(a) Given the wavefunction,

(p(_a’r_b) =N (

the normalization constant is determined by

I:Idz-cﬂ*(r_aa”_b)‘(”(r_a’r_b)
:sz-dg(ua* +ub*)(ua +u,)

u,)+1,))

=N*(1+1+25)
where the overlap integral is given by
S =<ua ub> :<ub ua>
(see (12.8)). Hence
1
N=———
[2(1+ S)]A

(b) Next consider H acting on (p(ra R rb) ,

H-p(r,.1,)
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u,)+1,))

’27 a
Thus,
(o(rn)| H|o(ro1))
1 1 1
- e L )+ )
b ra b ra
1
_E0+E(C+D) ---------- (1)
where
CE—eM2 <ua — ua>

1
=—€M2<“b|r—|“b>

a

1
Z|“b>
1
=—€M2<“b|r— ”a>
b

(see (12.28b),(11.29b)). Clearly (1) is agreement with (12.13) corresponding to the symmetric
combination of u, and u,.

D=-e,’ <u

a

12.3 Given R, =0.24nm, v, =1.1x10"/s and
1 1 1

Homy, Mg
ie. u=23.3x10""Kg one can determine A, « and the bonding energy as follows. First,
start with (2.32) in the text,

2

AE(R) = Ade —%+K,
with K=1.49 eV, e, =¢’/4ne,.

R, is determined at the minimum value of AE(R), i.e.

2
Re

e

or

75



Also, the effective spring constant, k is specified as

k=uw’ =uRrv,)

_0’AE(R)
oR* |,
e 2
=Ao’e ™™ -2 )
Combining (1), (2) one can write
2 2
e e
a#—Z#:uaﬁ ---------- 3)
« is thus found from (3) using the known values of R, @, ’:
2 uw’R’
oa=—+ 'ue—ze
Re eM

=3.6x10" meter™
With « thus found A can be determined from (1) :

A=—2 %

=6.28x107"°J

=3.92x10°eV
Finally, with A, « thus determined the bonding energy can be found by evaluating AE at R=
R,:
2
AE(R) = Ae ™ —% +1.49eV
=-3.82¢eV
12.4 To recast the coupled Hamiltonian of (12.41),

~ n o lkxz w0

1
+— +— —
2mox? 2 2mox, 2 R’

introduce new variables
E=x +x,
n=x,—-x

or by inverting

Thus one can write
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o o0, 2am

aX’.l - aé: aXl 877 8x1
0o 0

o* _i(i_i}%+i(i_ﬂja_n
6x12 6§ aé: 877 aéf 677 aé: 677 aXI
0° o? 02

+
os> osom  on’

Similarly
62 82 az 62
2 = 2 +2 + 2
0x, 2 o&kon on
Hence
_rfe | @
2m\ ox”  ox,)’
2 2 2
:_h_'z ‘ >t ¢ 2
Also,
%k(x12+x22)
1,11 2 1 2
2 [4(5 77) 4(5 77)}
1
:Zk(§2+772),
and
e, ’
- RA;[ xlxz
2e 1
== RA§ 1(5—77)(5+77)
2
e
=g -7)
Therefore,
2 2 2 2
ﬁ:_h_a_z_h_a_Z l —§2+lk+772
2u 05 2uon 2
where

+
)
=,
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12.5 (a) The Hamiltonian consists of two hydrogenic Hamiltonians plus Coulomb interactions
between two electrons and two protons (see Fig. 12.7) :

A=l +0,+7

where
H :_h_zvz_i
a 2m 1 l’i
ity el
’ 2m ° 7

a:eM{i+1_ L ]

rn, R |E+K2| |K1 _R|

Here I, 1 are the displacements of electrons 1 and 2 from proton a, b respectively and
R=R,-R,, 1,=n-1

with & , & denoting the positions of protons a and b. Thus, |B + £2| represents the relative

distance of electron 2 with respect to proton a and |7_’l - B| is the relative distance of electron 1

with respect to proton B.

(b) Since 7, r, < R one can write

Rer] =[(Rer,)-(R+1,)]

where use has been made of

(+e) =l+ne+- , exl

Also
rl = !
o ‘Kz +R, _(Kl +Ba)
_ 1
|K2 -r +£|
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>

= _%(Xlxz + V), +lez)

(c) If H 0> H , arereplaced by 3D harmonic oscillators, the Hamiltonian reads as
H=H+H,+V
A n’ 1 .
H, = ——Vl.z ——krl.z, 1=1,2
2m 2

Here the perturbing Hamiltonian couples the coordinates of these 3D oscillators

2
€

V= _%(xlxz Ty, t+ lez)

Next, introduce new variables,

or inverting the relation one can write

K 0° 0° 0? 0? 0° 0°
et |t +——+
m X V) Zy
0° 0° 0° 0° 0° 0?
- bt |+ + +——
2ul\oé~ 05~ 06,
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hZ
. 2 2
—‘ﬂ( SV7)
where
1 1 1
— =4 —
L m m
1.€.
2
H=—
m

Also the potential energy is recast into

%k(i’lzﬂfzz)
1|1 1
Ik Hemn) (e n) (e n) ()]
—%k(ﬁzwy )
. 2
V= e}é (1-n)
2
1
o
T (5 )
Hence the Hamiltonian reads in terms of &£,77 as
N #?
H:—sz Zﬂv +2k(§ +1°)- 4R3(§ =
:_h_zv +— k_§ hZV +— k
2u 2 2u 2

where

1 e,’
k. =—k| 152
2 2kR
Clearly, I/-} now consists of two 3D harmonic oscillators, which are uncoupled and oscillating
at two different frequencies. The energy eigenvalues are therefore given by

E,LL =hw (nlx +ny, +n, +%}+hw+(n2x+n2y +n,, +%)

n.,..n, =12,

z

The characteristic frequencies are given by

Thus, the ground state energy reads as
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E, =%(ha) +ho,)

Now,
k/2 2 1/2
o =| 2] g lu
* m/2 2kR?
B O R (0 G VP 2+
2 2kR? 2 2kR’
where
o, =(kim)”
Hence
E, =3ho, —K% .......... (1)
with

) 2
Kzéhwc.l. Cu_
2 4 \ 2k

3hw, e,

32 K
The first term in (1) represents the ground state energy of two uncoupled 3D harmonic

oscillators, while the second term represents Van der Walls attraction proportional to 1/R°.

12.6 (a) Given the Hamiltonian,
H =H,+Eercosf

2 e 2 82
2 2
Hy=——V?-M | o 2=

=
2m r 4r €,

and a trial wavefunction,
P=c¢ |”100> +c, |”210>

u210> denoting the eigenfunctions of hydrogenic Hamiltonian, /,, one can

0°

with 1)) ,
write the energy eigenequation as
Hp=Ec, |u100> +Eercosdc, |u100>
+E,c, |u210> +Eercosfc, |u210>

= E(Cl |”100>+Cz |”210>)

Here use has been made of
H, |u100> =E |”100> , H, |”210> =E, |”210>

Rearranging, one caqn write

(E,—E+Eercosf)c, |u100>+(E2 —E+Eercosf)c, |u210> S | J—— (1)

, there result

Taking the inner product of (1) w.r.t. <u100 , <u210
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(El _E)cl +11y,Cy = 0 <omoemeee (2a)
s €+ (E; = E) €, =0 (2b)
where

m, = <u100 |Eer cos 9| u210>
m, = <u210 |Eer cos 0|u100>
In deriving (2a) (2b) the orthonormality of |u100> and |u210> was used, i.e.

<“100 |u100> = <“210 |“210> =1 and <“100 |u210> =0

(b) The coupled equations (2a),(2c) would yield trivial solutions, i.e. ¢, =c, =0, hence trivial

wavefunctions ¢, unless the secular equation holds true:

E-E m,
m, E,—E

Or expanding the determinant,
E*—(E,+E,)E+EE,~|m,| =0

The solution of this quadratic equation for E yields
1
1 2 2\ |2
E, 5{(151 +E2)J_r[(El +E,) —4(E1E2 —~|m,| )} }

1

:5{(5 +E2)i[(E2 ~EY +4|m]2|2};}

1
1 1
:5{(]51+E2)i[AE2+4|’"Iz|2}2} """""" )
with

AE=FE,-E,
Inserting (3) into either (2a) or (2b) one finds ¢, c¢,. For example, insert E, into (2a),
obtaining

[AE+(AE2 +4|m12|2)1/2}

C_z :—EI_E+:

m, 2my,

a, =

(4a)

o,

Likewise, insert [, into (2b) and obtain

%

G| ___ My
al, E,-E,

L 2m,, (4b)

AE—(AE2 +4|m12|2)1
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Indeed the right hand sides of (4a), (4b) are seem identical, as they should.

One can also findc, interms of ¢, by inserting £ in (3) into, say (2b) :

.
2m,,

] [AE+(AE2 +4|m12|2)1/2}

Using (4), (5) one can write
@, =¢ (|“100> ta, |”210>)

where ¢, can be used for normalizing the wavefunction, if necessary.

(¢) Consider first
CALY
= |Cl|2 <u100 Ta, Uy, ‘”100 + aiu200>
=l (1+ecf)

Next, consider
<Ki> = <¢i |K|¢i>

2
<“100 + Ly, |K|”100 + ai”210>

= |Cl

- |cl |2 [a:r <u100 |K|u21°> * C'c']
Hence
<l’ > _ G <”100 |K|u210> rec

1+|0(i|2

The atom — dipole is thus specified as
/uind =—e€ <K¢ >

and inasmuch as «a, ocE, g, , cE asexpected.
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Chapter 13

13.1 The first order level shift and modification in the wave function are given from (13.18),(13.19) as

Wl:<um|ﬁ'|u > ammeme (1a)

<
oV =lu, >+ “k|H|” (1b)

k#m k
Given H'=k,x’ +kx*, the matrix elements oc <u, |x*|u, >, <u, |x*|u, > have to be
evaluated. In so doing the orthonormality of {u,} and the recurrence relation, (8.32) can be

usefully employed.

Repeating the relation (8.32) repeatedly, one can write

m+1

EH = ;H +mH,_

EH :l[l H,,+(m+1)H, } {%Hm+(m—l)Hm_2}

212
:i m+2+(m+—)H +m(m-1)H, ,
EH LS 1 +(m+2)H, +(m+—) 1H +mH
m 4 2 m+3 2 2 m+l

+m(m—1) {%Hm_l +(m— 2)Hm—3:|

2
:%Hm+3 + 3m4+ 3 Hm+1 _3’;1 H”171 + m(m — 1)(m — 2’)[—1”173 ______ (23)
SHa = 116 ety (2’” E)H,,,, +%(6m2 +6m+3)H,

+ ) (4m3 —6m’ +2m)H, _, +m(m—1)(m—-2)(m-3)H, - (2b)

Hence (la) can be evaluated by using (2a),(2b) and the orthonormality of {u, } (see (8.38),
(8.40)):

W, = I_Z dxu, (k,x* +kx*u,
, 1
N[ vzt en, [ dge e H,, s (@j
2
Nuks j dée s H? L 6m? +6m+3)
o 4

T
T m:

ky 1
=—35-Z(6m2 +6m+3)(
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L

4
04

(6m* +6m +3) - (3)

I

In evaluating (3), terms oc to k, simply do not contribute, since £'H,~does not yield any
term oc to /. For ground state, where m=0, W, =3k,/ 4a* , while for the first excited state
in which m=1, W, =15k, / 4a*.

To find the first order modifications in wave function one has to find and evaluate the non-
vanishing matrix elements, <u, |I:] "|u, > for given |u, >.

This can be readily done by noticing from (2a) k=m+3, m+1, m-1,m-3 and from (2b) k=m+4,

m+2 m-2, m-4 and evaluate the corresponding elements in a similar manner.
For the ground state (m=0), for instance, one can write for k=3
<uy |k, X |u, >
N;-N,

4
04

1 1
1 a 2 « 5\/— 3
= . 273!
8a* (ﬁzmj (&)
B
2a°

Thus, the modification to the ground state eigenfunction, |u, > resulting from |u, > is given

from (13.19) by

[aceH;8

i, NI
g > == ——|u, >
E,-E, 2a° 3ho

One can likewise find the modifications resulting from other terms.

13.2 (a) Without the perturbing term, H' , H simply consists of 2D harmonic oscillator with kx,ky

spring constants or @, ,®, characteristic frequencies, i.c.

R 2 2 1 2 2 1
H= —h—a—2+—kxx2 —h—8—2+—k y?
2m ox” 2 2moy* 27
Hence the energy eigenfunction is given by
¢(x7 y) = unx (§x ) ul’l_y (5}})
with
1,»
u(E)=Nye " H (), £ =ax
1.,
,,gy
ul’ly (é:y) = Nnye ? Hl’ly (é:y )9 é:y = ayy

and
I
) ,
a;=(me;/h)*, o;=k;/m, j=x,y
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The eigenenergy reads as

1 1
E _=ho(n, +E)+hwy(ny +5)

nx,ny
with nx,ny:O,l,2,...
(b) The level shift due to the first order perturbation analysis,
W, = (1, (£)u,, (£) | C,, [, (£ ), (£,))
yields zero, i.e. W, =0. This can be seen simply from the parity consideration or from the

recurrence relation, (8.32). For instance, the right hand side of

+ annx—l

nx+1

XH, () H, = H

does not contain /,_, so that W, =0 . However, there is a level shift resulting from the second

nx 2

order perturbation analysis. This shift can be accounted for by the matrix elements considered in

(8.51)
Jn, +1 ,

——=— n. =n_+1
Qmao, /h)?

<um|x|um,>:

0 , Otherwise

Jny-i—l

Q2ma,/n)"*’

NI/
Yy r_ _
n,=n, 1

i T

’_
n, —ny+1

0 , otherwise

Thus, given the state |u,_,u > the level shift specified in (13.24) is obtained as

nx?"ny

EY =ha)x(nx+%)+ha)y(ny+%)+AE(2)

nxny

uu ., |C. |u >

) _ ‘< nx'""ny Xy nx,ny

AE™ = z 2
nx'#nx [Emv,ny - Enx',ny']

ny'#ny

Here AE is contributed by 4 combinations of the eigenfunctions lu, . u . >:

nx£l2 “ny£l :
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2 2
u |C_ |u u |C_ |u
2 ‘< nx+1,ny+1 xy nx,ny nx+1,ny—1 Xy nx,ny
AE( ) = +

nx,ny - Enx+1,ny+l nx,ny - Enx+1,ny—1
2 2
" ‘<umc—l,ny+l | ny | unx,ny> n ‘<unx—l,ny—l ‘ ny ’ unx,ny>
Emc,ny - Emc—l,ny+l Enx,ny - Emc—l,ny—l
» n+l o on , n.+l o,
Qmao, /1) 2mo, | h) Qma, /1) (2m, | h)
=— - +
ho +ho, ho,—ho,
2 nx . ny +1 2 nx . ny
Qmao, /1) 2mo, | h) Qma, /1) (2mo, | h)
- +
ho,-ho, ho, +ho,
_ C*h ~ (n,+1)(n, +1) s n.(n,+1)—(n +Dn, . n.n,
4m’*w.o, o, +0, o, -, o, +o,

For the ground level in which nx =ny = 0there is only one state contributing to AE @

| u >, so that one can write

nx+1,ny+1
2
C 1

AE® =—
2
4dm 0.0, (0, + a)y)

and up to the second order perturbation analysis
C2
2
dm o0 (0, +0,)

)

h
Ey, =E(C')x +0)y)_

(c) Introduce &, 1 as

One can invert the relation, obtaining

=)

1
y—;(é—n)

and write as usual

(o o o o
- —2+—2 =—— —2+—2 ,,u=m/2 ------ (4)
2m\ ox° Oy 2ul 0&° 0On

and
lk)cz+lk 24+ Cx
7 5 v Y
1

Lo o 11 oo, o 1 o
=Sk 2em+ Dk, (e =2em+ Co(eT =)

1.€.
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24(5 +17° )k, +k,)+— C(f =17") == (5)

where for simplicity an assumption was made, ie k =k, sothat 2&n(k, —k,)~0.

With the use of (4),(5) the total Hamiltonian reads as
~ oo o1, h2 0’

A=-1"9 2k O ik +C
mod 27 Tomgr 2V TV
2 2 2 2
B
2o 2 Taper 2

with

It is therefore clear from (6) that the two coupled harmonic oscillator system becomes decoupled

into two independent oscillators with two different effective spring constants,

Hence the energy eigenvalues are given by

E

1 1
weny =, (n; +§)+ha)7(n,7 +§)

where
1

o, = (k, /ILI)E

;[;(kx+ky)iC}

1/2

Hence the ground state level is given by
h
Ey, :5(0) +@_)------ (3)

To compare the above two results (3),(8) one may expand (7) as
1/2
C
o, = (o) | 1+——
N

1 ¢ 1 C
AR

with
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2 2
<a)2 > C()x + a)y
2
Hence

2
Eo =§ \/<a)2> B Z;Z <w21>3/2 ©)

and, with the identification
2 ~
<a) > RO to,

(3) and (9) are in rough agreement, in particular the level shift.

