Page 57

PQC_for_Dummies

References 57 26. J. Ding and B.-Y. Yang. »Multivariate Public Key Cryptography«. In: Post- Quantum Cryptography 8. Ed. by D. J. Bernstein, J. Buchmann, and E. Dahmen. Springer, 2009, pp. 193–241 (cit. on p. 34). 27. L. Ducas, A. Durmus, T. Lepoint, and V. Lyubashevsky. »Lattice Signatures and Bimodal Gaussians«. In: Advances in Cryptology—CRYPTO 2013. Ed. by R. Canetti and J. A. Garay. Vol. 8042. LNCS. Springer, 2013, pp. 40–56 (cit. on p. 30). 28. European Telecommunications Standards Institute (ETSI). Quantum-Safe Cryptography. http://www.Etsi.org/technologies-clusters/technologies/ quantum-safe-cryptography. 2016 (cit. on p. 23). 29. J.-C. Faugère. »A new efficient algorithm for computing Gröbner bases (F4)«. In: Journal of Pure and Applied Algebra 139.1–3 (1999), pp. 61–88 (cit. on p. 34). 30. J.-C. Faugère. »A new efficient algorithm for computing Gröbner bases without reduction to zero (F5)«. In: International Symposium on Symbolic and Algebraic Computation—ISSAC 2002. ACM, 2002, pp. 75–83 (cit. on p. 34). 31. J.-B. Fischer and J. Stern.»An Efficient Pseudo-Random Generator Provably as Secure as Syndrome Decoding«. In: Advances in Cryptology—EUROCRYPT 1996. Ed. by U.Maurer. Vol. 1070. LNCS. Springer, 1996, pp. 245–255 (cit. on p. 28). 32. M. Grassl, B. Langenberg, M. Roetteler, and R. Steinwandt. »Applying Grover’s Algorithm to AES: Quantum Resource Estimates«. In: Post-Quantum Cryptography —PQCrypto 2016. Ed. by T. Takagi. Vol. 9606. LNCS. Springer, 2016, pp. 29–43 (cit. on p. 15). 33. L. K. Grover.»A Fast Quantum Mechanical Algorithm for Database Search«. In: Symposium on Theory of Computing—STOC ’96. ACM, 1996, pp. 212–219 (cit. on p. 15). 34. T. Güneysu, V. Lyubashevsky, and T. Pöppelmann. »Practical Lattice-Based Cryptography: A Signature Scheme for Embedded Systems«. In: Cryptographic Hardware and Embedded Systems—CHES 2012. Ed. by E. Prouff and P. Schaumont. Vol. 7428. LNCS. Springer, 2012, pp. 530–547 (cit. on p. 30). 35. J. Hoffstein, J. Pipher, and J. H. Silverman.»NTRU: A ring-based public key cryptosystem «. In: Algorithmic Number Theory: Third International Symposiun, ANTS-III. Ed. by J. P. Buhler. Vol. 1423. LNCS. Springer, 1998, pp. 267–288 (cit. on p. 37) 36. A. Hülsing, J. Rijneveld, S. Samardjiska, and P. Schwabe.»From 5passMQ-based identification to MQ-based signatures«. In: Advances in Cryptology—Asiacrypt 2016. Ed. by J. H. Cheon and T. Takagi. Vol. 10032. LNCS. Springer, 2016, pp. 135–165 (cit. on p. 35). 37. IEEE P1363.1: Public-Key Cryptographic Techniques Based on Hard Problems over Lattices. IEEE Std 1363.1. 2008 38. D. Jao and L. De Feo. »Towards Quantum-Resistant Cryptosystems from Supersingular Elliptic Curve Isogenies«. In: Post-Quantum Cryptography—PQCrypto 2011. Ed. by B.-Y. Yang. Vol. 7071. LNCS. Springer, 2011, pp. 19–34 (cit. on pp. 26, 36). 39. R. Jozsa. »Quantum factoring, discrete logarithms, and the hidden subgroup problem«. In: Computing in Science Engineering 3.2 (2001), pp. 34–43 (cit. on p. 16).


PQC_for_Dummies
To see the actual publication please follow the link above