Page 58

PQC_for_Dummies

58 References 40. A. Kipnis, J. Patarin, and L. Goubin. »Unbalanced Oil and Vinegar Signature Schemes«. In: Advances in Cryptology—EUROCRYPT ’99. Ed. by J. Stern. Vol. 1592. LNCS. Springer, 1999, pp. 206–222 (cit. on p. 35). 41. L. Lydersen, C.Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov. »Hacking commercial quantum cryptography systems by tailored bright illumination«. In: Nature Photonics 4.10 (2010), pp. 686–689 (cit. on p. 16). 42. T. Matsumoto and H. Imai. »Public Quadratic Polynomial-Tuples for Efficient Signature-Verification andMessage-Encryption«. In: Advances in Cryptology— EUROCRYPT 1988. Ed. by D. Barstow, W. Brauer, P. Brinch Hansen, D. Gries, D. Luckham, C. Moler, A. Pnueli, et al. Vol. 330. LNCS. Springer, 1988, pp. 419–453 (cit. on p. 25). 43. R. J. McEliece. »A Public-Key Cryptosystem Based On Algebraic Coding Theory «. In: Deep Space Network Progress Report 44 (Jan. 1978), pp. 114–116 (cit. on pp. 25–27). 44. R. C. Merkle. Secrecy, authentication, and public key systems. Ph.D. thesis, Electrical Engineering, Stanford. 1979 (cit. on p. 25). 45. R. Misoczki, J.-P. Tillich, N. Sendrier, and P. S. L.M. Barreto.»MDPC-McEliece: NewMcEliece variants fromModerate Density Parity-Check codes«. In: IEEE International Symposium on Information Theory—ISIT 2013. 2013, pp. 2069–2073 (cit. on p. 28). 46. National Institute of Standards and Technology (NIST). Post-Quantum Crypto Project. http://csrc.nist.gov/groups/ST/post-quantum-crypto/. 2016 (cit. on p. 23). 47. H. Niederreiter. »Knapsack-type cryptosystems and algebraic coding theory«. In: Problems of Control and Information Theory 15 (1986), pp. 19–34 (cit. on pp. 27–28). 48. P. C. van Oorschot and M. J. Wiener. “Parallel Collision Search with Cryptanalytic Applications”. In: Journal of Cryptology 12.1 (1999), pp. 1–28 (cit. on p. 31). 49. R. Overbeck and N. Sendrier. »Code-based cryptography«. In: Post-Quantum Cryptography 8. Ed. by D. J. Bernstein, J. Buchmann, and E. Dahmen. Springer, 2009, pp. 95–145 (cit. on p. 27). 50. J. Patarin. »Hidden Fields Equations (HFE) and Isomorphisms of Polynomials (IP): Two New Families of Asymmetric Algorithms«. In: Advances in Cryptology —EUROCRYPT ’96. Ed. by U. Maurer. Vol. 1070. LNCS. Springer, 1996, pp. 33–48 (cit. on p. 35). 51. A. Petzoldt,M.S. Chen, B.-Y. Yang, C. Tao, and J. Ding. »Design Principles for HFEv- BasedMultivariate Signature Schemes«. In: Advances in Cryptology—ASIACRYPT 2015. Ed. by T. Iwata and J. H. Cheon. Vol. 9452. LNCS. Springer, 2015, pp. 311–334 (cit. on p. 35). 52. A. Rostovtsev and A. Stolbunov. Public-key Cryptosystem Based on Isogenies. IACR Cryptology ePrint Archive, Report 2006/145. 2006 (cit. on pp. 26, 36). 53. P. Schwabe and B. Westerbaan. »Solving BinaryMQ with Grover’s Algorithm«. In: Security, Privacy, and Applied Cryptography Engineering—SPACE 2016. Ed. by C. Carlet, M. A. Hasan, and V. Saraswat. Vol. 10076. LNCS. Springer, 2016, pp. 303–322 (cit. on p. 34).


PQC_for_Dummies
To see the actual publication please follow the link above