13.3 (a) In the presence of external field, E, the electron is subject to force —eE. Thus, the
corresponding potential energy is given by
V =—(—€eE)-x =eEx
with V(x=0)=0

(b) The ground state wave function of the infinite potential well is given from (4.8) by
1

u,(x) =(£j2 coszx, _w <x SK
w L 2 2

with the energy eigenvalue given from (4.8) by
hZ 7[2
" 2mw?
Thus, from parity consideration one can write
<u0 |€EX|M0>=O,

That is, there is no first order level shift.
To obtain the second order level shift one has to consider the matrix element,

<un | eEx | ”1>
where |u, > consists of two sets of eigenfunctions, {cosknx} and {sinknx} (see (4.7)).

However, in the light of the parity consideration, only the latter set yields nonzero matrix
elements. Thus, consider

<un |eEx|u1>

=£eEJ'W/2 dxcos(ﬂjsin[zn—ﬁx)x ------ (1)
w -2 /4 W

Now, with the use of the trigonometric identity
sin(a £ b)x = sin ax cos bx  cos ax sin bx

one can write

cos| X |sin nzx) 1 sin1(1+2n)x—sin£(l—2n)x
w /4 w

w 2

and evaluate the integral in (1):
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13.4 (a) Given |u

w2 (ﬁxj ) (2n7zxj

I dxcos| — |sin X
-W /2 w W
—Z J. dxsm[—(l+2n)x} X

w2

1

= g ﬁsin {% 1=+ 2n)x} —%COS [%(l * 2”))5}
[(1 + 2n)} —(1£2n)
W w

L I U
2| (1420 (1-2n)

_ aw? 1+4n°
2t (1-4n?)
Hence, inserting this result into (1) and using (13.27) in the text,
8’EW? « 1+4n’ 1
7z2 Z;‘ (1-4n’) E,—E,

-wi2

AE? =E, +

with
Wzt o,
n = 2 n
2mW
For the first excited state, u, there is again no first order level shift, i.e.
E, =<u2 |eEx|u2>:O
But, there exists the second order level shift, the analysis of which can be carried out in a way

similar to the of the ground state, |u, >

. > and the perturbing Hamiltonian H'oc z oc cos@ one has to find |u,,,, >
such that
| H'u,

The evaluation of this matrix element requires both angular (8,¢) andradial (r) integrations.

>0

nlm n'l'm'

Here, the angular integration determines whether or not the matrix element becomes zero. Thus,
one has to consider

27 V.4 « 21 1 %
_[0 d(pJ-O sin@d0Y, cosbY,, = IO dgo.[_ld,uY, uY, ., p=cost
Since Y, oc exptimg, for the @ -integration not to yield zero one should have m =m’. Since

cosf oc B and is odd in parity, the product BF, should also be odd in parity for the O-

integration not to yield zero. This requires /—/"==1.
Hence the selection rule requires
Am=m—-m'=0
Al=[-1'=

(b) For the perturbing Hamiltonian
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H'=exEcoswt
=ersin@cos gE, cos wt
the selection rule is determined again by the angular integrations:

< Z’lnlm | H, | un'l'm' >

oc'[OZEd(p'[_ll duY, sinfcosgY, ., 1=cosd

n
The integrand of the ¢ -integral reads as
elmme. (e"” +e ) /2
oc @ m=me | it =m-1)p
and in order for the ¢ -integration not to vanish
Am=m'—-m=+l.

Also, since sin@=+/1—cos@ =+/1—* the u -integration does not vanish when the product

PI’"F;'”' possesses an even parity, i.e.
Al=1-1"=0,2,...

13.5 (a) In the presence of a harmonic field,
E=E,coswt

the electron is subject to force,
f=4qE

and the corresponding potential energy or the perturbing Hamiltonian is given by
2 _ _ qux iot —iwt
H—IO( f)dx =—qEx = > (e +e ) —————— (D

where the potential at x=0 has been taken zero.

(b) The oscillator initially at the state, say |u#, > can therefore be induced to make a transition

to other state by H' . The transition rate can be analyzed using (13.50) in the text:
i, =—LH' e (2)

where
H'=<u,|H"|u,>
is the transition matrix under consideration and

1
=—(E, —FE
a)n h(n n)

n

is the transition frequency between the initial and final states and a, () is the expansion
coefficient of the final state.

Next, using (1) for H' and (8.40) in the text for harmonic oscillator eigenfunctions, u,,u, ,
one can write

<un.|ﬁ'|un >=<un|ﬁ'|un,>
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E . . ©
=— % (e + e""”t)_fi dxu, xu,,
(n+1)"/2ma, /1), n'=n+1_____ 3)
= _qTE:()(eia)l + e—i(z)t) n1/2 /(2ma)c /h)1/2 N " n _1
0 otherwise

where use has been made of the matrix element (8.51) with ®. denoting the characteristic
frequency of the oscillator.
Inserting (3) into (2) and performing the time integration, there results

1/2
E ! - ;
an'(t) = __q 0 (—l’l j . IOt dt '[e’(m+wn'n)t + efl(mfwn*n)lil ______ (4)

2h \ 2mae, / 1
where
n'=nxl
Thus,
1
o, =—(E. —-F
n'n h( n ﬂ)
1 1 1
=—|ho.(n+—)—hw (n+—
h{ . ( 2) . ( 2)}
=, (n'-n)
=taw,, o’ =k/m

depending on whether n'=n+1 or n'=n-1.
Now consider the resonant interaction between the field and oscillator, in which the oscillator

frequency, @, and the driving frequency, @ are nearly equal to each other.
Then for n'=n+1, ®+@,>w—®, and one can neglect the fact oscillating term in (4). By

the same token, for n'=n—1, one can neglect the term, exp—i(w—@,)t. With this fact in

mind, one can perform the integration in (4), obtaining

1/2
a, (t) - _ qEO n . ' 1 I:eii(a)—a)c)t _ 1:'
2 (2mw,/h Ei)ow-w,)

=_Q_Eo( n' Jm pe sin(w—w, )t 5)
2 \2mw,/h (v-w,)
Inserting (5) into (4) one finds
ﬂ , n'=n+l
o ()= _q_]EO_ei,-nwwzn sin(w -, )t | 2ma, /h)"?
! h (0—-m,) n'? '
omo iy "

The probability of the oscillator making the transition from n to n’ states at ¢ =7/® is thus

obtained by putting t=7/®, ie. |a,(7/ a))| . For the case of resonant interaction, in which

w-o,=0, sm[(w—-w,)t]/(o-w, )t =1 and one can write
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212 2 [
2 E:(r/w) [n+1, n'=n+l1
|an'(t)| =q 0( ) {

2mwh  |n n'=n-1

13.6 Given a circularly polarized light,
E=E,(Xcoswt + ysinmt)

the electron is subject to force

f=—cE

and the corresponding potential energy or H' is to be found in a manner similar to the problem
(13.5). One can thus write

H' = —eE, (xcos t + ysin o)
=—eE rsin 6 (cos ¢ cos wt +sin ¢sin awr)

Given H'one should find u,,,. such that

<un10|[:], un'l‘m'>¢0 ---- (1)

Again the condition (1) is determined by the angular integrations. For the case of the first term of

H' one should consider

sin @ cos @

<unl() uﬂ'l'm'>
=I02” dpcos (pJ._l1 dusin@Y,Y, ., p=cosd

Since Y, is independent of ¢ and since cos@= (e +e”)/2 in order for the ¢ -
integration not to yield zero, m'==1. That is
Am=0-m'==l

1/2, for the @-integration not to vanish, B x P, should have an

Also, since siné=(1-u?)

even parity. Hence
Al=]-1"=0,12,...

One can similarly find the selection rule for the second termin H',oc sin @sin @ . That is,
Am=0-m'==l
Al=1-1"=0,£2,...
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Chapter 14

14.1 (a) Consider for example the matrix element

<y, | 2| Uy, >=<us,, [rcosf|u,, >
2z 1
3
« [dp[duuY;,¥,,, u=coso
o

Thus, for the ¢ -integration to yield non-zero value, Am=m—m’'=0, and therefore

(1) Y;) Y, (i) YZL Y., are the possible contributing combinations.

For the w -integration to give non-zero value the two spherical harmonics should provide odd
parity in u . The combinations, (i), (ii) satisfy this condition (see Table 9.1 in the text).

Hence one can write for the case (i)
<y, |rcos|u,,, >

30 r(11
O

a

3/2 7
1 1 1 1 8(6a
=] - 27. 2] 2% |
(%] (327[)”2 (cz())3/2 81-(67[)1/2 15( 5 j

=0.824,

Also, for the case (ii)

<y |rosOluy,, >

a

Y 1 (1Y 1 4(6a Y
=|—| — — —mzﬁ._(ﬂJ 6!
a,) (327) "\4 ) 81:(67) 1505

=1.78a,

rs 3
2z 1 © _%, r
=Ny Ny '_[0 d(oj_ldﬂﬂz(l—yz)-'[o ridre “©° (—J -7

Thus, the average atom dipole moment associated with the transitions from |u;,, > to

|y, > is given by
- 1
y:e§[<u3zo | 7CO8 0| 1y,y >+ <ty | 7080 1y, >+ <us, | |rcosOuy, > ]

=1.46eaq,

One can evaluate <y, |X|Uy,,, >,<Uy,, |V|U,, > inasimilar manner.

Based on the result of (1) one can estimate the spontaneous lifetime as follows. The total

spontaneous transition rate is given from (14.58) by
3~2 3
_ 167" v,

sp gohc3

where
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Vo

_E-E _13.6eV (iz—izj —2.87x10" /s
h h 2° 3
is the transition frequency. Inserting £ and V, thus found one can evaluate WSP :
W 647" -8.98x10° (1.6x107"")*(1.46x0.05%107)*(2.87x10")’
v 6.626x107* - (3x10°)’
=1x10" /s

where the Coulomb constant (=1/47&,) has been used.

Hence the spontaneous lifetime of |us,, > stateis ~1/W, =0.1ns

(b) For n=2, (=1,[p.>,|p,>,| p.> states are given from (10.55), (10.56) and table 10.1

in the text as
1/2

|p, >= % sin@cos R, (r)
3 1/2
|p, >= . sin@sin R, (r)
3 1/2
p.>=| 1| osOR, ()
3/2 1/2
with Rﬂ(p){aioj (2—14j pep“,p=azo'.r2

Consider for example |p_ > state making a spontaneous transition to the ground state,
| 4109 >

<p.lz|ug >=<p,[rcos@|u,, >

3 1/2 1 3/2 1 1/2 1 3/2 1 o | r “addy
== = |=| |—| —=[Tdo[ duw®[ drr*|Z1les *r
(47[} [aoj (24) [aoj \/;'[0 goL HH J‘O [aoj

=0.37a, = 0.019nm

The corresponding spontaneous transition rate is given by

W =167r3ﬁ2v3
sp 3
&hc
where
p=e-0.37a,
and
E —E 13. 1
v():#:ﬂ 1-— |eV
7] h 2

Inserting these values into W, one finds W, =1 x10'" /s

S,

Hence, the spontaneous lifetime is about 0.01 ns.
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14.2 (a) The Hamiltonian consists of two terms
H=H,+H'(t) - (1a)
where the dipole interaction term is given in terms of the electric field with the polarization

vector € , and the electron displacement from the nucleus, 7:

H'(t)=—[E(t), ft=e(e, 1) - (1b)
The wavefunction is then to be expanded in terms of the two energy eigenstates interacting with
the field, 1.e.

w(r,0)=a()e™™ |1>+a,()e™ | 2> (2),
The Schrodinger equation reads as
iha, (1) "™ |1> +ha a/(t) ™ [1>+ iha, () €™ | 2> +ho, ay(t) e ™ [ 2>
=(H,+H)|[a,() ™ [1>+a,() ™ |2>] 3)
—(E,+H"a()e™ |1>+ (E,+ H)a,(t) e ™" |2>
With the identification, E, =ha®,, E, =hw, (3) reduces to
ih| @, (6) e | 1> +a,(t) e [2>]
= ]:1’[611 () e |1>+a,(t) e’ |2 >] ------ 4)
Perform the inner product on both sides of (4) w.r.t. |I> and |2>, obtaining
iha (1) e =<1|H'|2> a,(t) e - (5a)
ihay () ™ =< 2| H'|1> ()™ - (5b)
Here use has been made of
<1[2>=<2|1>=0
Also one can write
<1|H'|2>=<2|H'|1>
=—HE()

where

fa=e<lle -r(2>

Thus, (5) can be put into
( ) i
i, (1) =i " e (1)

( ) 7la)ota (t)

az(t) —l

where
Oy =0, — @

represents the atomic transition frequency.

(b) In Schrdédinger picture, the wave function is represented by
W(Z’t) = als(t) ’ 1 > +a2s(t) | 2 >
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14.3

and the Schrodinger equation now reads as
i[a, () [1>+ad,,(t)|2>]
=E a,(t)|1>+E, a,,(t)| 2> +H'(a, (1) |1 > +a,, () | 2 >)
Performing the inner product on both sides of (7) w.r.t |I> and |2>, one obtains
iha, (t)=E a,(t)— jtE(t)a, (1)
iha, (t) = E, a,,(t) - fE(t) a,,(1)

Or equivalently,

(E

a, () =—iw, a, (t) +1i HE() a, (t)------ (8a)
0E
a,. (1) = —iw, a, (£) +i 2 h(t ) a, (£) —— (8b)

with o, :Ej /h, j=1,2
Introduce

—ia)jt

ajs(t) = aj(t)e ______ (9)

Then

[0

) ] —loit . —iw;t
a,()=a,()e " —iw;a,(t)e " ----- (10)

Inserting (9),(10) into (8) one obtains the coupled equation identical to (6).

(¢) Note from (9) that
| ajs(t) |2:| a(/(t) |2e Jj=12
which points to the fact that the probability of finding the system in the j-th state is the same in
both Schrodinger and interaction pictures.
Also, the atom dipole moment, jz=e <r > is described by
faoe<y|rly >
In Schrodinger picture one can write

* *
<r>= <(alsul +a,u,) | 1| (ayu, +a 2s”2)>

=a, a, <1|r|2>+cc.

In interaction picture,

iw, —iay

<r>= <(al*ei“"’u1 +ae™u,) | r|(a, e ™y, +aze””ltu2)>

=a, a,e’™ <1|r|2>+cc. (12)

and in view of (9), (11) and (12) are identical.

Given the coupled equations

with
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LE .
QE2_hOa AEA—Z(71_72)9

look for the solution in the form

Inserting (2) into (1a)
iSe™ =iQal e™
Hence
N
ay(t) = 5 e (3)
Next inserting (3),(2) into (1b), one can write
%Z(S _A) ei(S*A)t — I-QeiStfiAt

Or
§*—AS Q% =0 ----m- 4)
This quadratic equation for s can be solved as

S, :%(Ai\/A2+4Qz) ------ )
Therefore, @|(t) is found as
a = A4, + 4 e (6)

where A, are two constants of integration.

Hence
— 4 Nt
a, =ae
il[A—i(yl —ry) VA2 1402 :lt—}/lt il[A—i( 71=7,)—N A2 +4Q2 :|t—71t
=A.e? +A4e?
il[A+i712+\lA2+4Qz }t il[A-H'ylz—\//\z-MQZ ]t
=A4.e? +4e?
with
}/12 = 7/1 +7/2

Likewise, one can also find
at)=Le™, A=A—i(y,-7,)
iQ
A+S+ PUCES AS. PUCENG

Q

AS —il‘:A—i(;/]—}/z)—\/A2+4QZ]t AS —il[A—i(yl—y2)+\/A2+4QZ}t
=—tte 2 +——e ?

Q Q

Hence
a,(t)=a,(t)e™
_ A+S+ —i%[A+i;/lz —VAZ+40? jlt AS —i%[A—i;/lz VA2 +40? Jt
Q Q

e +—e - e (8)
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(b) From the initial conditions given, a;(0)= 1, a,(0)= 0, the constants A, are found.
From (7),(8),
A +4 =1
S A4, +5 A4 =0
so that
o 5|
L
I 1| § -8
S S_‘

+

+

Or more explicitly,

1 A—i(y,—y,)— VA +4
2

A4 =- (8a)
JA? +4Q°
- 1 A—i(y, —y,) +VA? +4Q° (8b)

VA +4Q° 2
Inserting (8) into (7) one obtains the complete solution,
1o e
a(ty=e" " AT ) pn l L AT 408 |+ cos| LA 4 4% | e
VA +40° 2 2

1 1 1
—(ir+y)e ] i—VAZ+4Q%¢ —i—VA2+40%1
a,(t)=e? " 5{A+ S.e? +A4 Se 2 }

:%Zisin B\/M +4sz}
A’ +4Q

() For y,=p,=y

1 1
5% =§(71+72)=7
A=A

and (9a), (9b) reduces to (14.70a),(14.70b) in the text, as they should.
For y, >>y,, for example,

1 1
5712 2572
A=A+iy,

and both a;(t), a(t) decay at about the same rate, y,/2.

