%EVOLDEMO animierte grafische Demo zur Definition von Kreis-Evolventen % Copyright 2003 HSZ-T, Zuerich, Dr. Stefan Adam t = 2*pi*(0:0.01:1.4) ; w = 2*pi*(0:0.01:1); clf ; hold on R=1 ; polx = R ; poly = 0; xkri = R*cos(w) ; ykri = R*sin(w); plot(xkri,ykri,'k') ; axis([-12 12 -12 12]) ; axis square Mofram=moviein(length(t)); for k=1:length(t) lx = 0:0.005*2*pi:t(k); bix = (R)*cos(lx) ; biy = (R)*sin(lx); vx = [(R)*cos(t(k)) (R)*cos(t(k))+R*t(k)*sin(t(k))]; vy = [(R)*sin(t(k)) (R)*sin(t(k))-R*t(k)*cos(t(k))]; pnewx = (R)*cos(t(k)) + R*t(k)*sin(t(k)); pnewy = (R)*sin(t(k)) - R*t(k)*cos(t(k)); if k > 1 delete(arc) ; delete(vec) ; delete(pt); end arc = plot(bix,biy,'g') ; vec = plot(vx,vy,'g') ; pt = plot(pnewx,pnewy,'m.') ; plot([polx pnewx],[poly pnewy],'r'); polx = pnewx ; poly = pnewy; plot(bix, biy,'g'); Mofram(:,k)=getframe; pause(0.1) % input('weiter?') % Test beim Erstellen des Programms: end pause(0.8); movie(Mofram,-3) ; movie(Mofram,1);