%EVOLDEMO animierte grafische Demo zur Definition von Kreis-Evolventen
% Copyright 2003 HSZ-T, Zuerich, Dr. Stefan Adam
t = 2*pi*(0:0.01:1.4) ; w = 2*pi*(0:0.01:1);
clf ; hold on
R=1 ; polx = R ; poly = 0;
xkri = R*cos(w) ; ykri = R*sin(w);
plot(xkri,ykri,'k') ; axis([-12 12 -12 12]) ; axis square
Mofram=moviein(length(t));
for k=1:length(t)
lx = 0:0.005*2*pi:t(k);
bix = (R)*cos(lx) ; biy = (R)*sin(lx);
vx = [(R)*cos(t(k)) (R)*cos(t(k))+R*t(k)*sin(t(k))];
vy = [(R)*sin(t(k)) (R)*sin(t(k))-R*t(k)*cos(t(k))];
pnewx = (R)*cos(t(k)) + R*t(k)*sin(t(k));
pnewy = (R)*sin(t(k)) - R*t(k)*cos(t(k));
if k > 1
delete(arc) ; delete(vec) ; delete(pt);
end
arc = plot(bix,biy,'g') ; vec = plot(vx,vy,'g') ;
pt = plot(pnewx,pnewy,'m.') ; plot([polx pnewx],[poly pnewy],'r');
polx = pnewx ; poly = pnewy;
plot(bix, biy,'g');
Mofram(:,k)=getframe;
pause(0.1)
% input('weiter?') % Test beim Erstellen des Programms:
end
pause(0.8);
movie(Mofram,-3) ; movie(Mofram,1);