14.4(a) with a,(t =0) =1, one can write



0=
2n

Integrating the equation w.r.t. t, using the initial condition a,(0) =0 one finds

a,(t) = z(_%] (e™ =1)

—iAt/2 iAt/2
i _ el

. . —iAt _
a,=iQe™, A=o-w,,

— iQefiAt/22 €
—2iA

_ines2 SINAE/2

A/2
(b) The probability of the electron making transition from initially given state |1> to the final

=iQe

state |2> is given by definition by |a2 (t)|2 . Because of the finite lifetime, and the distributed

nature of levels entailed therein one has to sum over the probabilities:

la, @) = .fda)op(a)o) la, ()

:szdwop(a)o

with p(w) denoting the line shape factor. Here, the transition frequency

HE, .
Q= ,ld=e<l|r, 2>
o 2 Ky

is shown to the exactly identical to the matrix elements of the perturbing or interaction
Hamiltonian, i.e.

A

H'=er-E
Thus one may note

H,/h=0
Therefore, (1) is identical to (13.55) in the text.

(c) Integrating (1) with the use of (13.57) one obtains
2 2r 2
‘a{z} (t)‘ :?|H{2| p(w)t
=Rt
where the transition rate, R oc |H1’2|2 is commensurate with |E0|2 or equivalently the light

intensity, / :

v

E, E
I = ‘920 %:cngoTo ------ 3)

Here, 27v=®, and the permittivity of the medium, &was specified in terms of vacuum

permittivity &, and index of refraction, n, i.e. &= nzgo .
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Inserting (3) into (2), one obtains

2z ~2 y7, np(v)
R= -
w plo)= 2h’ce !

4)
where use has been made of
p(w)do=p(w)2rdv=p(v)dv

Hence, given an ensemble of atoms all prepared initially in lower level |1> the incident light is
attenuated as it traverses through the medium:

Iv(z+dz)—lv(z):%-dZ=—N1-thdz —————— (5)
4

where NV, is the density of atoms in lower level, R the transition rate thus derived and %v the

energy of the photon involved in the transition, i.e. absorption.
One can generalize (5) to the case, in which the densities of atoms in level |[1> and |2> are given
by N, N,.
Then (5) is generalized as
ol
“=—(N,-N,)Rhv=-—al ------ (6)

V4

Integrating (6) one obtains
1 (z)=1,(0)e*

Hence, « thus introduced is the linear absorption coefficient and is specified from (6), (4) as

~2
£np()

a=(N,-N)=—"2 " py
(N, =) 2h’ce

14.5 (a) Given the coupled equation

/4
8V -L 6— ------ (1a)
oz ot
[
8_ =—C a_V ______ (1b)
oz ot
differentiate (1a) w.r.t. z and use (1b), obtaining the wave equation
v __,od
oz’ 81 oz
_ L— )=
Py (- )
e
ot
That is,
ov_ 1oV _
T (2)
0> C? or
where the velocity of propagation is defined in terms of the inductance, L and capacitance, C as
1
—2 = LC
c
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The same wave equation can likewise be derived for I.
(b) The traveling wave representations of the voltage, V and the current, I,
V=V, [a e ) 4 a*ei([”’_kz)] ------ (3a)
I1=1, [a e ) 4 a*ei(”t_kz)] —————— (3b)
are the solutions of the wave equation provided @, k satisfy the dispersion relation,
k> =(w/c)’ =a’LC
To find the relationship between V), [, insert (3a),(3b) into (1a), obtaining
kV,=wlLl,
=[k/NLC |1,

Hence

with

A 1/2

[0

Vy=|—| - 4
’ (202()} @

where z;is the length of the transmission line. The V] representation in (4) will be made clear

in (c).

(c) The energy residing in the transmission line is given by

H =IZO=MdZ Lo Lyp
0 2 2

where the line length is taken as integer multiple of A .

One notes from V, =~/L/C -1, that CV; = LI; . Hence one can write by using (3)

H= '[OZ”:M dzCV; -(aa” +a a)

= (ZhCaZ)O jC(aa* +da) -z, - Q)

= ha)%(aa* +d'a)

In (5),(4) was used for ¥ and only d.c. components of V' contributed to the integral.

(d)Ifaand a are defined as
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a= TIM (g +ip) ------ (6a)
a=a = 5%E(wq—zp) ------ (6b)

Then

?(a)q +ip)(wq —ip)

)
S)
Il

1 2 *
=—(0’q* + =aa
ho (@’q* +p*)

Hence, (5) reads as

OH
Gg=—=p-——(8a)
op
oOH
p=—-—=-w'q--——-(8b)
oq

or equivalently

§=p=-q-—(9)
Thus, these equations of motion are identical to the equation of motion of the harmonic oscillator.
Also, (8) explicitly suggests that p,q are canonically conjugate variables.

(f) If the commutation relation holds true, i.e. [g, p]=i#,one can write

[a,a"]=aa" —a"a

——[(wg +ip)(wq —ip) — (wq —ip)(wq +ip)]

" he

—2_[~igp+ipg—iqp+ipq]
“ohe

l +1

= ——{-ilq, pl+ilp.ql}
-2 on

She ( )
=1

Therefore it follows from (5) that
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H= ha)%(aa+ —a‘a)
|-
= ha)E(Za a+l)

1
=hw(a'a+—
( 2)
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Chapter 15

15.1 (a) In interaction picture, in which the expansion coefficient as a function of time splits into two
parts as

w(t)=aq, (t)e—iElt/h I1>+a, (t)e—iEzt/h 12>

The coupled equation of motion for a,,a, are given from (14.62) by
a, =iQa,(t)e”’™ - (12)
d, =iQa(t)e™ - (Ib)

where
(B (t
o - HEW
h
is the atomic transition frequency and
E,-E
W, = =w, -,
h
is the transition frequency.
Thus, using (1) one can write
b= d 0d
11 d t 11
=a,a, ta,a, (2a)

. it * . * g
=iQa,e"™a, —iQa,e'™ a,

=i (pzle_’%t — P )

. d «
P = Eaz “@ (2b)
=—iQ (lee_iw“t — pe™ )
. d .
P2 :Eal a,

o * * .
=a,a,+a, da,
. * . i *
=—iQa e a, +iQae™ a, - (2¢)
2

_ iyt _
=iQe (pn pzz)

ok
=P

(b) The diagonal elements are identical in both pictures, i.e.

(s) _ @) (s) _ @
P =P Prn = Pn

On the other hand, the off diagonal elements differ from each other:

() — *
le - asZasl

_ —ioyt ¥ iyt
=da;e a.e
(i) —iwyt

=P, €
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Thus, the equation of motion for p,, in Schrodinger picture appearing in (15.20c) in the text,

péi) = _ia)op;) +iQ(p11 _pzz)

can be cast into

d i@ s . i@
E[e Otpél)] = lQ(pll _pzz)e "

in complete agreement with (2c¢).
Therefore, the two sets of equations of motion for density matrix are identical.

15.2 (a) With the initial condition p,,(0) =1, p,,(1) = 0, thus given the equation (15.20) in the text is
reduced to

LS H s . ~E t
P =-imypy) +i2, Q=0 ()

h

Consider a harmonic field,
E(t)=E, cos ot

1 ‘ A
:EEO (em)t + e*lwt)
Inserting this harmonic field into (1) and rearranging the terms there results,

d iogt (s) . :[IEO —i(w—awy)t
— e =]1—2c 07 e 2
dl‘I: Pai J 2 )

where the term rapidly oscillating in time, expi(@w+ @,)¢t has been deleted. Integrating (2)

with the initial condition p,,(#=0)=0, one obtains

; (1B 1 .
e o (s) =i HE e—z(ru—wo)t -1
P = ~i(®- o) [ ]

or
tE ) .
) = HE, 1 ( _— —e”“’O’)
2h w,—w

Hence, the atom dipole moment is given by

()= a(p + %)
~2
:_1“250 - L a)_[e*"wf —e ' +c.c.] ------ 3)
-
~2
=ﬂ2—§°#[cos Wt — COS a)ot]
@, —®

In the short time limit,
COS Wt —COoS a)ot

2,2 2,2
=1—wt . l—wot +...
2 2
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and

<,L~l>: ﬂZhEo C‘)o;'wtz

(c) Using the equation for p,, in interaction picture and the same initial condition one can write

“)

neglecting the second harmonic component
- (i . ~E / —i ia
Péll)zlh(ew—e a)l)euot
2h
. NE —i(w—a,
=7 HE e ( 0)?
2h

Integrating with the use of the initial condition, p,,(0)=0

() /&EO 1 —i(w-awy)t
=——|e -1} 5
O 2h w, —a)( ) ®
The atom dipole is thus described with the use of (5) by
(a)=p(ps +ec)
= (pé?eii(“’f”"” + c.c.)
iI’E . i\ mmmmmm
— /J 0 1 (eﬂ(ut _ e—m)ot + C.C.) (6)
2h wy,—w
~2
= ’H—EO—(COS wt —cos wt)
h o,-w

where @, —@, = w,. Eq (6) is in complete agreement with (3), as it should.

15.3 Start from (15.27a), (15.27b) in the text:

Tiag) +(o—a,)oy) =0 - (1a)
2
1 . B
o-a,))o) ——oc =-2(p —p, ) (1b)
( 0) 21 T, 21 Zh( 1 22)

(<)

Solving ©,,",0,, interms of ( P~ ,022) , One can write

0 ORON
LE 1
o - 2710 (pll _pzz) ?2
Oy = 1
F a)—a)o
S R — @
w — ), I
—w, ——
T,
i,

o (0—=@,)(py, = Pr)

(w-w,) +1/T,
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Similarly one obtains
E,
G(i) — 2hsz
20 = 2 2
(o—a,) +1/T,

Inserting (2), (3) into (15.27¢) in the text, one finds

(01— Pr)

3)

1+ (0-w)' T,
—{( Hl@ (o) 0/ *2
-0, = - 4
P~ Pxn (pll P )1+(a)—a)0)2T;+4QZTZT )
in agreement with (15.28). Note that
o=
2h

is the transition frequency. One can in turn use (4) in (2),(3), and obtain (15.29) and (15.30)
exactly.

15.4 At steady state, where p,, = p,, =0 the rate equations (15.41), (15.42) are reduced to

1 1
[_+_+VV1']:022_VV1‘/711:/12 """ (1)
TZ z—sp

1 1
_[_4'W1J pzz_{_—i_n/i)pll:il """ (1b)
Tsp 7

and one can find p,,, p,, intermsof A4,,4,:

Pn =

Also

Hence
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P~

for 7, >1, 7,

15.5 (a) Take E,//Z, so that

One has to find u,,, such that

DA () ]

Tl Z—2 sp

TN 11
— |tV —+—
T\T Ty I

AT, — AT, _(/11 _,_/12)@
= Tsp
14+ 24, (7,+1,)

7,

_ AL AT
1+W,(z7, +7,)

Iy

H'=—eE, - rcos ot

=—eB rcosfcos ot

< Uy |[:['|”31m >#0

The condition is determined by the angular integration:

A 2z 1 *
<ty | H' |uy, >°C_[O d(”_[ldﬂ/v‘YooYlm

It is thus evident from inspection of the integral that

<Uygg ‘I:]"MSIO >#0

< Uy |I:I’|u320 >#0

(b) By the same token one can also find the selection rule as

<Usy, |[:1'|“200 >#0

< Uz |I:I'|u210 >#0

(c) In thermodynamic equilibrium,

where

so that

Y3 exp— E3 _Ez
N, k,T
E,=-E, /3
E,=-E, /2’
E,=13.6eV
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N, SE,
— 2 — exp_
N, 36k,T

(d) The pumping rate from u,,, to u,,, states is proportional to

NI,
where N, is the density of atoms in the ground state and
~2
W, = #g(") I
2hce

is the transition rate given in terms of light intensity, /, and the atom dipole moment between

the two states involved. If the lifetime of electrons in u,,, state is 7, the inversion condition

to be met is specified by

or

15.6(a) Given an input E, its transmitted component E, is given from (15.39) as

E, tt,e™ :
—2ikL
S AL L
E, l-s
Hence the transmission coefficient is specified as
2
7 =|E
Ei
2,2
— tl t2
(1 _ rlrze—ZtkL )(1 _ rirzeJthkL)
2,2
tl tZ

14775 = 2rr, cos 2kL
The maximum and minimum T values are therefore given by
LG ol dpmn=123.
- (1 —hh )2
__ it
and the reflection coefficient is given by
R=1-T
(b) The standing wave condition is given by
k,-L=1Ir, l=1,2,...

2kl =(2n+1)r,n=0,1,2,3...

or

2—7[L:£7r
A

0
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that s,

c .
In terms of frequency, v,(=—) one can write
(4

1
2L)/c

The frequency spacing between two successive modes is therefore given by the inverse cavity

v, =14

round trip time of the wave:

1 1
Av=vy, —v, = =
2L/c 7,
L Im lem 100pum 10pm
Av 1.5x10° 1.5x10" 1.5x10" 1.5x10"

(c) The analysis of (a), (b) can be done exactly in the same way. The only modification required
is to replace the velocity of light by v=c/n with n denoting the background index of
refraction of the medium.

Additionally, due to active lasing, interaction between cavity eigenfrequency and the medium,
there is frequency pulling or pushing phenomena, as discussed.
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Chapter 16

16.1 (a) The normalization constant is determined via

1=[dvf(v)

= Kf; dv, f:c dv, Jt: dv_-e

_K. £3_K£27szTj%
= 7 = -

Here the formula, (1.20) in the text has been used.

Hence,
3
K=" 5
2rk, T

(b) The phase volume space of f (\_/) in Cartesian coordinate frame is dv, dv, dv_. In

7ﬁ(vxz+v‘vz+vzz) m

spherical coordinate frame, the corresponding volume space is given by V> sin @d@d&dv . Thus
the probability of finding the particle between vand v+dv is described by
f(\_))dvxdvydvz = f(\_)) v? sin Od pd Odv
Hence the reduced probability of the particle having the speed between v and v + dv is given by
2z T, 2

[ do| sinodo-viavf (v)
% _ I‘Vl\/2
m j e 2T

2rck,T

= jj”dqojo” sin Qdé’-vzdv(

3 mv?
=4r m & vzeizkﬂr
2k, T

and the number of such particles is found by multiplying this reduced distribution function by the
density of particles, N:

2

3/2 .
N(V) dv=N m Amvie T dy
27k, T

(c) The most probable speed is therefore found from the condition

ON
ﬂ =0=2v, _ivnf
o | 5
Le.
m m
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(d)

IwN(v)dv
Jwe’ﬁvzv3dv
jwe’ﬁvzvzdv
Now,
_ﬁvz 3d _ m
Je vidv, B T
= e_ﬂxxldx, x=v
2
_Ln
2 B
J.w Py = 2 e dv
op -0
__ o1z
op 2\ p
LY
2 2ﬂ%
Nz
45
Hence,
1

()= 2 _ 2 1 _(SkBTj%
Nz Jr g Lam
4p”

(e) The number of particles having v and v_+dv_ regardless of V,, V

z

is given by
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3
m A —ﬂ(vxz +v},2 +vzz)
e
27k, T

szl
2k, T B

1 v
N - e Ml
2k, T

16.2 (a) The average energy is given in terms of the density of states and the Fermi distribution
function as

N(v,)dv, = Nj:dvyji dv, [

()= [ dE-E-g(E)f(E)
j: dE-g(E)f (E)
Now, the density of state for electron is given from (4.27) by
\/Em% E %
&3p (E ) = W
while the Fermi occupation factor, f{E) at zero temperature is a step function, i.e.
I, E<XE,

TE)= {0, E>E,
2

%
J'EF */52’"3 E"dE  ZE”
(E)=" ﬂh% =2 -"F,
/ 2 5
[ Nam® phap JES
O 7°h

Hence

(b) The evaluation of <E > for arbitrary temperature involves the Fermi 1/2 and 3/2 integrals.
This problem offers a good opportunity to get familiar with these important integrals.

16.3 Using the results of the previous problem, one can find the average energy of electrons by

3
<E>=§EF =4.23eV (1)
Now, the thermal energy of electrons is given from the equipartition theorem as
2
mv,” 3
——=—k,T 2
S ke 2)
Hence, the equivalent 7 is obtained by equating (1) and (2) :
2 1
T==-423eV - — =3.27x10'K
3 8.617x107 eV /K
The corresponding thermal speed is given by
2
mvy _ 3 kT
2 2
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1.€.

1
]3-1.381x107(J/K)-3.27x10"K %
e 9.1x107' Kg
=1.22x10° m/s

That is, at this temperature the electron velocity is about one third of the percent of velocity of
light.

16.4 For bosons, the distribution function is given from (16.54) by

1

F(B)*

and the average energy of a boson is therefore specified by

<E IdE E/kBE_l
J; dE g

It will be an interesting exercise to numerically evaluate <E > vs. T and compare the behavior of

bosons with those of Fermions and classical particles

16.5 (a) Using the result of (4.9) in the text one can express the energy levels of infinite potential
well as
h2 2
E —~E =—"—n n=12,- (1)
2m W
Evidently the reference level of the energy is the bottom of the conduction band in this case. The
corresponding energy levels in a quantum well of finite barrier height is lower than those given in
(1). This can be easily seen from Fig.4.7 in the text. Here the energy levels are found from the

projection of the intersection points onto & W/ 2 axis
For the ground state energy level, for example, £, in an infinite potential well is found from
kW/ 2= 7[/ 2 (See Fig. 7.4)). In a quantum well of finite barrier height, however, the projected

value of the intersection point is less than 72'/ 2, so that the corresponding ground state energy is
lower.
With this fact in mind and for simplicity of analysis, the potential barrier is taken infinite.
Inserting given values of the parameter in (1) one find for W =1nm
34\2 o
(1.055x107™) =

E = >N
2-0.98-9.1><10"3'-(10"9)

=0.38-n’eV

2

Evidently for W >1nm, E, is reduced following the power law W>.
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(b) As a reference first consider the electron concentration, n in bulk intrinsic semiconductor. In
this case n is given by

n=[ " dE g, (E) £ (E), (1)

where

J2m)* (E-E.)"
g3D(E): a 72'(2h3 )

is the 3D electron density of states with effective mass m, in the conduction band (see 4.25) and

1 _E-Ep
()=
1+exp E-Ey
k,T

B

is the Fermi distribution function or equivalently the electron occupation factor in those quantum
states and AFE, is the width of the conduction band.

The 2D electron concentration in the quantum well is to be obtained in a similar fashion. One can

put
ny =2 O(E-E,)| dE-g,,(E)f,(E) (2a)
where
ml’l
g2D = 7Z'h2 (2b)

is the density of states for 2D electrons (see (4.29)) and ® is the heavy side step function,

o ( ) 1 x>0 20)

X)= C
0 otherwise

Also E, isapproximated in this problem by
E -E.=E, -n° n=12,-
with
W
T 2 W
Inserting (2b)-(2d) into (2a) and carrying out the integral there results

_ Z mnkiT e—(EE—EF+E)n-n2)/kBT
— h

(2d)

np

o0
mnkBT ~AEc~EF)/ kgl —E,,-n* kgT
=—r——e : E e
7h n=l1

(c) For the case of holes one can transcribe the results obtained for electrons. The energy levels of
holes in the hole quantum well (see Fig.16.9) are given by

116



W
E-E =E, n’, E =———, n=12,-- 3
v n 0p Op 2mpW2 ( )
where m, is now the effective mass of holes in the valence band and the excited energy levels

move down the valence band.
The 2D hole density in the valence band is described by

pzD=Z®(Ev_En)J;wdE'g2D(En_E)fp(E) (4a)
where
m
E —-E)=—2 4b
& (E, ~E)=—5 (4b)

and the hole occupancy factor is by definition the probability that the state is not occupied by
electrons, i.e.

1

Sy (E)=1-1,(E)=1-
E-E,.
1+exp
( kT j
exp E-E,.
B k,T
1+exp E-Ey (4¢)
k,T
= 1 =~ Xp—EF_E, EF_E>kBT
I+exp
kB

Inserting (4b),(4c),(3) into (4a) one can write

mk,T (B =By +Epyn?) JhgT
Pp = Z 2 ¢
— rh
m kT ey & g kgt
DT
2
ﬂh n=1

16.6 (a) An electron in a quantum wire enjoys one degree of freedom along, say x-direction and is
confined in y- and z-directions respectively. For simplicity of analysis take the barrier heights
infinite and the square cross-sectional area, WxW of the wire. Then the energy eigenvalue is
given from (4.78) as

nk’
Enm = - + EV"’I + EZYI
2m, !
with the sublevels given by
hZ 2
E, —E = il 2m2 m=12,---
’ 2m W

n
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2_2
nreo o,

—E. = n" n=12,-
2m W
For W= Inm and m,=0.98m, for instance
h2 2
E,=—2 =038V
2m W

as discussed in (16.5). Hence one can write
2
E,—-E =E,-m
E,-E ,=E,-n’

Clearly the sublevels of this wire are degenerate in general, the specific examples of which are to

be listed as follows:

m n Eqmin Wounit Degeneracy
Ground level 1 1 2
¢ 2 1 5
1¥ excited level
1 2 5
2" excited level 2 2 8
d . 2 3 10
3" excited level
3 2 10
(b) For 1D electrons in quantum wire the 1D density is given by
np=2 0(E-E,)| g,(E)f,(E)dE (1a)
where
wr
Enm :EC+AEnm’ AEnm :E‘on(n2 +m2)’ Eon :—2 (lb)
2m W
and the 1D density of states and Fermi occupation factor are specified by (see 4.31)
B ﬁmn% 1
ng 7Z_h2 (E_Enm )%
E-E
E) =exp- £
S(E)=exp-=r

Hence the evaluation of (1a) necessitates the integrations of the form

\/Em % e—(E—EnerEﬂm—EF)/kBT
7h - ( E—E )%

nm

1:]}? dE

To evaluate I introduce a dimensionless variable,
E B El’lﬂ'l —
k,T

52

Then one can write
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_Enm 7E/-‘ 0

(kTY?2e b7 [dg.e

0

%
g N2m”
7h
1 1
_ \/Emné (kBT)A e_(Enm_EF)/kET
Jrh

Inserting (2) into (1a) there results

1/2
_( 2mk,T —(E,~Ey+AE,,)/ kyT
S ELA

7h

where AE  represents the sublevels lying on top of E_ .

nm

The 1D density of holes can likewise be specified in a similar way. One can write

Pip :Z®(Enm _E)jgw (E)fp (E)dE

where
()Lt
Eip R (E _E)%
-F
S, =exp— ZBT
2 2 71272'2
Enm =E'V _AEnm’ AE'nm :EUP (n +m )’ EOP =W
Hence
Ep-E,, +E, —E
0 2m ) e_T
= dE P,
Pip %.[E,,m h (E,,m —E)%

1/2
_ 2mpkBT Ze—(EF—E,,+AE,,m)/kBT
h’

nm
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Chapter 17

17.1 Consider the acceptor impurity atoms incorporated. For the acceptor level &, and g quantum
states associated, the number of distinguishable arrangements of P, holes are given by

p_8(8 -8 ~8,2)-(g~8,p D)
N ps!

_ 818, /8!
p\ g, /g,—p,)!

Here g, is the hole degeneracy factor arising from the valence requirement of the acceptor

atom to be satisfied by one hole only.
Hence the total number of distinguishable arrangements is given by

» gh(g./g,)
P(PI,PZ,...,R?,...)=H gA (gs gA)
5=l ps '(gv /gA _pv)'

(1
(see(17.15) for electrons, for comparison)

To find the maximum number of arrangements, constrained by (i) the total number of holes to be
constant and (ii) the total energy to be conserved, introduce as usual the F function,

(see (17.16)). Here, the only difference existing between (2) and (17.16) in the text lies in that
positive & for electrons corresponds to —¢&, for holes. This arises from the fact that with

increasing energy electrons move up the conduction band, while with increasing energy holes
move down the valence band.

The maximum value of P({p,})is thus found by putting the derivative of F to zero. In so doing

the Stirling’s formula for factorials, (16.14) are used, obtaining
oF

0
—=—/ p,Ing,~Inp \-In(g, /g, p,)-ap, + Pe.p,|
op, Op,

8
=${ps Ing,—(p,Inp,—p)-[(g,/ g~ p)In(g,/g,—p)—(g, /g~ p,))-ap,+Bep,)

=lng,-Inp +In(g, /g,—p,)—a+ps,

=ln{g/‘(gs '8 _p")}—atﬁgs
Py

5

=0
Hence, one can find

gs /gA
= 3
Ps 1+(1/g, Ye Pe ®)

Here the Lagrange undetermined multipliers are to be determined as usual as
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a=E./k,T

p=1/k,T
Now, the number of quantum states, g . divided by the degeneracy factor g, arising from the
valence requirement is by definition the number of acceptor atoms incorporated, i.e.

g8, /8,=N,,
Also, ¢, appearing in (3) is the ground state energy of acceptor atoms lying above Ey by a few
kT at room temperature. (see Fig. 17.6)
Thus by identifying

&=E,, p,=p,

One can recast (3) as
— NA
1+ (1/ g, )e B E kT

Once p4 is found the ionized acceptor atoms are given by

Py

N,=N,-p,
T/ g et T
NA
= (E4-Ep)/kgT
I+g,e

Thus, (17.22), (17.23) in the text are derived starting from the basic counting statistics.

17.2 (a) At thermal equilibrium the law of mass action holds true, i.e.

npznf —————— €))
and for nondegenerate case

-E
n=n, exp—t—-=> - 2a
i €Xp KT (2a)

E-E,.
=p eXxp———--——-- 2b
D =D;eXp KT (2b)

where E, =FE, is the intrinsic Fermi level. At room temperature, for instance, in which

T=300K n,=1.45x10""cm™ in Si. Thus for given p one can find n from (1):
p 10 10 10° 10° cm”
n 2.1x10" 2.1x10" 2.1x10" 2.1x10" cm”

One can similarly find n versus T using ni(T) (see (17.9)).

(b) To find the corresponding N,and N, one has to find the Fermi level first. For simplicity

one may first assume the nondegenerate case and find Er using (2).

p

10

10°

10°

108 cm”

E.—E, eV

0.53

0.47

0.30

0.12

eV
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(c) In view of the fact that E.—FE =0.56el at T=300K nondegenerate statistics holds for

E.—E, 22k,T (see Fig. 17.3). Rvidently, one cannot treat the case of p=10 cm” by using

nondegenerate statistics. In this case one has to use (17.2),(17.6) for n, p, i.e.

2
1= Ne = Fy 015), g, = (Ep = Ee) T = G

2
p =NV ﬁF%(T]Fp)7 an :(EV _EF)/kBT ______ (3b)

and find n from (1) using a numerical analysis.

17.3 With T - 0, the freeze out effect becomes operative. Specifically, the band to band excitation of
e-h pairs ceases to occur and this is assured by Er approaching Ec in n-type semiconductors. The
resulting large difference between Erand Ey ensures that the valence band is all filled up, by
electrons, making if difficult for hole excitation to occur.

Furthermore, the electron emission from the donor level Ep to the conduction band ceases to
occur. This means that the electron should remain bound to the donor impurity atom. This is
made possible by Er being raised above Ep level.

By the same token, Ein p-type semiconductor is lowered below E, level with 7= 0.

17.4 (a) With E. —E. =0.1eV , nis given at room temperature by

n=N, ), kT =0.025eV

2 0.1
7= 4%
With

N.=4.7x10"cm™
at T=300"K and
F,,(4)=6.5115
one finds
n=3.45x10"cm™
(b) From (17.21) one may write

n=N} = Ny
P l+g,exp(E, —Ep)/k,T

By taking g, =2, and also

E.—E,~136er. ML
my €,
£ =119
so that
E.—E,=0071eV
Hence
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N}, 1
ND

B 0.171
1+¢o, exp(——
8> xXP(() 1)

=5.36x10""

(c) By the same token one can findpand N, /N, as follows. First, one can write

P=N, T Flgon)
At room temperature,
N, =4.7x10" em™
and
F,,(6.0)=11.447
Hence
p=9.04x10" cm™

Also, using the result of problem 17.1, one can write

_ N
P=N,= FE
1+g,exp—4——F
4 k,T
By taking g, =2, and
m
E,-E, :13.6eV.—‘"i
m, €,
=13.6eV.O.082L
11.9
=0.087 eV
Hence
Ny 1
N, 1+2-expEA_EV+EV_EF
k,T
= 7.63x107°

17.5 To plot the hole concentration, p and the ratio, N,/ N, versus 1000/7 one has to find Er for

given N,. In p-type silicon, the charge neutrality condition reads as

where
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N, \/2; E/Z(E”k_fF ), degeg enerate
- B

p=y YF B (2b)
Ep-Ey
N,ye ", nondeg enerate
- N
N, = T —F (20)
A F
1+ g4 CXp kiT

B
Given N, and T, it will be interesting to find £r from (1) and to use Er thus found, and plot p,

N,/ N, versusT.

17.6 Choose as an example the n-type silicon for consideration at given temperature, say 7=300K and
doping level, Np. The Fermi level Er is found from

n=N,+p
That is,
Ep-E,
2 E.—F N e
NC\/—E/z( = )= DE 5 +N,e ksT
4 kT 1+g,exp—L—2=
k,T

With Er thus found for given N, and T, one readily finds the Fermi potential
99, = Er - E,
In p-type silicon one can likewise start from
p=N,+n
and find £ therein. The Fermi potential is then readily found from £, thus found,
9P, = E -E,.

17.7 (a) Approximating the quantum well by the infinite potential well, one can write the subbands
therein as
nr’
E = -n’, n=123,..
2m W

(see (4.9)). For W=10 nm the ground state energy level is found as

2

(1.055x107*) (3.14)°

E = -J
0.98x9.1x10™*"-(10x107)
=1.231x107'J
=7.7x10" eV
and the first excited subband is given by
E, =7 TmeV x4
=31meV
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(b) The conduction band of the quantum well consists of discrete subbands and the electron
concentration therein is to be specified in terms of the 2D density of states and Fermi occupation
factor:

where
An, = [ dEg,,f,(E)
m 1
— n
S EaE.
l+e b
=" (" 4(E-E !
_ﬁhzj@ (E-E)—Fra
l+e kT
m 7EC7E,.- - 7E7EC
= kol jE d(E-E,)e "
T s
" Eq—Ep Eg—Ec
=—e M f,Te M
7h
Hence
Ec—Ep © Eg-Ec
m
n,, =—">kyTe kol e
ﬂ-h s=1
where one can represent Es as
hzﬂ_z
E,=E,s,E, = s=1,2,
m

For E,> k,T, n,, electrons reside mainly in the ground state subband.

For E, < k,T , on the other hand, one may approximate the discrete summation by an integral :

E,
_Eo 2

0
S
s=1

= .efde, &=

(Ey [hyT)"?

VT e [ Bo
2 k,T

Here the complementary error function has been introduced, i.e.

EO
— .S
k,T

2 o
erfcz=—=\| e’ dz
fez=—r=].

n,, 1in this limit is represented by

ECiEF
kyT

m, k,T E,
n = eryc ‘e
2D 2\/;h2 f kBT
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It will be interesting to examine 7,,, as a function of well width, W and temperature, T.

(c) n,, consists of two factors :

7E0s2

0
kgT
ny, = nOZe N (D)
s=1

where the factor

. .. J 2/3
corresponds to, for the case of intrinsic silicon, 7, .

At T=300K, and for m, =m,, m, being the rest mass of electron
n, =2x10" cm™
is larger than
n’? =59x10°cm™
This suggests that the 2D electron density induced in the conduction band in the well can be

higher than that corresponding to the bulk value, provided E, < k,T, i.e. with W large.

However, with W decreased to nm range, the second factor in (1) could make n,, < n’”.

(d) The charge neutrality condition for n type silicon reads as
Ny+p=n
each term of which has already been discussed in detail.
The main result of doping, i.e. N, is to raise Er toward Ec in which case n,, induced in the

quantum well also increases exponentially, as detailed in (b).

17.8 (a) The electron in a quantum wire enjoys one degree of freedom and the energy eigenequation
reads as

hZ
{_ﬂvz + V(x,y)}o(x,y, z)=Ep(x,y,z)

where for simplicity the infinite potential well model is used.
0 W /2 <x,y<W/2
Vix,y)= .
0 otherwise
One can solve the equation using the separation of variable technique, that is, by putting
P(x,y,2) = u(x)u(y)u(z)
Using the usual procedure one can find
1
2 jz {cos kx, k,=Qn+)z/W, n=0,12,...

u”(x)=( .
w sink,x, k,=2nz/W, n=12,..

1
2 jz {coskmx, k,=C2m+)z/W, m=0,12,..

u ==
) (W sink x, k =2mz/W, m=12,..
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u(z)=e"

with the total energy given by

272
ET :h k +Enm’
2m,
K’
E =E (n*+m?), nom=12,..., =
nm O( ) 0 2mnW2

Hence the ground and first excited state energy levels are
E , =E;-2=15meV

E,=E, =E 5=375meV

for m, =m,, W=10nm.

(b) The 1D electron density in the conduction band is given in terms of the density of states and

Fermi occupation factor:

nlD :zAnnm ------ (1)
where

Annm = j;m dEngf;l (E)

© \/Eml/Z 1 1
= jE dE(

7h

1/2 (E—Ep)/ksT
(E—Enm) 1+ 7"

nm
nm

[~ 12 —(E-E,,)/ kT
N2 e bt J‘ » dEe -
1/2

nm

To perform the integration introduce a new variable,
1/2
E - Enm
k,T

_E_Enm
kyT

Then

o dEe
J.Enm (E—Enm )1/2

=2k, T[ dse
=\Jk;Tm

Inserting this result into the expression for Az, one obtains from (1)

12 _Eq—Ep _Ey(n+m®)
_ 2mnkBT 1 kBT kBT
Mp=|—_— 5 e Zgnm €
nm

T

where

o 1 1
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E nm E F
2 2
=E.+E,(n"+m")
and g, denotes the degeneracy for states with n, m quantum numbers.

It will be interesting to perform similar analysis for different W and T.

(c) The factor appearing in (2),

2mk, 7Y 1
T /]

corresponds to the linear density of electrons. i.e. n
discrete subbands located on top of Ec. Because of these subbands the bandgap is in effect
broadened, the effect of which becomes more prominent with decreasing width of the wire.

3 " A main quantum effect consists of the
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Chapter 18

18.1 (a) The required electron concentration can be found from

1 1 1 1 Vs
p=—= = - 5 - = — —-cm =10Qcm
o, qun 1.6x107°C-800cm”/Vs-ncm 1.6x107"-800-n C
or
1 4 -3
n = =7.8x10"cm

" 1.6x107-800-10
and for 7= 300K

1

2 10\2
_n A1) oy 0% em™

Py n 7.8x10"

n

(b) The photogenerated density of e — / pairs are given by

N, =p, =87 =10"-10"° =10"cm™
and the total conductivity,

o, =0,+0,

is therefore contributed by the dark component,

Or =quN+qu,p
=qu,n
=1.6x107"°C-800cm> / Vs -7.8x10" cm™
=1.0x107Ocm™

and the photogenerated component

o, =q(u,n,, +u,p,,)
=1.6x107" 10" cm™ - (800 + 400)cm® / Vs
=1.92x107"Ocm™

(b) The total conductivity is primarily contributed by the photoconductivity and therefore the
ratio between electron and hole conductivity is given by that of the mobility:

c,/lc,=2

18.2 (a) The light intensity is given in terms of the photon density, 7, , the quantum of energy,

hv ,and the photon velocity ¢ as

c

I=n, -hz-c
c
:hz-th, th =N, ¢
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with £, denoting the photon flux.
Thus, for I = 10Watt/cm?, one can finds

_10J/scm® -500x10” m
P 6.626x107* Js-3x10%m

=2.52x10" / em?s

(b) The generation rate is given in terms of light intensity and/or photon flux and attenuation
coefficient as

g=a(l/hv)=2.52x10""/cm’s
Hence, the photogenerated e — p pairs at steady state are to be specified , given the respective
lifetimes:

nph =ng
pph :ng

(c) Given the rate equation

0 _
. Phn=8L —M; g, =al/hy-——-- (1)

ot 7,
introduce the excess hole density as
Ap, =P, = Puo
and recast (1) into
o

Equivalently,
t/'t

%(e "Ap)sze”T“ ------ (2)

A straightforward integration of (2) yields
Ap(1) = Ap(0)e
If initially Ap(0) =0 ,i.e.

/Tp + Tng (1 _ e—t/rp )

pn(O)_pnO ¢O

it decays away in a few 7, ’s, while the photogenerated hole density reaches a steady state value,

g,7, inthe same time frame.

If Ap(¢t=0)=0, then

pn(t) = pn() +Tng(1_e_t/Tp)

(d) If light is turned off after p,(¢) has reached the steady state value,

pn =pn0 +z—ng
the rate equation, (2) reduces to

a tit, _

5(6 Ap) =0

and a straightforward integration yields
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Ap(1) = Ap(0)e ™
ie.

—t/t
pn(t) = (pnO +Tng)e o +pn0
Thus, pa(?) relaxes back to p, after a few T, ’s.

18.3 (a) For 0, =0, =0 the net recombination rate U in (18.69) reduces to

1 =1
U [ — pn nl’l nl
3 Et _Ei Ez &
Pon,+nexp———"+p, +nexp
kyT B
with
1
ov;N, =—
TP

denoting the hole lifetime as the minority carrier in n — type semiconductor. For n,, p,<< n; in
the depletion region and for F; at the midgap, i.e. £, — E;= 0, U further simplifies as

ZTP

and describes generation rate, g .
To evaluate 7,, v, has to be found, which can be done from the equipartition theorem.

For a free electron with rest mass m,, one can write

%mov? = %kBT

so that at room temperature

1

_[3:138x10™ 300 &
! 9.1x107
=1.16x10°m/s
=1.16x10"cm/s

For holes with effective mass m,, one can write

)2
vy, = [—OJ v, =1.49v,

m,

Therefore the hole lifetime is to be estimated as

TL = O_]vthp
P
=107"-10"-1.49x1.16x10’
Le.
7, =58x10"s
and the generation rate is given by
n,  1.45x10"

j— l

=1.25x10"cem™

27, 2-0.059us
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(b) If E,= Ec —0.25¢V, E| is above the midgap by
E =E +0.56-0.25

=FE +0.3leV
In this case
g=|U|
1o
»nexp—L——
P T
n -23L
=—1g 005  T=300K
T

P

=2.5x10" /em’s-4.12x107°
=1.03x10" / em’s

For E, =E, +0.25 eV, so that E,= E; —0.56 +0.25 =E; —0.31eV.

Hence the generation rate is the same as the case already considered above.

18.4 (a) At steady state, in which p =0 , the rate equation reads as

" Py Pno _
D,p, +g, =0
P
where primes denote differentiation w.r.t x. Dividing the equation by D,, one can write
" Apn _ _& L (1)
n 2
L, D,
wheere
Apn Epn _pnO’
L =Dz,

The homogeneous solution of (1) has two branches, exp—x/L,and exp + x/L,, the latter of which
has to be discarded out of physical considerations. The particular solution is given by
L2
Apn :gL -D—p:gLTp
P
Therefore the solution is given by

Apn :pn(‘x)_pno
=Ade "+ g7,
The constant 4 is determined from the boundary condition,
D,p, (0)=v, (P,(0)=p,g) - (3)
Inserting (2) to (3)
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Hence
v
A:_g T —R
L ve+L, /7,
Ve T /L
:_gLTp.M
l+vp-7,/L,
When 4 is inserted into (2) there results

Ve T,/ L, s

P =Pt 817, = 8T, T T
R "p P

(b) It will be instructive to plot p,(x) for different values of g, t,, L, and see the roles of these
parameters on py(x).

18.5 (a) The recombination rate of minority carriers is given from (18.73) or (18.74) by

Also, the photogenerated hole density which constitutes the excess hole density is given by
P =p,=g7,=10%10-10° =10"cm> - (2)

On the other hand, the background concentration, py is to be found from the given resistivity:

1
pP=—""
q ’ lun : nnO
B 1
1.6x107°C-800cm” / Vs -n cm™
=0.6Qcm
so that one can find using (4, = 800cm*/ Vs
1
nnO = -19
1.6x107"-800-0.6
=1.3x10"%cm™

Therefore p,, atroom temperature is given by

n; _ (1.45x10")?

=—t =1.62x10%cm ™ ------ 3
P T T 1310 ®
Inserting (2), (3) into (1), the recombination rate is found as
1 11
U= 0_5 =10"/cm’s
10

(b) To estimate the total recombination near the surface, recall the recombination velocity which
is given by
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Ve =0V, N,

with #, denoting the effective surface layer. Thus, # is found from

L, =W 'T,

=100cm/s-10x107°s

=10"cm
Therefore, the total number of recombination near the surface is given by
U,=U-t,=10"cm™

18.6 (a) With the simplification, o, =0, =0c the recombination rate for the case of single level
traps at the level £ ;1s given from (18.69) as
v, N,(E,)(np—n?)
E -E
n+ p+2n, cosh ;{

B

=

For multilevel traps one can generalize the recombination rates as

U:ZUj
-3

- E,-E
n+ p+2n, cosh ;67

B

ov,N,(E;)(np - n’)

One can in general represent the trap profile in terms of a distribution function,

N(E)) = f(E)
and express U in terms of distributed traps:
E;/2
¢ E
U= ov,p-1t) | o
2 p4 p+2n cosh| —
k,T
where F is taken zero at the midgap.
For a flat trap level profile,
Ji(E)=D,
U reduces to
1 E;/2 dE
U==(p-n)) | (1)
r -Eg/2 E— Ei
n+ p+2n, cosh
k,T
where
1
- = O-VTDSS
T
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(b) In the depletion depth, for instance, where n, p << n;, U is turned into a generation rate as

|U| 27
Here the effective lifetime is represented by
Eg/2
—=oV,D, | dE @)
For ~Eo /2 cosh[E_E’}
k,T
Now,
E]_/z JE =kBTEG/2kBT e e E-E
i cosh(E ) ] ) cosh¢& k, T
v
= k,Ttan™ (&) *

= kyT| tan™'(e""*%") —tan™'(1) |
=k, T(n/2-7/4)
= k,T-(7/4)

Here use was made of the fact that E, > 2k, T and tan™'(e"'*")=7/2.

Hence, the effective lifetime

1
—=0V,D_-k,T-(x/4)
Teﬁ‘

is approximately determined by DgkgT traps located near the midgap.

(c) For the trap distribution

(E —E, )2

f(E) exp— 202

one can insert the distribution function in (1) and (2) and carry out a similar analysis.
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Chapter 19

19.1 (a) The operational principle of the junction diode is to raise or lower the junction band bending
by applying biases and to utilize the restoring force of the junction to reach the equilibrium
configuration. To examine the carrier fluxes one has to consider the profile of carrier
concentrations, which for the case of n(x), for example, is given by (see Fig. (19.3))

[/ xX>Xx,
_q9(x)
kpT
n(x)=qn.e * X, >x>-X,
Ny s x<-x,

The concentration decreases exponentially in the junction depletion depth from 7, in the n

bulk to 7, in the p bulk. Thus, the diffusion flux in the junction depletion depth is given by

_ L on()
Fn,diff = _Dn ax
_q9(x)
= _Dnnnoe kT . _Lm
k,T ox
=—D,n(x)| L (__éq)(x)j """ (M
k,T Ox
=—u,n(x)E
= _Fn,driﬁ
Here the Einstein relation
an = kBTlun

has been used, and the space charge field is expressed in term of the space charge potential,
E =—-0¢/0x . Clearly, (1) states that the electron diffusion flux from right to left in Fig.19.3, for

example, in equilibrium is balanced by the drift flux from left to right. By the same token the

hole diffusion flux from left to right in the same figure is balanced by the drift flux from right to
left:

_ ap(x)
F pdiff = _Dp o

=—u,p(x)E

=-F p.drift

Under bias, however, the junction barrier potential decreases or increases depending on whether
the junction is forward biased or reverse biased:

Py > Py =V - (1

and the junction depletion depth changes accordingly, i.e.

Dy

W(W)=W({ =0) ‘[1 —LJ ...... @)
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where

1/2
W :{25(% +ND)%}
gN,N,

denotes the equilibrium depletion depth. Therefore, under bias the detailed balancing between
the drift and diffusion fluxes for both electrons and holes are broken. This can be generally seen
as follows.

(b) Consider the hole diffusion from left to fight in Fig. 19.3, which can be roughly expressed as
Puo = Ppo
F =_p 22 -r
p.diff P W(V)
=D p Boo 172
VVO (1 - V(pbi)
Thus, under forward bias, V> 0 W(V) < W,, and F), 4 increases from its equilibrium value.

On the other hand, the hole drift flux from right to left can be roughly represented

F;;,drift = pnOlupE

— Dy -V
Pk, VK)(I—V/(Dbi)l/Z

1
= Probty Py (=1 19,)" (4
0

and is shown to decrease from the equilibrium value. In this manner the diffusion flux becomes
larger than the drift flux and there ensues a net hole flux from left to right under a forward bias.
Under reverse bias, in which V' < 0, the opposite situation prevails, i.e. drift flux from right to
left becomes larger than the diffusion flux from left to right and there is a net flux from right to
left.

The same kind of analysis can be made to the case of diffusion and drift fluxes of electrons. In
this case there ensues a net electron flux from right to left under forward bias and from left to
right under reverse bias.

19.2 In completely depleted approximation, the space charge field is linear in x, i.e.

%(x—xn), 0<x<x,
gY
Ew={ " n
—q—A(x+xp), —-x,<x<0
£

N

(See (19.2) and Fig. 19.3).
The space charge potential, ¢(x) can be obtained by integrating E(x):
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o(x) = —fx dxE(x) , =X, <x<0

= .[_xxp —qivA (x+x,)dx

N

where ¢(x) has been taken zero at x =—x, and ¢(x) isquadraticin X, as expected.
Continuing on in the range 0 < x < x, ,one can write

_9N4 2t | _dNs |
(p()c)—z(9 xp+.[0dx( " }(x x,)

s

zﬂxz_i_%( 1 2)

N

X X—X
2¢. VU ¢ "

s s

To examine the behavior of ¢(x), near edge of the junction on n-side, x,, introduce a variable

Ax=x,—x
and express @(x) in terms of Ax:
gN, > Ny, > gN, ,
X)= X, + X, - Ax
#) 26, 7 2e, " 2e,
LT e )
:%i_q_Dsz

2¢e

Note here that the intrinsic band bending is given by definition by
_ gN, ¥ +‘]ND X,f
26, 7 2e,

s

Oy

Thus, near the edge of the junction depletion region, x ~ x, , the electron concentration

decreases exponentially as the junction edge is approached from the n bulk (see Fig. (19.2) and
(19.6) and one can write from (4)

2 2
q N,Ax
nx)=n,exp————
() = o xp 2¢.k,T
257 2 T (5
:nnOe_éza §E 9 2 - Ax
2¢.k,T

Thus, the validity of the completely depleted approximation depends on how fast n(x) reduces to
become negligible, compared with Np, near the edge of the depletion region:

glN, —n(x)] = &N, _nnoe_§ ]
=gN,,
To be specific, take £=2 at which n,,exp—&* =0.018n, is to be neglected, compared with

Np, The condition defines the spatial width in which the electron concentration is reduced from
n,0 to the nearly depleted level:
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That is

To assess (6) more explicitly, consider the p - n junction doped with N, =10"cm™ and

N, = 10"°cm™ , respectively. Then one finds

1 1
[ 4N, } ~ {(l.6x10‘19)2 10"°478.988x10° r

2.k, T 2-11.9-1.381x107%-300
=1.71x10"/m (7
=1.71x10/ um
where the Coulomb constant,
1

=8.988x10° Nm* / C?
4re,

was used, together with ¢ =11.9,and T =300K .

Hence, one finds

AX =—==0.12um

n

One can likewise find near —x »
- 2
Axp =——==0.04 um
2
q°N,

2e5k,T
_ k,T In NAZZVD

q n;

For N4, Np thus given
=0.525V

Oy,

while the depletion depth is given by
1
w :{Za(m +Ny) }
gN N,
=11um
(see (19.9),(19.8)). Using (19.7) one can in turn split Winto x,,x, as
x,=W/(1+N,/N,)=10 um
x,=W/(1+N,/Ny)=1um

Hence
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A% /x,=0.01
Aip /xp ~0.035

and therefore the completely depleted approximation for specifying the space charge is shown
accurate in most of the depletion region, W.

19.3 (a) Given the linearly graded space charge
q(N,—N,)=ax, -W /2<x<W /2
o , otherwise

one can find the space charge field from the poisson’s equation:

OE a
—=——x
ox &

N

Integrating, there results

E(x):—zixzm

The constant of integration is determined by the boundary condition

E@W/2)=0

=— L W/2)+4
2¢&

s

E(x):—%[(%j —xz:l ------ (1

Once the electric field is known, the space charge potential can be readily found using
0
_0p(x) _ E(x)
ox

so that one can write

Integrating both sides with the use of (1)

Here, the constant of integration is determined from the boundary condition,

o(-W 12)=0

OISR CIE
w337

a (WY1 4 27 . x
—5(7) {55 ‘5‘5} S Wi

N

Hence

(b) The built-in potential, ¢,, =@(W /2)—@(-W /2), is specified in terms of the doping level
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in the two bulk regions. Since @(—W /2) was taken zero in this case, one can write

0= 00V /2)
3
=—28—"(Q . a=gq(N,~N,)<0
kT (NN,
q n;

Given N,,N,,, and W are determined in a manner similar to the p-n step junction, together

with space charge field and potential. The / - V' behavior can then be modeled in steps identical
to the case of the step junction diode.

19.4 Under bias the system is pushed away from equilibrium into nonequilibrium and current flows.

The current is generally specified in terms of quasi-Fermi levels as

Jn=,unniEFn ------ (1a)
dx

d
Jp:/’lppaEFp ______ (lb)

(see (18.51) in the text) Also, the forward current in the p - n junction is specified from (19.27),
(19.28) by

D.n
J = n""p0 qu/kBT X = —X —emmmm (23)

n L P
D
J = Meqwkﬂr, D — (2a)
p L n
p
By inserting (2) into (1) one can specify the slope of the quasi-Fermi levels in W :

dE,, (qD,n,, /L)e!" """

3a
dx /’ln nnO ( )
dE,, (qD,/L,)e""" )
dx - /up ppO

Note in (3) that n, p appearing in (1) should be identified to n,,, p,, when applied to the

junction depletion region. Take a specific case in which the p-n junction is doped with

N, =10"em>,N 5 =10"cm™, respectively and consider the slope of E,, in W. Using the
Einstein relation one can write from (3a)

dE,, kT 1, n,e

dx - Ly n,

qV /kgT

1l

Ln ppO”nO

2
_ k,T n oV kT

Now, with the use of x, =800 em? |V -s and lifetime 7, of 0.1 u's in Si, for example, one

can estimate the diffusion length:
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1

~ (1.381x1023 -300-800-10°107 jz
1
1

1.6x107"

Using this estimation of L, in (4), together with p , =10"cm™>,n,, =10 cm™ one can

>""n0

estimate the slope of £, at300K:
dE,, 1.381x107-300 (1.45x10")? kT

dx 1.46x107° 1010
=6x107% !k J/m
=3.7x107" """ eV | um

Thus, for the forward voltage, V' = 0.6V, for example,
qv
e’ =1.2x10"°
and

9Ep, 4.8x10%eV / um
dx

Hence, in the junction depletion depth corresponding to N, = 107 ecm™,N p= 10" cm™, and
W =11um the total change of E,, therein islessthan ~5x107 el .

This means that the quasi equilibrium approximation of taking £, flatin /¥ is indeed a good
approximation. However, with the forward voltage further increasing, the approximation ceases
to be valid. For the case of reverse bias,
- DnnpO _ kBTlLlnnpO
! L L

n n

and therefore the approximation is valid in general for any reverse bias.
One can examine the validity of flat £, in ¥ in a similar fashion.

19.5 (a) The junction band bending is determined by the sum of two Fermi levels operative in n- and
p-bulks, i.e.

(Dbi = ¢Fn + (DFp
Hence, if Ej, is located above E. in n-bulk and E, below E, in p- bulk, ¢, can be

larger than E,/q.

(b) The condition q¢,, = E, can be achieved, if £, =FE. and E, =FE, in n-and p-bulks,
for example. In this case one can write
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n=N'= Np
=N} = 3
1+gDe(EF Ep)/ kgT

, (1)
= NeFy O, Ec=E;

Also
_ N,
p=N,= 1+gAe(EA—EF)/kBT

, @)
=—=N,F ), E, =E,

N
Inserting the values of N, N, and the ionization energies, E.—E,,E,—E, in (1), (2) for
Si,Ge, N,,N, can be estimated.

19.6 (a) The overlap between conduction and valence bands by 0.2eV can be realized by raising £,

above E. by 0.leV, for example, and lowering £, below E, by 0.1eV, respectively. Thus
one can write

n=N,"
ND

(Ep—Ep)/kyT (1)

_1+gDe

2 E, -E
ZTNCFI/z [};{—TJ
T B

E,—E.=0.leV

with

Also,
p=N,
NA

(E4=Ep)/ kgT

_1+gAe

2 E, —-F
“Ir N, F), [#} ------ )
B

E,—E,. =0.1eV
Inserting the respective values of N, N, in (1),(2) at say 300K one can find the required
doping levels, N, ,N, in Si,Gads.

with

(b) The flux of electrons under a forward bias is given from(19.28) by
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F,=J,/q
_ DnnpO qu/kBT ______ (3a)

L

P
2
_ kT gy 7 g
q . Lp pp()
where under this degeneration case

2 0.1
Pro :ﬁNVFl/z(k T(eV)j (3b)

Likewise one can express the hole flux as
F,=J,/4q
D

pPho o1V kT

L

P

= w—"up.n_izeq"/kﬂ ______ (4a)

q- Lp n,
where

2 0.1
n,, =——N_F 4b)
0 \/; c 1/2(/(BT(€V)) (
Inserting the respective values of N.,N, from Si,GaAs, together with the respective typical

values of f,, u,,one can readily estimate the fluxes in the degenerate semiconductor systems.

19.7 (a) Recall from (19.6) — (19.9) that

Dy = kBT In (NA—];]D]
q n,

_ 4 NNy e
2¢, N,+N,

Also,
x, =W/[(1+N,/N,)
x,=W/(1+N,/N,)

Thus for given doping level, N,, N, , the junction parameters, ¢, , E W, x, —x

max n D

can be readily evaluated.

(b) The application of reverse bias, -V, induces the following changes or modifications :
@i = Py, +|VR|

)
2¢, (NA +ND)
Q'NAND (¢bi +|VR|)

)|

(see(19.14)). Hence, from (1)
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E - 2((pbi +|VR|)

max 1

2¢,(N,+N,) 2
|: q'NAND (%i +|VR|)}

!
_ 2(%;‘ +|VR|)A @)
{2@(1\@, +ND)T
q-N,N,

Hence one can find the breakdown voltage V,, from (2) for given breakdown field,

E_. =3x10°V /cm .1Itis important to note that ¥, depends sensitively on the doping levels,
N,,N, . For example, at N, =2x10%cm™>, N, =10"cm™>, ¢, =0.78V and V,, =17V .
At the same N, but for N, =2x10"cm™, the built in potential is about the same, i.e.

@,; = 0.9V but the breakdown voltage is reduced by a factor of about 10, i.e. V,, =1.2V .
19.8 The Zener breakdown is mainly dictated by the tunneling probability, in particular the Fowler-

Nordheim tunneling, which is given from (6.12) by

42m)>

T ~exp| — 3gEh E;? ¢y

Here E, isthe bandgap and E the electric field operative in the junction. Under a reverse bias,

-V, E is enhanced, the maximum value of which is given by
b
2(% +|VR|) ’

{25S(NA+ND)}%
Q'NAND

(2

max

as discussed in problem (19.7).
The critical electric field for the onset of Zener breakdown is determined by the fact that the
critical electric field provides a triangular potential barrier for valence band electrons in the p
region to undergo F-N tunneling into the conduction band in the n region, as shown in Fig.19.12
in the text. The thickness, d of the barrier as determined by the condition

gE-d =E,
ie.

d=Eg; / qE
is the critical factor of the F-N tunneling probability as clear from (1). This means that the
bandgap, E is akey parameter dictating the onset of Zener breakdown. The larger the bandgap,
the larger critical field is required.
Once E exceeds the critical value any farther increase of |VR| enhances T exponentially,

giving rise to exponential increase of junction reverse current.

In addition to the tunneling probability the incident flux of valence band electrons on the
triangular potential barrier is an important parameter as well. The flux is commensurate with
electron density therein and the thermal speed :

F o N,v,
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! %

o mn ) mn = mn
Hence the effective mass of electrons constitutes another key parameter affecting the breakdown
current.

19.9 (a) The diffusion equation of excess holes in the quasi-neutral region on the n-side is given by

rr_pnljzpno =0 (1)

n

Py

Since the distance, d between the edge of the depletion region x, and metal contact (see
Fig.19.8) is shorter than L , the second term in (1) is to be neglected. In this case the excess
holes depend linearly on x, i.e.
pn(x):A(x—xn)+B X2 X ---mn- ()
Here, the two constants of integration are determined from the boundary conditions,
D, (x = xn) e A — (3a)
p,(x=x,+d)=p,,---(3b)

Inserting (2) into (3), one can write

B= pnoqu/kBT

A-d+B=p,
and by inserting A, B thus determined in (2) one can write

p" (x):pno _pno (qu/kBT _I)X/d ------ (43.)

(b) Therefore the hole diffusion current is given in this case by

ap,
7p=4b, (_ ox j

qD,p,, (qu/kBT _ 1)

T4

while J, is to be obtained in the same way as was done in the text.

19.10 (a) Consider the diffusion equation for excess holes,

m Py P §D
-4 2 =0 1
D, L’ D (1)

P
with built in boundary conditions

D, (xn) =0--—---- (2a)
D, (x —>®)=p, +§DTP ------ (2b)

(1) is a standard inhomogeneous linear differential equation,
P p P

The homogeneous solution is first obtained by putting the right hand side zero, in which case one

finds
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Here the term, exp(x—x )/L _1is not included out of physical considerations
p n P p y

solution is readily obtained from inspection as

pn :p170+g02-p’

where

Hence the solution reads

P, (x) =4t 1 p g T, e (3)
Using (3) in (2a), one determines the constant of integration,
A=—(nm+§ﬂy)
Thus the complete solution reads as
P, (%) =(p., + 257, ) (1= ")

. The particular

in agreement with (19.51) and the solution automatically satisfies the boundary condition (2b).

(b) The load voltage and current are given by

Inverting (2) one can write

Therefore the load power is given by

P =V

v
:m;g—g[&ﬂ—q ------ 3)

where for simplicity the series resistance R has been neglected and ¥, is taken same as V.

Hence the maximum power is obtained from
o,
ov,

O:

VLm

Vil kgT Vi ! kgT
=I,— 1, (""" 1) |-V, L'

v,
=L +1 — e/ | 14 L
ke, T

That is,
quLm/kBT — Il +1

q

k,T
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1+1,/1,

“1+qV,, /k,T
Equivalently
y, kel 1n[1+ij—kB—T1n(1+—qVLm j
q s q B

in which the first term is identical to V. which was derived in (19.57a).
Also, one can find the load current at which the maximum power is attained as follows.
L, =1,—1 (e -1)

1+17,/1,
’ 1+thLm/kBT

Y R (1— kBT)
1 1
qVLm /kBT qVLm

19.11 (a) It will be interesting to include the effect of series resistance R_ in the power expression,
P =V
—(V-1,R, )[1, (e 1)} ------ @)

and analyze the maximum £, in (4) by means of perturbation or numerical scheme.

i

(b) For extracting the maximum power one has to consider two key factors, i.e. the open circuit
voltage, V. and the short circuit current /  =—/,. Evidently maximizing these two quantities

are the key issues. These two parameters are interrelated with each other by
kT (1
Voc == ln(—’j —————— (1)
q I
(see 19.57a) and V,.is shown to increase with increasing /,. Also, the photocurrent, /, is

critically dependent on the linear cell attenuation coefficient « :
I, ocg
=al

where

a=A4 (ho-E;)"
is critically dependent on the bandgap of the material (see(19.47)).

Naturally, enhancing [, is a most important factor for the maximum power extraction. This in

turn requires large linear attenuation coefficient, & or equivalently small cell bandgap, E, so

that larger fraction of solar radiation can be absorbed and utilized.

Increased [, also increases V., as pointed out but V,.is also increased via reducing the
saturation current /_, as clear from (1). However, since

I ocn’
(see(19.26b)), the reduction of / necessitates smaller intrinsic concentration, 7, and since

n, oc exp—E; / 2k,T it requires large bandgap.
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In view of these an optimal compromise is needed for the maximum power extraction.
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Chapter 20

20.1 Refer to Fig. 20.2 in the text.
The band bending in pnp transistor provides quantum well for electrons in conduction band in the
base region. When an electron approaches the base edges the potential hill near the edges pushes
it back torward the bulk base.
When a hole approaches the edge, however, it rolls up the potential hill of the valence band to be
pushed out of the base region. A potential hill pushing back electron should obviously push a
hole upward the hill.
Thus, an electron rolls down the hill, while a hole roll up the hill pushed by corresponding forces.
It is therefore obvious that the quantum well for holes in the valance band in npn transistor
confines holes while electrons are pushed out of potential plateau in the conduction band near the

base edges.

20. 2 (a) To derive the linking current in pnp transistor, note that electrons are confined by the
quantum well in the base and there is no electron current:

Jy = qunnE+an@= 0
dx
Hence E is given with the use of Einstein relation by
D, 1dn
p, n dx
__kT1dn

E=-

q ndx

Inserting (1) into the expression for hole current density one can write

dp
J,=qu,pE—qD, o

n dx dx
1d
——gD —*(pn
1 pndx(p )
n Jd
ie. ——=—(pn
aD. dx(p)

where the Einstein relation

has again been used.
Integrating (2) w.r.t. x over the base region one obtains from the left band side
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J ew, J 1

_12),[ dxm:—g'.,—QB ------ (33)

q v D, qg- D
where J , 1s taken out of the integral since it should be constant, Dp is the effective hole

diffusion constant which is again taken out of the integral via the mean value theorem and

W W
Oy =4, dv n,(x) =g " dx Npy ()

is the Gummel number.
The right hand side yields

[, d(p)=np

Wy
0

where Vg, Vip are the voltages applied at the p-type collector and p-type emitter, respectively
w.r.t. the n-type base. Note that the bias is always referred to the voltage applied to the p side
w.r.t. the n side, so that if the voltage is positive it is automatically taken as forward bias.
Equating (3a), (3b) one finds the linking current in pnp transistor:

Ip — _IS(quCE/kBT _quEE/kBT) ______ (4a)
where
A.q A.qn’
15 — Eq pno — Eqnz (4b)
QB NDBWB

is given in terms of cross-sectional area, A and base donor doping level.

(b) Under a forward active bias, Vgg > 0, Vg < 0 and p,(x=0) = p,.oexp(qVes/ksT) while p(W) =

ProeXp(-qVep/ksT) = 0.
The diffusion equation for excess holes in the base region is given by
Py Pao _ 2 _
pn _L—Z_O’ LP_DPTP
p

Since W < L,, one may neglect the second term, in which case p, (x) is linear in x, i.e.

X aVep/kgT X
p,(x)= pnoquEB/kBT [1__)—'_17”08 — - ®)
w, W,

Note that p, (x) satisfies the boundary conditions at x = 0, x = Wj, respectively.

With p (x) thus found the collector current is specified as

d, .
IC = AEqu [—%j = ]S(quEE/kET _quLg/kBT) ______ (6)

with
A.qD,n’ n

1

5= N
NDBWB NDB
(6) is in agreement with the expression of the linking current, (4a) as it should.

(c) The recombination of p, as occurs in the base is to be described by
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s PP,
Ly =q4,|, Iy E—))
TP
Using (5) in (7) and performing the integration one finds

2
_ AWy it

= T E b ®)
B
2NDBTP
Hence the base transport factor reads as
Io| || I W
aT:|C|:‘pE‘ B =1= rB =1- 123 (9)
‘IPE‘ ‘IPE‘ ‘]pE‘ 2LpB
where
8 - . AgD n’
]E:IE(quEB/kBT—l):[EquEB/kBT, [E: E pB"ti (10)
’ ’ ! ! N Wy

The hole current, 7, injected from the emitter to base under a forward bias is accompanied by
the electron current injected in the opposite direction from base to emitter:
2
AE qD nk ni
N .l

AE"nE

qVeg ! kgT —
5 =

InE = nEe nk

with l; r denoting the lesser of the emitter width W and the electron diffusion length, L,.

Hence the emitter injection efficiency is given by

}/ = ]pE = 1 = 1
1 pE +1 nkE 1+ ]’i 1+ %
I, GN.D,,
where GN denotes the respective Gummel numbers.
The net current gain is therefore
a. = Ic _ ‘IPE‘ Ic _]/a
F - ) — /%7
|]E| ‘IpE‘ + InE ‘IpE‘
and the amplification factor is given from the Kirchhoff’s law by
I a
IBF = u = £
|1 3 | l-a,

(see (20.18))

20.3 The collector current is contributed by the diffusing minority carriers in the base. In the npn
transistor /¢ is due to the diffusion flux of electrons in the p-type case, while in pnp transistor /¢
is due to the diffusion flux of holes in n — type base. In either case the injected minority carriers
are described by exp(qVze/ksT) or exp(qVes/ksT). The resulting diffusion currents are always

accompanied by the respective recombination currents oc exp(qV,, / 2k,T) or exp(qVes/2ksT).

However, the latter current is not connected to the output collector terminal as clear from Fig.
20.5 and /¢ is therefore solely contributed by the diffusion fluxes of carriers and is therefore
characterized by I oc exp(qVpp/ksT) or exp(qVep/ksT).

20.4 To set up the Ebers Moll equations in pnp transistor recall that the emitter current is contributed
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by holes in the base and electrons in the emitter:

I, =1, (quEB/kBT _quCB/kBT) +an (quEB/kBT S — (1)
where
I, = AEquni2 , inE _ AEqDZEniz
NDBWB NAElnE
with

inE =Wy orL,
denoting the lesser of Wy, L,. It is important to note in (1) that the current flow is taken positive
when it flows into the device through the terminal in this case the emitter, as clearly sketched in
Fig. 20.5 The voltage applied to the collector V¢p also induces the electron current in the
collector and is given by

_ qACDnCni2
NACZnC

_T qVeg /kgT _ T —
]nC - nC(e 1)’ ]nC -

2

with

lo.=W.orL,

again denoting the lesser of the two. Note in (2) that the current flowing into the device through
the collector terminal is taken positive.
The emitter and collector currents can be reexpressed from (1), (2) by regrouping the terms as

I = L€' —1) —apl o (e —1) - (3)

I =Iog(e" ™" —1) = d 5 (77 —1) - (4)
where

Ipg=Ig+1p, Iog=Ig+1,;
A s

I,+1,.° I, +1,

(3), (4) are the Bbers-Moll equations for pnp transistor. These equations can be cast into the

Uy ar

forward active and reverse active currents as
Iy =1 —agply
Io=1y—apl,
where
I =1 (e"™"" 1)
Ly =Ig(e"™" 1)
and from Kirchhoff’s law the base current can be expressed in terms of the collector and emitter
currents, i.e.

Iy=—1.—1;
The equivalent circuit of pnp transistor is identical to that of npn transistor shown in Fig. 20.6 in

the text. The only modification required is, I, Iy are directed in the opposite directions from the
case of npn transistor.

20.5 (a) To model I, Ic in terms of the time constants involved, consider first the excess hole charge
in the base as the minority carrier in pnp transistor. One can write
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0, = [ 44, (p, ()~ py)dx - (1)

0
Under a forward active bias,

pn(x):pnoquEB/kBT(l_i)+pnoquCB/kBTL
W, W, 2
:p quEB/kBT(l_i)
n0 WB

Inserting (2) into (1) and performing the integration one finds

1
QpB = AqupnO (quEB/kBT -,

1
= EqapnoquEB/kETWB

Hence the base transit time of holes is given by definition by
2
QpB WB
I.| 2D,
since under forward active bias the collector current is given by
2
AzqD,n;

i quEB/kBT
NDB%

trB

[c|=

In addition, the hole injection into the base ‘QpB‘ is accompanied by the electron injection into

the emitter |QnE

, both of which are proportional to the diode factor:
O :‘Qp8‘+ O,

— QF() (quEB/kBT _ 1)

Thus given O, I¢, I are to be expressed in terms of the time constants:

P
7’-F

-
TBF

-
7’-F
— QpB WBZ
r, " 2D,
Hence
T =Typ

Also, 77 is well approximated by the recombination time of holes in the base, 7,, 7, =7,.

(b) Therefore, the gain factor is to be represented by the time constants as
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. RAN _2L§7
"\L| t, W;/2D, W,

Clearly the smaller base width, the larger the gain.
(c) The terminal currents can thus be expressed in terms of charges stored and time constants
involved. The base current is given under forward active bias by
[ O 40, dO, 4O
Ter  dt dt dt

where the first two terms represent the steady state and transient contribution of Qp, while the
remaining two terms account for the transient change of Iz due to decreased uncompensated
dopant charge in the base emitter junction and increased uncompensated dopant charge at the

base collector junction, respectively. Naturally this is associated with the reduction or extension
of the junction depletion depth under bias. Likewise one can write

I _&_dQVC

c= =
T, dt

I,=—1,—1,

20.6 Compare first n°" —p" —n transistor with npn transistor. The amplitudes of I, I and base
recombination currents are dependent on N4 in the base as
A.qD,n}
N Wy
qAEnz‘ZWB
) NABTn

]E~IC~IS~

rB

and the emitter injection efficiency is specified by
1
1+ WBN ABD PE
WENDEDnB
Thus, disregarding the degenerate statistics of carrier concentrations for now, /g, /¢ are shown to
decrease with increasing doping level N 3.

}/~

1,5 also decreases with N,z but the minority carrier lifetime, in this case, 7, could also decrease

to off-set the decrease of /5. Clearly, the emitter injection efficiency could approach unity for
Npg >> N4p. It would be interesting to examine the effect of degenerate statistics, replacing Nz,
Npe by ppo, nug, respectively and examine the currents involved.
It should also be noted that with p” doping in the base, the base width W can be shortened to
enhance the current gain, # while preserving the neutral base.

Comparing p™" —n' — p transistor with the usual pnp transistor is to be carried out in similar

fashion. The only modification required in this case is to interchange the roles of electron and
holes and Ny — NDE; Npr — Ny .
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Chapter 21

21. 1 (a) The problem consists of replacing the role of electrons with that of holes.
In n - substrate for PMOS the charge is generally specified by

p(x) =g[Np —n,(x)+ p, ()] - (1)
Also, the charge neutrality in the n — bulk reads as
N2—)+pn0:nn0 ______ (2)
The surface band bending involved in this analysis is to be constructed as the mirror image of Fig.
21.4 in the text. Here one should introduce the Fermi potential for electrons above £, q@,,

and the band bends up as the surface is approached from the bulk for hole inversion.
Drawing the energy band diagram will be an interesting exercise.
If the space charge potential, ¢(x) increases as the surface is approached from the bulk, i.e.

@(x) >0, the electron potential energy, —qg@(x) bends down, the spacing between E_.
and E,. reduces. Consequently n, (x) increases:
n,(x)=n e, p=q/k,T )

By the same token, p, (x) decreases as

If @(x) decreases on the other hand, the opposite situation prevails, i.e. p, (x) increases

while 7, (x) decreasing.

Combining (1) — (4) the Poisson equation reads as
d’ _p

e P(x)=——

&g

N i[”no(eﬂgo ~D=p,e” —1)} B=qlkyT - (5)
£

N
_ 9 (eﬂqo _1) _h(e—ﬂ(p _1)}
Es M0

The first integration of (5) can be carried out by multiplying both sides with d¢ , as detailed in

the text:
i d(ﬂ
j dgo j “ dod
= [ " (-EB)d(-E)
:lEZ
2
while

Lo [T dgf(e" 1)~ Lo (e )]
&g 0

n0

= Lho (e - pp—1)+ L2 (e 1 p-1))
gsﬂ nnO

where one can put
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gy, _ (k_Tj Ry
& p q L?)

with the Debye screening distance specified by

1/2
L, :(szT g_J
q nnO

Hence, equating both sides there results

=52

k.T
= F(Bp,, L)
gL, n,

where
pnO _ Yo pnO - By "
FUM%;—D—%e —ﬂw—D+;—ﬂ? +ﬂ¢—D} (7)

Now that the space charge field has been expressed in terms of the potential one can specify the
surface charge density with the well known identity:

QS = _SSES >

— 25T (g, Ly T ®)
qL, n0
with
E;=E(x=0)
P, =p(x=0)

denoting the surface field and potential, respectively. Note that (8) for PMOS is similar in
contents with (21.14) for NMOS. The obvious differences between the two consist of

P; <>~
ppO <« nnO

npO <« pnO

(b) This differences imply in turn that the electron accumulation ensues for @(x) >0 and hole

inversion occurs for ¢@(x) <0 in PMOS. Also the surface depletion occurs for 0<¢(x)<2¢p,, .

(c) As discussed in the text, the capacitor consists of C,, and C; connected in series:

1 1 1

where

is the oxide capacitance per unit area and

accounts for the changes in the surface charge w.r.t. ¢, .
With the use of (8), one can write
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1— eﬁwx + Puo (e’ﬁ(ﬂs _ 1)
& n
Cy=—p8 0 ©)
V2o R(pg, Py
n0

(9) is identical with (21.20) in context except for the polarity of ¢ .

In accumulation for @(x) >0,

& \ q
C. ~ s eﬂ\m/Z , __4
EEENGY N d ke, T

¢s > 2<0Fn 4

2 Pno B2
Cy ~—— |[Le
s \/ELD n,,

In the depletion region in which 0< ¢, <2¢,,

while in inversion for @(x) <0 and

o & 1 &
’ \/ELD Bo, W,

~

(d) With the channel inversion well specified via ¢, , one can use the variable depletion

approximation and derive / — V curve in the same way as detailed in the text.
The main difference consists of the polarity of V., Vyand V.

w 1
I, = TﬂpCOX(|VG|_|VT| _E|VD|)|VD|

21.2 As already discussed,
I,cC, (Vy-V,)
in NMOS and
I, COX(|VG| _|VT|)

in PMOS. In these devices, the quantum well is induced by applying ¥, and mobile charge

carriers are capacitively coupled into the well for conduction.
In contrast in bipolar junction transistor, the output collector current
I ocexp(qVy; [ kpT)
in npn transistor and
1. cexp(qVy, /k,T)
in pnp transistor and these currents are driven by the diffusive spilling in of charge carriers across
the lowered junction potential barriers. Thus, the difference consists of capacitive coupling of

charges and diffusive exponential spilling in of charge carriers across the lowered potential
barrier.

21.3 (i) Consider first the n" polygate NMOS. As clear from Fig. 21.2 the n" polygate has the
workfunction of g@ . =4.05¢) . To find the work function of the p substrate on has to find

poly
Do - This can be done from the given resistivity data:

pz;:lﬂcm

qltlpppo
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or

1
1.6x107°C400cm* / Vs 1Qcem

=1.56x10" em™

ppO:

Hence from (17.30)

¢Fp = kBT ln[ﬂ]
q n,

l

16
=25.8mV-1n(1'56X10 j

1.45x10"
=036V
Hence the work function of the p substrate is given by
9P, =X+ E/2+qpy,
=(4.05+0.56+0.36)eV

=4.97eV
Hence the flat band voltage is given by

VFB = ¢poly - ¢sc
=-092)V

(i) For p” polygate and n substrate PMOS, one find n from the data
1
p= =1Qcm

qu.n
so that
n,=7.8x10"cm>
and
PRLIU (h] = 0.347
q n;
Hence,
Vig = @pory = Puc
= (4.05+1.12)—[4.05+ (0.56 - 0.34)]
=09V

Therefore, for the case of NMOS the band bends down by 0.92el as the surface is
approached form the p bulk(see Figs. 21.2 and 21.3). For the case of PMOS the band
bends up by 0.9¢V. To flatten out the band bending the flat band voltages are required.

It will be instructive to sketch these energy levels, together with the flat band
configuration.

21.4 (a) To find the inverted electron density, introduce the variable resistor associated with
NMOS:
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I, = KCoxlun(VG iz _lVD)VD
L 2
Ty
R
where the ¥, controlled channel resistor is given by
%:% oxt, Ve =V _%VD)
. (1)
L
P w-t,
w-t,
L

qﬂnn

where p isthe resistivity and ¢, the effective thickness of the inverted channel.
Thus, W -t, represent the effective cross-sectional area of the channel. Also, use has
been made of
p=l/oc=1/qun
Now, consider the case where
R=5KQ
for example. Then for W/L = 5 one can write from (1)

5x10° Q=1 = 12
5 1.6x1077C-600cm” /Vs-1Qcm -n-t,,

from which one finds
n-t,=67x10"cm™
For the channel thickness of about 10nm,
n~6."7x10"cm™

(b) The gate voltage required is found from (1) as

1
Cox Vs =V, _EVD)ZQ'n'tch

or
qgn-t,=q-67x10"em™ =q-6.7x10"m™
Eox
=—%_ (V.-V.-0.05
50-10°m 0T )
Hence
1.6x1077-6.7x10"%-50x107 -47-8.988x10°
Ve =V, =
39
=1.6V
Here the Coulomb constant
L 8.988x10° Nm* / C?
4rg,

was used together with the oxide dielectric constant of & =3.9.
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One can carry out similar analyses for other resistor values.

21.5 (a) Given the device I — V curve
/4 1
]DZT OX/un(VG_VT_EVD)VD’ Vosar =V =Vp - (D
one can formally express the same 7, in terms of the channel voltage V(y) at y distance

from the source, i.e.

w 1
ID = TCOX/’ln |:VG - VT _EV(y)jl V(y) ------ (2)

Equating (1), (2) one can write
1

%(VGI _EVD)VD = §|:VGI _%V(y)}V(J’)
with
v, =v, -V,
or after rearranging the terms one can write

' 2 !
VO =2V )+ 2 = V) =0

One can thus solve this quadratic equation for the channel voltage as a function of y,
obtaining

Since by definition
V(iy=0)=0
the solution is given by the negative branch of (3).

(b) Next, the longitudinal channel field is given in terms of V' (y)as

B =7

ro 1
(VG - E VD)VD

__n 1

L Y2

_ai

(7 L)

where
y.'?
y= o (4)

Vs —=Vp)
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(4c)

Note that in device saturation, i.e. for V, = VG' , ¥=4, a=4, so that the channel field

E diverges at y = L, as expected

(c) With the use of (4), the electron transit time form source to drain is specified as,
_ [ty
r 0 Vd

L dy

o U, E(y)|

Lt Y2

= d B A 5
Sl -ad) (s)

n

__L (=2 (7_al)1/2
wV, \ 3a L

_r
3uV o

(5) represents the general expression of the transit time of electrons as a function of V.,

L

0

[73/2 —(]/—0!)3/2]

V,, . Note that the transit time, 7, is given in essence by
r L L
Vs 1,Vy/L) v,
as it should be. In device saturation where V,,, =V, , y =a =4, so that
4 I

3 1,V psar

tr

21.6 (a) Consider first NMOS with n" polygate and substrate doping N, =10"cm ™. The
threshold voltage is given form (21.37) in terms of flat band voltage, Fermi potential and
body effect coefficient as

Ve =VFB+2¢Fp+7/(¢Fp_VB)1/2 """ (1)

The Fermi potential in p substrate is given from (17.30) at 300K by

kT (LJ
q n;

=041V

Hence the flat band voltage is given in terms of the work function difference between n"

ploy gate and p substrate as
Vip =4.05—(4.05+0.56 + ¢,

=-097V
The oxide capacitance at ¢, =10nm is

(DF P
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o 3.9
10-10° 47-8.988x10°
=3.5x10"C*/ Nm’

Hence, the body effect coefficientat N, =10"cm™ is given by

) Cox

1 [2‘11.9-1.6x10‘19.1017+6}”2
Cox 47-8.988x10

=053 V"

Therefore at zero bulk bias, 7, =0
V,=-0.97+2-0.41+0.53(2x0.41)"

=0.33V
Likewise, for PMOS with p" poly gate and n substrate doping, N, =10"cm™,

V,=0.97-2-0.41-0.53(2x0.41)"*

=-0.331
One can carry out similar analyses for other substrate doping levels.

(b) If a positive charge sheet Oy is present at the interface between oxide and substrate, a
negative charge sheet, - Oyis required at the interface between the polygate electrode and
oxide to achieve the flat band configuration.

The resulting voltage developed across the oxide is by definition the additional flat band
voltage required. Thus, one can write

AV -Cpoy = —Qf, Qf = q-lO”cm_2

and
AV, =— 9
COX
_L6x107°C-10" /m?
- 3.5x10°C/V
=-0.05V

Here, C,, obtained in (a) has been used. With the use of this new flat band voltage, V;
analysis can be carried out in the same way as in (a).

21.7 (a) The lifetime of electrons in the quantum well is determined by the condition,
NT =1------ (1)
where T is the tunneling probability and N the total average number the electron
encounters the barrier before tunneling out of the well.
The barrier potential on the left of the well has the width thicker than that of the potential
barrier on the right. Hence one needs to consider 7 across the barrier on the right hand
side, which is given from (6.5), (6.6) by
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2

A=———sinh’d 2—T(V—E) ------ (1b)
AE(V —E) h

where V' =3.1leV is the barrier height, £ is the kinetic energy of electrons and d = 8nm
is the barrier width. For well width W > 80nm the ground state energy of the quantum
well is much smaller than thermal energy, k,7/2=25.8mel at300K.

Hence we have toput E=k,7/2<V .

Thus, (1b) simplifies as
1 2 1/2
1 exp2d (h_T Vj

2k,T 4
Hence, inserting given values of the parameter, one can write
_ 3.1 o
2-(0.0258)
where

;(—2-8><10{2X9'1X10_31 x3.1x1.6x107"? }”2

(1.055x107**)?

=144
so that
T=A"=193x10"
Thus to satisfy the condition (1) N should be specified by

N=1~5.2><1063
T

Now, the thermal speed of electron is given from the equipartition theorem as

%mvﬁ = %kBT
so that at 300K,

v, =6.8x10*m /s
Therefore the lifetime of electron is given for W = 80nm, for example, by the round trap
time of electron times N, i.e.
-9
= 28010 55108
6.8x10

=1.2x10%
and is shown nearly infinite. Naturally the lifetime increases with increasing well width,
w.

(b) Evidently, reducing the lifetime to 1 necessitates enhancing tunneling probability to

a sufficient extent. This can be done by applying electric field, E, so that the barrier
potential on the right with smaller thickness d (= 8nm) transforms into a triangular shape.
The resulting F — N tunneling is given from (6.12) by
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T = exp— -
exp 3q|E|h(V )
cexp- M sy g ey
3¢|E|n

where the kinetic energy of electron is much smaller than barrier height and is neglected.
As discussed in (a), the lifetime is thus given by the product of the round trip time times
NE=1/T), e

2W 1
T=———
v, T

_ 2x80x107 42mp"?

68x10° 0 3q[E[n

Hence, by putting 7 =10"s, the required E is found as
4\/%1/3/2 1

3gh  In[10°-(6.8/1.6)]
_4.(2:9.1x107")"?(3.1x1.6x107"7)*"?
~ 3.1.6x107°-1.055x107*-17.6
=2.1x10°V /m
=2.1W/nm

[E[=

(c) The ground state energy of the quantum well is approximately given from (4.9) by
'’
L 2mw?
and represents the 1D kinetic energy of electron, i.e.
1, W
—my, =——
2 2mW
Next, scale W in terms of nm,
W=n10", n=12,-
Then v, as a function of W is given by
hr 1
V=G0
1.055x107*-3.14 1
9.1x10710° ) n

=(

=3.6x10° -lm/s
n

(d) Hence, the width of the well in which v_ is equal to the thermal speed of free 1D
electron is given by

6.8x10* =3.6x10° A
n

1.e.
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That is, the well width is
W =53nm

(e) For W ranging from 10 to 100nm the electron kinetic energy in the ground state is less
than the thermal energy at room temperature. This suggests that for this range of ¥, the
electron in the well can be viewed as classical particle moving with thermal speed, and
the lifetime analysis carried out in (a) needs no modification resulting from discrete
quantized energy level.

21.8 The excess electrons present in the floating gate screen the gate field lines applied to
invert the channel. As a result the threshold voltage in the programmed cell is larger than
that of the erased cell, as clearly illustrated in Fig. 21.18:

10,6

ONO

Vicar =Vrcee +

Here |QFG| is the excess electron charge stored in the floating gate and C,,, is the
oxide capacitance between floating and control gates.

Thus, at the oxide thickness of 15nm,

Eox €, &,

r

CON (O -
ox tOX

_ 3.9
15%107° -47-8.988%x10°

=2.3x107C/Vm?
Thus, the threshold shift, for example, of 5V,
Vicar =Viege =5V

is caused by |QFG| which is given by

5-Cono :|QFG|
=g-N
with N denoting the number of excess electrons. Hence one finds
~5-23x107
©1.9x107"
=6x10"/m’
=6x10"/cm®

For the floating gate with 100x100nm cross-sectional area for instance
N =600
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Chapter 22

22.1 In the bulk MOSFET the channel inversion is formed in the quantum well, which is induced by

V.. In the quantum wire FET on the other hand the channel is built in during the device

fabrication. Thus there is no need for the voltage induced channel. In addition, in the quantum
wire FET the possible leakage path through the substrate is minimized, e.g. the punch through,
hot hole induced forward biasing of the source junction, etc. Thus, the quantum wire devices are
compatible with the downscaling the device dimensions. Furthermore, the vertical wire structure
holds up the promise of higher degree of device integration.

However, the fabrication steps of the quantum wire devices are complicated, compared with bulk
MOSFETs. Also, because of the scattering of charge carriers with rough oxide interface, the
mobility in quantum wire FET could be lower than in bulk MOSFETs.

22.2 (a) The energy eigenequation of an electron in the quantum wire is given by

w(o o &
+—+

o’ ot o

Here the electron is confined in x, y directions, while it moves along the z — direction as a free

particle. For simplicity of analysis, the potential barrier confining the electron is taken infinite.

Then (1) readily reduces to two infinite potential well problems in x, y directions and the free
particle motion in the z — direction. Thus one can write the wavefunction from chapter 4 as

o(x,y,2) =u, (X)u,, (y)e" —-- (2a)

2m,

where
2\"? [coskx k,=Qu+D)z/W n=0,1,---
u,(x)=— A — (2b)
w sink,x k, =2nz/W n=1,2,--
2\ (cosk,y k,=Qm+D)x/W n=0,1,
um (y) il — o N e T (20)
w sink,y k,=2mrx/W n=12,--
The corresponding energy eigenvalues are given by
h2 2
E=E +—— - 3
nm 2 : ( a')
hZﬂ_Z
Enm = VVO(}/IZ + mz)a VVO = W“"“ (3b)

(see (4.9)). The ground state and a few excited states are listed as follows, together with the
degree of degeneracy.

m n Eqmin Wyunit Degeneracy
Ground level 1 1 2 1
" . 2 1 5
1* excited level 2
1 2 5
2™ excited level 2 2 8 1
. 2 3 10
3™ excited level 2
3 2 10
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(b) The density of 1D electrons in the wire can be obtained in a way similar to what has been
discussed in problem 16.6. The density is given by

nlD:Z®(E_Enm).|‘:’mg1[)(E)ﬁ, (E)dE ------ (4a)

where © is the heavy side step function, and

\/Eml/z 1
gip (E) = ﬂh; (E—E )1/2 (4b)
is the 1D density of state (see (4.31)) and
f ( E) = o E-E0) kT

is the Fermi cccupation factor (see (17.1¢))

Next, consider the integral

w \/Eml/Z o~ EEun+Eun~Er) ks T
I=[" aE~—=—* S (5)
w A (£-E,)
where the sublevels in the quantum wire are defined w.r.t. E, i.e.
E, =E.+W,(n’+m®)

Introduce a dimensionless variable of integration,

52 _E-FE
kT
Then [/ transforms as
ND) 1/2 _En—Er . ,
lzﬂ(k T)?e % | d&e
h 5 0 6
\/_ 1/2 2 _Ec-Ep+AE,, (6a)
_ 2m, " (k,T) o koT

7h

where the formula (1.24) in the text has been used and

nm

Inserting (6) into (4a) there results

/2 E,—Ep _AE,,
P 2m k,T . .
1D — 2
zh

(c) This problem remains an open ended question. In view of the channel formed physically in
device fabrication the accumulation, depletion and inversion regions of capacitive coupling of
electrons could be different from those of bulk MOSFET.

(d) In view of the lack of precise formulation of channel inversion the comparison between
classical and quantum mechanical descriptions cannot be clearly made. However, one can point
out a few general features distinguishing the two descriptions.

The first concerns with the issue of surface versus bulk channel inversion. Classically, the
concentration profile of inverted electrons is sharply peaked at the oxide interface, as clearly
shown in Fig. 21.10. Quantum mechanically, however, the profile is pushed away from the

168



interface due to the wave nature of electrons. This has a significant bearing on the C — V
characteristics, as shown in Fig. 21.10.
The second concerns with the discrete energy levels operative in quantum description. This effect

is clearly exhibited in (6) in terms of AE . The effect will be insignificant if AE < k,T for

large W. However, with decreasing W AE, ~ could be larger than k,7T", which could lead to

nm

exponential reduction of inverted electrons.

22.3 Fig. 22.12 provides a convenient platform on which to analyze the problem. The Schottky barrier
is defined as the difference between the energy level of £}, and E, in this case:
495, =qx +E; —q9,
=4.05+1.12-4.75

=0.42eV
The built in barrier potential is determined as usual by the difference between two Fermi levels,
ie.
90y = Ep —E,

=qx+E:—qV, 49,
Now, for N, =10"cm™ for example

qu EEG/z_Q¢Fp
:EG/z_kBm(ﬂj
n

1018
= 0.56-0.0258 In| ————
1.45x10

=0.09¢eV

Hence

49, =4.05+1.12-0.09-4.75
=0.33eV

(b) Fig. 22.12 provides a typical band bending for p-type semiconductor in which £, > FE, ,in

the absence of surface states.

One can readily introduce the surface states and surface layer in a manner similar to Fig.
22.13.The only difference consists of bending down of energy levels rather than bending up as
the interface is approached from the semiconductor bulk.

Consider for simplicity a uniform distribution of surface state with density Ds. Prior to contacting

the metal, surface states lying below FE,. is occupied by electrons and as a result the band bends

up at the surface as in Fig. 22.13.
When a contact is made with Au, however, electrons are transferred from metal to semiconductor,

since E,, > E, in this case. Consequently, the space charge similar to Fig. 22.12 is formed

and band bends down as shown in the figure.
As a result of which, some of the electrons trapped at the surface states prior to contact is
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released.

Now the difference between two Fermi levels, E,, — E, or the corresponding work functions

is partitioned between the built in potential and the surface layer potential, i.e.
(gx+E;—qV,)—q0, =99, + 4P, - (1

Also, the positive charge sheet, O~ on the metal surface is balanced by the surface charge of

trapped electrons and space charge of dopant ions:

Qm = st + Qsc ______ (2)
where
O.|=gW
2 3)
=(29&4N ,9,,)
and
st = qu (q Vp + q¢bi) ------ (4)

Here the depletion depth W in (3) corresponds to the case where N, > N, in (19.8b) and O
in (4) is provided by electrons trapped in states below E in Fig. 22.12.
Finally, ¢

N

, 1s specified by definition as

gpsl =

with &, denoting the permittivity in the surface layer and & its thickness.
Inserting (2) — (5) into (1) one can write
o
A=g, +;[qu(qu +Q¢bi)+(2qgsNA¢bi)l/2] ------ (6a)

1

where
A=y+E;/1q-V, -, (6b)
Regrouping the terms I (6a), one can write

ag,, +bp,* +c¢ =0-——(7)

where
2
gi
,_ 245N,)"5
gi
‘DV.S
c= u_/\
&,

The quadratic equation for ¢,¥2 can be readily solved, but in the limit of small ¢ one can
disregard the second term in (7) and obtain
A—- quSVpé'/ &
O Do
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Eq. (8) is the counterpart of (22-18), as applied to the p — substrate interfaced with Au. In the
limit of no surface states, D =0, the built in potential is strictly determined by A, that is, the

difference between two Fermi levels (see (6b)).

In the other limit of large surface state, i.e. Dg —> oo it follows from (8) that

This specifically points to Fermi level pinning by surface states. As discussed earlier, when the

surface state near £ are filled with electrons the band bends up in a manner similar to Fig.
22.13. However, if E, at the interface is raised up by an amount Vp , it hits the large interface

density Dg and the band bending is pinned, regardless of Au contacting the substrate.

22.4 The I — V behavior of the Schottky diode made up of Au contacted silicon p substrate can be
derived, following steps detailed in the text for the case of n-substrate. Evidently, the only
modification required is to replace the role of electrons with that of holes. For this purpose one
should sketch band bending corresponding to Fig. 22.14. In the present case the band bends

down with £, located on top of FE, .

To derive I-V curve due to the thermionic emission theory on should first consider the emission
of holes from semiconductor to metal at thermodynamic equilibrium, i.e. at V' =0

J,,V=0)=¢ jEw dEg, (E)[1- f(E)]V, - (1)
(see (22.19) in the text). Here

R0

83p = Y (E, —E)------ (2a)

is the 3D density of states for holes and the kinetic energy of holes is given by

Also,

1-7(E)
is the probability that the state is not occupied by the electron or hole occupation factor with
f(E) denoting Fermi distribution function. Thus one can write

1
l—f(E)=1—m

1

= I A — (20)
~ o~ BT

— e—(EV +qV,—E)/ kT

since £ < E, . Inserting (2a) — (2¢) into (1) one can write

3 -qV,

_0y= "kt [ B v e P gy e _
J (V_O)_47z2h3 e .[ dv e J._wdvze LB dve™ v  f=——t— 3)

sm y
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where v, represents the minimum hole velocity for overcoming the barrier,

1
5 m,Vg =49,
One can readily evaluate (3), using (1.24) in the text, obtaining
~4Vy  —qoy
JuV=0)=A T ™"
Ceon e @)
995, . qm, k;

=AT% ",
where
Py = Py +V, == (5)
denotes the Schottky barrier given in terms of ¢,, and gV, =E; —E, (see Fig. 22.12). At

equilibrium detailed balancing prevails, so that

J,,V=0=J (V=0)--- (6)

ms

Under bias, £, , E, split to accommodate the voltage applied, while the Schottky barrier

Fs > Fm

remains the same, since @, 1is determined solely by the difference between the two work

functions involved. Therefore, with V" applied at the semiconductor, ¢,,(V) should increase

or decrease such that
9P, =99P, +4V,

------ 7)
=qV +qp,(V)+4qV,

remains fixed, regardless of V.
Therefore

99 (V) = qpg, —qV, —qV )

=499 —qV
Inserting (8) into (4) one finds
~4V  —q¢u (V)

-Jsm (V) — A;Tze kgT e kT
~aV, —4lg,—qV]
AT o kT
p
4998  qV
:A;Tze kgT ekBT

Hence under bias the detailed balancing is destroyed and current flows from the semiconductor

to metal, i.e. —Jp ,

-J,=J,()-J,F =0)
*2 —q@g, kT o gV /kpT
= AT ™™™ (0 —1)

Note in (9) that V' is applied at semiconductor w.r.t. metal (see (7)). (9) indicates therefore that
the forward current flows when a negative bias is applied at the metal.
Next, to derive I-V curves due to the drift diffusion theory, one has to start with
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Iy :qp'upE_qu_x
(see (22.58)) and the well known relationship,
D,/ u,=k,T/q--— (11a)

Inserting (11) into (10) J , can be recast into

X a X
Jpeﬂ(ﬂ( ) __ D”a[eﬁw( )P(x)} ______ (12)
with f=q/k,T . Integrating both sides of (12) there results
w
B qu P )p(x)‘o
P jW Ao
0

To evaluate J, one has to consider the space charge field E(x) and potential, ¢(x). E(x)

in this case is identical to that in n"" — p junction, as can be clearly seen from Fig. 22.12. Thus,
one can write

E(x)=E_ (V)l-——1], E__ _INIV )
W) Es
and
52
x)==E__(V)[x— +@, - 14
(P( ) max( )[ 2W(V)] @Bp ( )
Note in (14) that at the interface @(0) should account for the Schottky barrier, i.e.
—q9(0) =4y,
With the use of (14) one can evaluate the numerator in (13):
_Er—Ey(0)
0O =N ¢ KT P __49
p(0) v s kT
= NV
_Ep-E, (W)
p(W)eﬂ‘p(W) — NVe kgT eﬂ(V,,+V)
= NVeﬁ 4

where as clearly shown in Fig.22.12
E.-E, 0)= q®pg,
E.—E,(W)=q V;
Hence
w
gD, ¢ p(x)|| =gD,N, (" =1)-— (15)

Also, using (14) the denominator of (13) can be evaluated:
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J‘ " dxe??
0

_ eﬂ!ﬂgp IdeeXp{%[xz —ZxW(V)]}
0 2¢

S

B (16)
= [" deexp {%[(x_ W) - W(V)2]}
0 2¢&

N

2¢&

Bes, S \1/2

=e " (——)""D(5)
qNAﬂ

where the function,
D(e)=e < [[dse”, ¢=(BgN, 126 W), s =(BgN,/ 26,) "W (V) -]
thus introduced is called the Dawson integral (see (22.34b). In the asymptotic limit
D(c)=1/2¢

Hence inserting (15), (16) into (13) one can derive the drift diffusion expression of the current of
Schottky diode consisting of Au contacted p type silicon substrate.

—J, = JSDeﬁBp " =1, B=qlk,T
where

q’D,N,N W ()
JSD =

&g
) 172
_ q DpNV 29N ,0,,(V)
k,T &g ’

¢bi(V) = ¢bi(V =0)-V
Note holes are transferred from semiconductor to the metal so that the polarity of current density
should be negative.

22.5 Given the Cu work function, g¢, =4.5el", the silicon band near the interface bends up or
down depending on doping conditions.

(a) For n —type Si, the work function for £, is given by
99, =qx +E /2~ q9p,

=4.05+0.56—k,TIn [ﬂj

ni
:4.61_kBT1n(&j
ni

Hence if go,, =k,TIn(N,/n)>4.61-4.5¢V q@, >q@, and bands bends up, providing
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potential barrier to electrons, as clearly shown in Fig. 22.11. The effect of (Q_ on band bending
can be seen clearly form Fig. 22.13.

If g, <4.61-4.5eV, on the other hand the band bends down and resulting consequences
can be discussed together with the case of p type silicon. For p type Si, the work function for

E,, is given by
99, =qx+E;/2+q¢y,

n.

4

=4.05+0.56+ kBTln [ﬂJ
Therefore

q¢s > q(Dm(Z 456V)

regardless of doping level of N, and the band bends down, creating barriers for holes (see Fig.

22.12). The effect of (. on band bending has been discussed in problem 22.3

(b) If band bends up as in n-type Si (Fig. 22.11), photogenerated electrons roll down the potential
hill from the interface toward Si bulk. On the other hand photogenerated holes roll up the hill.
The resulting direction of photocurrent is opposite to the forward current of Schottky diode.

If the band bends down as in the case of p — type Si (see Fig. 22.12) photogenerated electons roll
down the hill toward the interface, while holes in the valence band roll up the hill toward the
silicon bulk.

The resulting direction of the photocurrent is again opposite to the forward current of Schottky
diode.

(c) In both case one can write
I=1," -1, B=qlk,T (1)
where
AT?e """ forn - type

* 2 —qeg, kT
AT e

I. =

N

for p - type
and /, is the photogenerated current.

Hence the open circuit voltage is found by putting / in (1) zero:

22.6 (a) The work function of intrinsic Si is given by
995 =qx+E; /2
=4.05+0.56
=4.6leV

Thus, if the work function of metal is less than 4.61eV, i.c.
qp, <4.6leV

175



the band bends down in the interface and electron concentration at the surface becomes larger
than 7, in the bulk and Schottky Ohmic contact for electrons can be realized.
If

qp, >4.6leV

on the other hand, band bends up and surface hole concentration becomes larger than 7, in the

bulk. Thus Schottky Ohmic contact for holes results.

(b) The Debye length of electrons is given from (22.44b) by

kT 1/2
LDZL_‘QSZB j
q ns

where the surface electron concentration

no=ne",  B=qlkT, 90,=q0,-q9,
is given in terms of the difference in work functions involved.

Thus, for L, of 10nm for example the corresponding ¢, is found at 300K from

11.9-1.381x107%-300
47-8.988x10° - (1.6x107"%)* -1.45x10'%* . s

10x107° {

or
™'t =3.4x10°
Hence,
2k, T
q
=042V

and therefore the metal work function required is
q99,, = qp5 —0.42
=4.61-0.42
=4.19eV
By the same token the metal work function required for L, =10nm for holes at 300K is
qp, =4.61+0.42
=5.03eV

Oy = In(3.4x10%)
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